class PollRecord:

def __init__(self, name: str, options: list[str]):
self.name = name # Set up a field, assign a value to it
self.options = options
self.votes = list() # Make a new field with an empty list

def cast_vote(self, for_option):
if for_option in self.options: # is for_option contained in self.options
self.votes.append(for_option)
else:
raise ValueError("Wrong option

+ for_option)

def count_votes(self):
return len(self.votes)

def count_votes_for(self, for_option: str) -> int:
total = ©

"for each loop"
for v in self.votes:
if v == for_option:
total += 1

return total

Like Java's toString
def __str__(self) -> str:
return "Poll for question

+ self.name + ", choices:

+ str(self.options)

option_list = ["red", "green", "blue"]

p = PollRecord("What is your favorite color?", option_list)
p.cast_vote("red")

p.cast_vote("green")

Another way

def cast_vote(poll, option_picked: str):
if option_picked not in poll["options"]:
raise ValueError("Invalid option")

poll["votes"].append(option_picked)

def total_votes(poll):
return len(poll["votes"])

def count_votes_for(poll, for_option):
total = ©

for v in poll["votes"]:
if v == for_option:
total += 1

return total

some_poll = {

"name": "what is your favorite color?",
"options": ["red", "green", "blue"],
"votes": [],

}

cast_vote(some_poll, "red")
cast_vote(some_poll, "green")
print(total_votes(some_poll))

Bonus: list comprehensions

Map-like list comprehension

Transform [“8”, “10”, “-5.5"] to [8, 10, 5.5]

Transform [“hello”, “WORLD”, “pYthon"] to [“hello”, “world”, “python”]

Filter-like list comprehension

Transform [0, 5, -2, -4, 7] to [5, 7]

Combine map and filter

Transform [“pvd”, “boston”, “wos”, “newport”’] to [“PVD”, “W0S"]

Combine map, filter, and enumerate

Transform [8, 3, 5,9, 0, 2] to [0, 4, 5] (indices of the even numbers)

	
	Bonus: list comprehensions

