
Cassandra Code Style
The Cassandra project follows Sun’s Java coding conventions for anything not expressly outlined in this document.

Note that the project has a variety of styles that have accumulated in different subsystems. Where possible a balance
should be struck between these guidelines and the style of the code that is being modified as part of a patch. Patches
should also limit their scope to the minimum necessary for safely addressing the concerns of the patch.

Naming and Clear Semantics

Class, Method and Variable Naming

Avoid extraneous words, for example prefer x() over getX() or setX() where it makes semantic sense. At the
same time, do not avoid using words that are necessary, for example if a descriptive word provides semantic context
such as liveReplicas over replicas. This is essential when there are many conceptual instantiations for a
variable that are not enforced by the type system, but be sure to be consistent in the word choice and order across all
instantiations of the variable.

e.g. allReplicas, naturalReplicas, pendingReplicas, allLiveReplicas, etc.

Method and Variable Naming Consistency
Ensure consistency of naming within a method, and between methods. It may be that multiple names are appropriate
for a concept, but these should not be mixed and matched within the project. If you modify a concept, or improve the
naming of a concept, make all relevant - including existing - code consistent with the new terminology. If possible,
correspond with a prior author before modifying their semantics.

Standard word meanings in method or property names

calculateX, computeX Perform some potentially expensive work to produce x

refreshX Recompute a memoized x

lookupX Find x in a map, or other structure, that is efficient but not free

x Return x, relatively cheaply

toX Return a potentially expensive translation to x

asX Return a cheap translation to x

asXView Return a cheap translation to x, that will reflect changes in the source

isX, hasX, canX Boolean property or method indicating a capability or logical state

For boolean variables, fields and methods, choose names that sound like predicates and cannot be confused with
nouns.

Semantic Distinctions via the Type System

If possible, enforce semantic distinctions at compile time with the type system.

e.g. RangesAtEndpoint, EndpointsForRange and EndpointsForToken are all semantically different variants
on a collection of replicas.

This makes the intent of the code clearer, and helps the compiler indicate where we may have unintentionally
conflated concepts. They also provide opportunities to insert stronger runtime checks that our assumptions hold, and
these constraints can provide further clarity when reading the code.

In the case of EndpointsForX, for instance, we enforce that we have no duplicate endpoints, and that all of the
endpoints do fully cover X.

Enums for Boolean Properties
Prefer an enum to boolean properties and parameters, unless clarity will be harmed (e.g. helper methods that
accept a computed boolean predicate result, of the same name as used in the method they assist). Try to balance
name clashes that would affect static imports, against clear and simple names that represent the behavioural switch.

Semantic Distinctions via Member Variables

If a separate type for all concepts is too burdensome, a type that aggregates concepts together within member
variables might be applicable.

The most obvious counter-example is not to use Pair, or a similar tuple. Unless it is extremely obvious, prefer a
dedicated type with well named member variables.

For example, FetchReplicas for source and target replicas, and ReplicaLayout for the distinction between
natural and pending replicas.

This may help authors notice other semantics they had overlooked, that might have led to subtly incorrect parameter
provision to methods. Conversely, methods may choose to accept one of these encapsulating types, so that callers
do not need to consider which member they should provide.

e.g. ConsistencyLevel.assureSufficientLiveReplicas requires very specific replica collections, that are
quite distinct, that might be easily incorrectly provided (though this is still inadequate, as it needs to distinguish
between live and non-live semantics, which remains to be improved)

Public APIs

These considerations are especially important for public APIs, including CQL, virtual tables, JMX, yaml, system
properties, etc. Any planned additions must be carefully considered in the context of any existing APIs. Where
possible the approach of any existing API should be followed. Where the existing API is poorly suited, a strategy
should be developed to modify or replace the existing API with one that is more coherent in light of the changes -
which should also carefully consider any planned or expected future changes to minimise churn. Any strategy for
modifying APIs should be brought to dev@cassandra.apache.org for discussion.

mailto:dev@cassandra.apache.org

Code Structure

Necessity

If an interface has only one implementation, remove it. If a method isn’t used, delete it.

Don’t implement hashCode(), equals(), toString() or other methods unless they provide immediate utility.

Specificity

Don’t overgeneralise. Implement the most specific method or class that you can, that handles the present use cases.

Methods and classes should have a single clear purpose, and should avoid special-cases where practical.

Class Layout

Consider where your methods and inner classes live with respect to each other. Methods that are of a similar
category should be adjacent, as should methods that are primarily dependent on each other. Try to use a consistent
pattern, e.g. helper methods may occur either before or after the method that uses them, but not both; method
signatures that cover different combinations of parameters should occur in a consistent order visiting the parameter
space.

Class declaration order should, approximately, go: inner classes, static properties, instance properties, constructors
(incl static factory methods), getters/setters, main functional/API methods, helper (incl static) methods and classes.
Clarity should always come first, however.

Method Clarity

A method should be short. There is no hard size limit, but a filled screen is a good warning size. However, be careful
not to over-minimise your methods; a page of tiny functions is also hard to read.

The body of a method should be limited to the main conceptual work being done. Substantive ancillary logic, such as
computing an intermediate result, evaluating complex predicates, performing auditing, logging, etc, are prime
candidates for helper methods.

Compiler Assistance

Always use @Override annotations when implementing abstract or interface methods or overriding a parent method.

@Nullable, @ThreadSafe, @NotThreadSafe and @Immutable should be used as appropriate to communicate
to both the compiler and readers.

Boilerplate

Prefer public final fields to private fields with getters (but prefer encapsulating behavior in "real" methods to
either).

Declare class properties final wherever possible, but never declare local variables and parameters final.
Variables and parameters should still be treated as immutable wherever possible, with explicit code blocks introduced
as necessary to minimize the scope of any mutable variables.

Prefer initialization in a constructor to setters, and builders where the constructor is complex with many optional
parameters.

Avoid redundant this references to member fields or methods, except for consistency with other assignments e.g. in
the constructor

Exception handling

Never ever write catch (…​) {} or catch (…​) { logger.error() } merely to satisfy Java’s compile-time exception checking.

Always catch the narrowest exception type possible for achieving your goal. If Throwable must be caught for handling
exceptional termination, it must be rethrown. If an exception cannot be safely handled locally, propagate it - but use
unchecked exceptions if no caller expects to handle the case. Rethrow as RuntimeException, IOError, or your
own UncheckedXException, or AssertionError if it “can’t happen”

Only if an exception is an explicitly acceptable condition can it be ignored, but this must be explained carefully in a
comment detailing how this is handled correctly.

Formatting
{ and } are placed on a new line except when empty or opening a multi-line lambda expression. Braces may be
elided to a depth of one if the condition or loop guards a single expression.

Lambda expressions accepting a single parameter should elide the braces that encapsulate the parameter. E.g. x ->
doSomething() and (x, y) -> doSomething()

Multiline statements

Where possible prefer keeping a logical action to a single line. Prefer introducing additional variables, or well-named
methods encapsulating actions, to multi-line statements - unless this harms clarity (e.g. in an already short method).

Try to keep lines under 120 characters, but use good judgment. It is better to exceed this limit, than to split a line that
has no natural splitting points, particularly when the remainder of the line is boilerplate or easily inferred by the
reader.

If a line wraps inside a method call, first extract any long parameter expressions to local variables before trying to
group natural parameters together on a single line, aligning the start of parameters on each line, e.g.
Type newType = new Type(someValueWithLongName, someOtherRelatedValueWithLongName,
 someUnrelatedValueWithLongName,

 someDoublyUnrelatedValueWithLongName)

When splitting a ternary, use one line per clause, carry the operator, and where possible align the start of the ternary
condition, e.g.

var = bar == null

 ? doFoo()
 : doBar();

It is usually preferable to carry the operator for multiline expressions, with the exception of some multiline string
literals.

Whitespace

Make sure to use 4 spaces instead of the tab character for all your indentation.
Many lines in the current files have a bunch of trailing whitespace. If you encounter incorrect whitespace, clean up in
a separate patch. Current and future reviewers won’t want to review whitespace diffs.

Static Imports

Consider using static imports for frequently used utility methods that are unambiguous. E.g. String.format,
ByteBufferUtil.bytes, Iterables.filter/any/transform.

When naming static methods, select names that maintain semantic legibility when statically imported, and are unlikely
to clash with other method names that may be mixed in the same context.

Imports

Observe the following order for your imports:
java
[blank line]
com.google.common
org.apache.commons
org.junit
org.slf4j
[blank line]
everything else alphabetically

Format files for IDEs

IntelliJ: intellij-codestyle.jar
IntelliJ 13: gist for IntelliJ 13 (this is a work in progress, still working on javadoc, ternary style, line continuations, etc)
Eclipse: (github.com/tjake/cassandra-style-eclipse)

Performance
Considerations primarily for frequently invoked code, but that should always be kept in mind

Streams, Lambdas, Optionals
Streams incur increased costs that are hard to quantify, and should be avoided for any frequently invoked code paths.

Lambdas should be used with care, and only when they greatly improve clarity - particularly those that capture
variables or contextual state. If an object will anyway be created, prefer the use of a lambda for clarity.

Optionals should be avoided on common/frequent code paths, and generally unless clarity is greatly improved, i.e.
when interacting with supporting libraries.

For Loops

Extract the upper bound of a loop except where you can be certain it will be efficiently hoisted by the compiler, e.g.

for (int i = 0, max = list.size(); i < max ; i++)
​ doSomething(i);

External Dependencies
Dependencies to the project are sticky, and generally poorly audited. They expose the project to security flaws simply
by being included, as well as a poorly-managed ongoing maintenance risk. They may also harm the coherency of the
project’s codebase when introducing alternative mechanisms to existing solutions in the project. It is best to seek
wider input before committing the project to this course of action. New dependencies should not be included without
community consensus first being obtained via a [DISCUSS] thread on the dev@cassandra.apache.org mailing list.

mailto:dev@cassandra.apache.org

	Cassandra Code Style
	Naming and Clear Semantics
	Class, Method and Variable Naming
	Method and Variable Naming Consistency
	Standard word meanings in method or property names

	Semantic Distinctions via the Type System
	Enums for Boolean Properties

	Semantic Distinctions via Member Variables
	Public APIs

	Code Structure
	Necessity
	Specificity
	Class Layout
	Method Clarity
	Compiler Assistance
	Boilerplate
	Exception handling

	Formatting
	Multiline statements
	Whitespace
	Static Imports
	Imports
	Format files for IDEs

	Performance
	Streams, Lambdas, Optionals
	For Loops

	External Dependencies

