1. 3

2. Factoring 6x² - x - 2 requires considering factors of 6 and -2 in different combinations until the combination is found that produces the correct middle term. Factoring x² - x - 2 only requires finding the factors of -2 that add up to −1.

3. 3(x-1)(x+2)

4. 8(v-2)(v+3)

5. 4(k+3)(k+4)

6. 6(y-1)(y-3)

7. 7(b-4)(b-5)

8. 9(r+1)(r-5)

9. (3h+2)(h+3)

10. (2m+7)(4m+1)

11. (2x-1)(3x-1)

12. (2w - 5)(5w - 3)

13. (n+2)(3n-1)

14. (2z-1)(2z+3)

15. 2(g-2)(4g+3)

16. 3(2v-3)(3v+2)

17. -(t-3)(3t-2)

18. -(v+3)(7v+4)

19. -(c-5)(4c+1)

20.
$$-(h+2)(8h-3)$$

21.
$$-(3w-4)(5w+7)$$

22.
$$-(2d-1)(11d-9)$$

23. need to factor 2 out of every term;
=
$$2(x^2 - x - 12) = 2(x + 3)(x - 4)$$

24. These factors do not give the correct middle term; = (2x - 3)(3x + 1)

25.
$$x = -2, x = 3$$

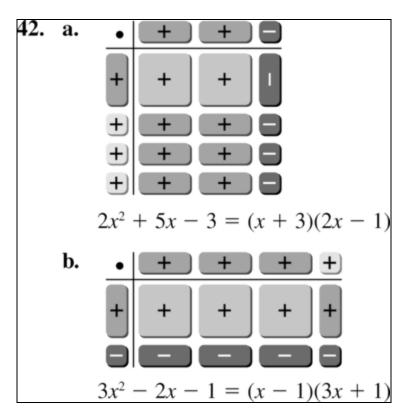
26.
$$k = -2, k = \frac{9}{2}$$

27.
$$n = -\frac{5}{3}, n = \frac{3}{4}$$

28.
$$b = -\frac{1}{2}, b = \frac{2}{7}$$

29.
$$x = -\frac{7}{2}, x = 5$$

30.
$$x = -3, x = \frac{1}{4}$$


31.
$$x = -1, x = \frac{5}{7}$$

32.
$$x = -\frac{1}{3}, x = 5$$

33. a.
$$(5x-2)$$
 ft

b. Substitute 3 for x into the expression for the area $15x^2 - x - 2$, then simplify; Substitute 3 for x into the expressions for the length (5x - 2) and width (3x + 1), simplify each, then multiply these two numbers.

- **35.** length: 70 m, width: 31 m
- 36. yes; The length of the invitation is 5 inches, which is less than $5\frac{1}{8}$ inches. The width of the invitation is 3 inches, which is less than $3\frac{5}{8}$ inches.
- **37.** Sample answer: $6x^2 + 3x$
 - 38. The graph of k represents function g, and the graph of ℓ represents function h; Because g is positive, the constant terms in the factors must have the same sign. Because g has a positive value of g, the constant terms of the factors will both be positive, which results in negative roots, and g has two negative g-intercepts. Because g has a negative value of g, the constant terms of the factors will both be negative, which results in positive roots, and g has two positive g-intercepts.
- **39.** when no combination of factors of a and c produce the correct middle term; Sample answer: $2x^2 + x + 1$
- 40. no; To use the Zero-Product Property, one side of the equation needs to be 0. So, you must first subtract 2 from each side of the equation, then factor.
- **41.** ± 9 , ± 12 , ± 21

- **43.** 3.5 in.
- **44.** 4 ft
- **45.** (k+2j)(4k-j)
- **46.** (2x y)(3x + 4y)
- **47.** -(a-2b)(6a-7b)
- **48.** 3m(2m+5n)(3m-n)
- **49.** ±8
- **50.** 2
- **51.** -15
- **52.** ±9
- **53.** (-1, -4)
- **54.** (4, 6)

- **55.** (0, -7)
- **56.** (-5, 3)