
Event Browser Documentation

Welcome! The event system is a core part of Old World, with 3500+ events that cover everything from
gameplay tutorials to dynastic intrigue. The event system is designed to accommodate multiple authors
working separately, with an assumption that they do not need to be closely coordinated.

The events are all stored in XML by the game and the browser is a UI tool for editing those XML files. There
are two parts: 1) The Event Browser - the main screen when the browser is opened, useful for editing existing
events. 2) The Event Wizard - a tool within the browser for quickly creating new events.

This guide will go through the different ways of setting up an event, best practices and things to keep an eye
out for. Happy writing!

Figure 1. An event in-game.

Previewing Events

Open the EventBrowser
To open the Event Browser, navigate Old World’s main menu: Tools>Event Browser

​ When you first open up the Event Browser, it will load all of the base game xmls and present you with
the scene in Figure 2. If you are running the live version of the game, you will be presented with a popup
prompt to create or select a mod whenever you try to make an edit. If you are running in Unity for development,
you will be able to edit the base game files.

Figure 2. The Event Browser.

We will start by looking at EVENTSTORY_RUINS_RITUAL_PERFORMANCE. Click the event in the list to
select it and then click the preview button in the top right to show a preview of the event.

Figure 3. Previewing an event.

The Anatomy of an Event

The event has a number of elements:

1.​ A title - ‘Ritual Performance’
2.​ A background image
3.​ A portrait of a character
4.​ The main body of text
5.​ Options, which each have a ‘bonus’ (a

 gameplay effect) displayed when hovering
over
 them.

Figure 4. Previewing
EVENTSTORY_RITUAL_PERFORMANCE .

Closing the window and looking at the event in the browser, we can see the fields that set many of these
elements already - such as English Name (the title), English Text (the main body text) and aeOptions (the
options, which are other entries with their own text and bonus fields).

Figure 5. EVENTSTORY_RITUAL_PERFORMANCE in the browser.

In addition to this, there are fields for various other options, and meta-data such as the author of the event.

Creating Your First Event

Setting up a Mod
As mentioned before, if not working with the base Unity files, you will need to create a mod to edit the events.

●​ Press the gear icon in the upper left corner of the UI, this will open the “Mod Options” popup.
●​ Press the “Create New Mod” button in the popup.
●​ Enter the name of your mod. For example, we’ll create the mod “Ruins Test”.
●​ Press “Confirm”. This will automatically create a file in the game data directory with the basic

information for your mod, and should open that in your native file explorer window. See Documents/My
Games/OldWorld/Mods/Ruins Test

You can also use this popup to select a different existing mod to edit. When you select a mod, the

browser will take a few seconds to reload the info xmls and then you will be able to edit your mod within the
browser. You can only load one mod at a time in the browser for simplicity’s sake, and the current mod name
will be labeled in the top bar as indicated in Figure 6.

Figure 6. Mod creation.

Making a Ruins Event
There are multiple ways to create and edit events in the Event Browser. We will first create an event from

scratch in the Browser to introduce the various elements that go into an event, and then create it again in the
Wizard, to show how it helps creating events. Start by pressing the “New Entry” button at the top of the
screen. The popup will ask for a new zType - this is the unique identifier for the story in the XML. We will call

the new event EVENTSTORY_RUINS_ENCOUNTER. Clicking okay will create and select the new event,
showing the empty fields to be created.

First let’s add some text. The Name and Text fields hold the title and text respectively. You will see that at first
there is no field to start writing the text into by default - this is because each text element is stored in its own
XML to allow for localisation.

So first we need to create these elements. Click on the New button by Name field and the same popup as
before will appear, asking for a name for the zType for the new text type being created. The naming convention
is TEXT_[...] for the main body text and TEXT_[...]_TITLE for the title, where [...] is the event’s zType. Now we
have somewhere to write!

You will see that the preview is grayed out - we need to save the event first. Click the Save button in the top
right of the screen and, after you confirm the changes, the files will save. Along with a confirmation message,
you will get an error message like the one below.

This is because there is some meta-data that the event needs to be valid.

The first error is simple to correct - the author of the event. Just add your name to the zAuthor field. A small
thing to note is that the zAuthor field name has changed to italics. All field names will do this when they have
been edited, to show what changes have been made since last saving.

The second unit test error shows that an event needs at least one option - we will return to those in a minute.

Triggering an Event
But first let’s look at what goes into getting an event to fire. The last error in the message says that

iRepeatTurns cannot be empty. This is one of the various fields that balances when an event appears in the
game.

To give a quick rundown of the most commonly used:

Trigger: The gameplay action that will trigger this event such as exploring a ruin, finishing a mission, initiating
combat with a unit or a character dying. Each trigger has its own percentage check for how often it will try to
fire an event. If this field is left blank, then the event is not tied to any specific action and can be randomly
picked at the start of a player’s turn.

iWeight: The weighting of how likely an event is to be picked against other valid events from the same trigger.
0 will never fire, 1 is the standard weighting, 2 is double as likely to be picked as 1 etc. If left blank it will default
to 0, so it is important to remember to set a number.

iProb: This value determines the percentage chance of the event being added to the pool of valid events when
a trigger fires. If left blank then it sets to 100, so there is always a chance of it being picked.

iRepeatTurns: This says how often an event can repeat. A value of 0 means there is no limit, it could
theoretically happen again the next turn, whereas a number means that the game will wait that number of turns
before considering firing the event again. -1 means that the event can only occur once.

So for our new Ruins event, we will use the Trigger EVENTTRIGGER_RUINS_EXPLORED, a iWeight of 1
and an iRepeatTurns of -1. This means that the event will only fire when a unit explores a ruin on the map, it
has an average chance of occurring and will only show once per game.

If you hover the mouse over one of the entries from the Trigger field drop-down, you will notice that it has a
comment for Subject and Extra as below.

These correspond to the Subjects that the event will need to use. A Subject is one of the most important
concepts in creating events - these are the game elements that the event needs to exist in the world for the
event to fire.

Event Subjects
Each event has a list of Subjects. These are used for testing the game state to make sure that the event
makes sense in the current context, applying Bonuses (gameplay effects) and for allowing the text to change
depending on the current game.

From EVENTTRIGGER_RUINS_EXPLORED we can see that the event will need a tile subject, and takes an
optional unit subject so start by adding a SUBJECT_TILE and SUBJECT_UNIT_US. Many subjects have the
suffix of _US, _THEM or _US_OR_THEM. These indicate whether the character, unit, city or other subject
belongs to the player seeing the event, to a rival player, or to either.

Finally add a SUBJECT_LEADER_US. This is one of the most commonly used subjects as it represents the
player’s current leader character, who bonuses are often applied to.

Adding subjects.

This means that the event will need a tile on the board, and the active player to have at least one unit and a
leader character for the event to be valid. To make sure that when EVENTRIGGER_RUINS_EXPLORED fires,
the event gets the relevant tile (where the ruins are) and the right unit (the one exploring the ruins), the subject
index needs to be added in the iTriggerSubject and iTriggerExtra field. The index of the first subject is 0, so
here 0 is the SUBJECT_TILE, and 1 will be the SUBJECT_UNIT.

Adding iTriggerSubject and iTriggerExtra.

If you want to apply additional checks on the Subjects, like only firing the event if the ruins are explored by a
mounted unit, you can do so with the SubjectExtras. These take a number for the Subject index to check and
the additional subject to test.

Adding a SubjectExtra to SUBJECT_UNIT_US.

Options and Bonuses
Now we have subjects, we can add some options that will have an effect on these subjects. These are
separate XML entries with their own zType and text entries.

The list on the far left of the browser lets us go between the different XML entry types, so to create a new
option we select Options, select any entry from the list and then click New Entry, using the base tag as before.

Adding a new Option with a new Text entry.

To make this Option have an effect in the game we need to add a Bonus. Each bonus is applied to one of the
subjects in the event, and the bonus order on the Option needs to be the same as the Subject order on the
Event.

So to make the event give the player some food, we add three entries. The first two can be left blank as we
don’t want to apply a Bonus to the tile or to the unit, then in the third we will add
BONUS_FOOD_GAIN_SMALL, which will give the player a small amount of food.

The completed bonuses.

Finally we need to link the new Option to the event, so copy the zType into the aeOptions of the event, or save
and pick your new option form the list

Flavor
We now have a completed and working event, but there is more that can be done to make it more interesting.

zBackgroundName and zAudioTrigger let you choose an image and audio for the event. They each have a
Choose Image/Audio button next to the field that lets you browse through the available options.

The portrait can also be set to show a certain character by specifying the Subject index in iImageSubject, and
iImageExtra if a second portrait is wanted.

Now that the event has some subjects, we can also make the text a bit more interesting. Text can include
variables that dynamically update to the context of the event/game. For example:

Great {TITLE-2}, your {UNIT-1,2} have come across an abandoned ruin. Weary, they take a moment to rest
and toast your name, {CHARACTER-2}.

Could generate:

Great Queen, your Chariots have come across an abandoned ruin. Weary, they take a moment to rest and
make a toast to your name, Queen Cleopatra the New.

As you can see, variables are surrounded by curly braces {} and can have two parameters: the first is the
variable name with the subject index. The second (like {UNIT-1,2}) is a modifier index for which form of the text
you want (0 is default if you don’t specify the form).

{UNIT-1} => Chariot
{UNIT-1,1} => a Chariot
{UNIT-1,2} => Chariots

Depending on the kind of variable you use, the form index is used differently. The list below contains the
different types of variables you can use in events.

Variable Example Output

CHARACTER-X {CHARACTER-0} speaks… King Ashurbanipal the Founder of
Assyria speaks…

CHARACTER-SHORT-X {CHARACTER-SHORT-0} speaks… Ashurbanipal speaks…

TITLE-X “Greetings, great {TITLE-0}.” “Greetings, great Queen.”

PLAYER-X From {PLAYER-0}
The {PLAYER-0,1} law
He is {PLAYER-0,2}
One of the {PLAYER-0,3}

From Assyria
The Assyrian law
He is an Assyrian
One of the Assyrians

TRIBE-X From {TRIBE-0}
The {TRIBE-0,1} law
He is {TRIBE-0,2}
One of the {TRIBE-0,3}

From Gaul
The Gallic law
He is a Gaul
One of the Gauls

RELIGION-X A follower of {RELIGION-0}.
The {RELIGION-0,1} book.
She is {RELIGION-0,2}.
One of the {RELIGION-0,3}.

A follower of Zoroastrianism.
The Zoroastrian book.
She is a Zoroastrian.
One of the Zoroastrians.

FAMILY-X The {FAMILY-0} family...
The {FAMILY-0,1} are angry.
A {FAMILY-0,2} family member

The Julia family...
The Juliae are angry.
A Julian family member

RELATIVE-X Your {RELATIVE-0}... Your sister…

CITY-X The gates of {CITY-0}. The gates of Babylon.

UNIT-X The {UNIT-0} attacks. The Warrior attacks.

You call {UNIT-0,1} forwards.
A unit of {UNIT-0,2}.

You call a Warrior forwards.
A unit of Warriors.

LANDMARK-X Close to the {LANDMARK-0}... Close to the Alps…

One of the most common markup tags is the gender conditional which will take into account a character

subject’s gender when generating the text. In the example below, if CHARACTER-1 (i.e. character index 1 in
your aeSubjects list) is male the text will render “He” and if the character is female the text will render “She”.

{G1:He:She}

To learn more about Mohawk’s text system, see this document.

A completed event.

https://drive.google.com/open?id=1Db6LFCYckGjSxyNvukzYA_a_aao2QIp0sVbtxS_tVyg

Creating an Event in the Wizard
The Event Wizard is similar to the Event Browser, with the same fields and options. The main advantage is
that new zType XML entries are automatically generated and connected as needed, taking out the time and
manual labor of naming and connecting new text, option and bonus types.

To create a new event with the Wizard, click the Open Wizard button in the bottom left of the browser.

The Event Wizard.

The Wizard opens on the Setup screen, shown on the left at the top of a list of Steps. These will automatically
be generated as we create options and bonuses.

Typing a Title will automatically try to create a Story Tag, which will be used to name the generated zTypes. It
is also possible to write a new Tag directly if needed.

This will be used throughout with the applicable prefixes, for example the event will be called
EVENTSTORY_ANOTHER_RUIN_ENCOUNTER and the main body text will be
TEXT_EVENTSTORY_ANOTHER_RUIN_ENCOUNTER.

The Text, Subjects, SubjectExtras can now all be set up as before.

Options are where the Wizard really shines. Clicking on the + creates a new option and text field, allowing
quick creation of options. The Tag will be used as the option Suffix and can be changed or left as the default.
Note that adding these new options will add an option Step to the list on the left.

Adding options.

Click on Next Step at the bottom of the screen to progress to the next step, the Story Details page. This is
where all of the other options from the Event Browser view can be found, such as the Trigger, iWeight,
iImageSubject etc.

After filling them out, Next Step takes us to the Option 1 page. Here you will see that rather than having to
add new fields for the Bonuses, they have been automatically added for the number of subjects, with a ? that
tells you which Subject and SubjectExtra the bonus is being applied to when hovered over.

We can add the Bonus as before, by typing in an existing one, or there is a button to generate a new Bonus.
Try generating a new bonus and look through the different options. One particularly useful feature is down at
the end, the aeBonuses list. This allows you to add multiple bonuses to one subject.

As an example, I’m going to make the second option give the unit some XP with BONUS_XP_UNIT_LARGE,
but cost the leader some money and training by generating a new Bonus that applies
BONUS_MONEY_LOSS_AVERAGE and BONUS_TRAINING_LOSS_SMALL.

Clicking through to the final step will automatically bring up a preview of the event and let you check to see
how it has turned out. The Next Step button will become Finish and Save, click it to save your new event.

NOTE - The save button in the top left, shown below, will save your progress in the Wizard, it will not save the
event to your files.

Further Topics

Advanced Subjects
Coming soon.

The Search Bar
The search bar is a tool for finding entries. By default it will find any zTypes that contain the search term.
Spaces and capitals are dealt with behind the scenes, so ‘RUINS_ENCOUNTER’ is the same as ‘ruins
encounter’.

It is possible to search for a specific field using ‘:’, with the field name before and the search term following.
Note that a field name needs to be exactly the same as it appears in the browser, including capitals, such as
zAuthor, aeSubjects etc. (the exceptions are English Name and English Text, which can be searched with just
Name and Text respectively). Leaving the search term blank after : will find results where the field is empty.

Trigger:new - will find events with a trigger that includes ‘new’, like EVENTTRIGGER_NEW_TURN.
Trigger: - will find any results that don’t have an event trigger.

Multiple searches can be made at once by using ‘,’ to separate searches. Any spaces around ‘:’ and ‘,’ are
ignored, so they can be included or not.

To search a bool field, like bTutorial, ‘bTutorial:’ will find entries where it is false, ‘bTutorial:1’ will find entries
where it is true.

To find an event with any value in a field, just use a single letter from the start tag of the zType. Eg. ‘Trigger:e’
will display all events with a trigger, as they all contain EVENTTRIGGER_.

Event Links
Coming soon.

Editing Events in the Wizard
Coming soon.

The Advanced Text Editor
Coming soon.

Event Field Reference

At the bottom of an event there is a special toggle to ‘Show More Fields’. Clicking this will show more options
for the event, which are listed below. The most commonly used fields are highlighted. Examples that use the
field are in brackets.

zFrameType Sets a special frame for the event, normally used for scenarios.

zVideoAsset Plays a video file instead of the background image.

zEventURL Adds a URL link that adds a badge to the event, normally to Wikipedia for

historical events.

zCommunityContribution Can be used instead of zAuthor, shows a CC badge on the event that shows
the name entered here when hovered over.

zNotes Adds notes to the event that can be seen hovering over the CC badge in
Debug mode.

SubjectRepeatTurns The minimum turns before the event can happen for a specific subject. -1
means it will only happen once for that subject.

SubjectNotExtras Extra tests for the subject which must be false.

SubjectAny The event will be valid if at least one of the subject extras specified here are
true for each subject.

SubjectNotRelations Tests that none of these relations are true.

Class Adds the event to an event class, which helps to regulate and separate
similar events.

iImageSubject Display a portrait for the character subject at this index.

iImageExtra Display a second portrait, showing the character subject at this index.

iImageOther Displays a portrait of the non-character subject at this index if possible.

zHighlightAttribute Highlights a UI element, used for tutorial events.

iTagIndex Adds an index to the attribute tag.

iLookAtSubject The camera will look at this subject when the event begins. Defaults to -1,
which means it looks at the first valid subject.

iMarryTempSubject If using a subject with bSuitorTemp (like SUBJECT_SUITOR_TEMP), the
subject at this index is the intended target for marriage. This ensures the
generated characters have the right gender etc to be valid.

iSortOrder Sets the order in which events are shown if triggered at the same time,
higher meaning earlier.

EventLinkPrereq Checks if the needed EventLink has been created. See here for more on
Event Links.

iEventLinkTurns Sets the minimum number of turns after the EventLink is created before this
event becomes valid.

LawPrereq A law that the player must have active in order for this event to fire.

CouncilInvalid The event will only happen if the player does not have this position filled.

MinOpponentLevel The event will only fire if the game is set to this OpponentLevel or higher in
the settings.

MaxOpponentLevel The event will only fire if the game is set to this OpponentLevel or lower in

the settings.

MinTribeLevel The event will only fire if the game is set to this TribeLevel or higher in the
settings.

MaxTribeLevel The event will only fire if the game is set to this TribeLevel or lower in the
settings.

MinDifficulty The event will only fire if the game is set to this Difficulty or higher in the
settings.

MaxDifficulty The event will only fire if the game is set to this Difficulty or lower in the
settings.

iMinLeader The minimum leader needed for this event to be valid. For example, if set to
2 then the event will not trigger for your first leader.

iMinTurns The minimum turn number required for this event to trigger.

iMaxTurns The maximum turn number on which this event can trigger.

iPriority The priority over other valid events. The default is 1. An event with a higher
priority will always be picked over an event of a lower priority, no matter the
iWeight and iProb.

bHidePrereqs Hides the text that shows the event prerequisites.

bSinglePlayer If true, the event will only occur in single player games.

bMultiplayer If true, the event will only occur in multiplayer games.

bAllOptions The event will only occur if all of the options are enabled.

bIgnoreOptions Ignore the unit tests to check that the event has at least one option.

bAlwaysTriggers If true, the event ignores the probability check for the Trigger.

bForceChoice If true then the event cannot be minimized or dismissed, but only closed
through an event option.

bTutorial If true, then only appears with the Show Tutorials option on.

bHidden The event will not be shown to the player when triggered. Any bonuses on
the main event will still be applied.

bMultiples If true, this event will not stop others from firing. Useful in situations such as
the Regency events, where the events should fire regardless of other Death
events.

aiRatingWeight Adjusts the weight based on the Leader’s Ratings, like Courage etc.

aiMortalitySkipProb Sets the chance that the event will be skipped based on the mortality level.
Especially useful for making sure that death events are rare or skipped
completely for MORTALITY_LONG.

aeLawInvalid The event will be invalid if any of these laws are active.

aeEventStoryRepeatTurns A list of events that iRepeatTurns checks against. This is especially useful for
making sure that variations of an event do not fire close together.

Common Bonuses
Coming soon.

Triggering events
By Solver

You can trigger your events in-game using console commands. There are two console commands to be used.

doeventstory EVENTSTORY_NAME - attempts to immediately run the provided event. The event’s
preconditions have to be met then, e.g. if the event requires a friendly family then there has to be a friendly
family currently in the game. This command works for most events with no triggers but will fail for some events
that need extra data, for example events triggering when a tech is discovered or an improvement completed.

The command will also not work for events that require an event link - you have to make sure the event link is
added first by triggering the prerequisite event.

eventstorymaxprio EVENTSTORY_NAME - if doeventstory won’t work because the event is too
complicated, this command is a better option. It doesn’t trigger the event immediately but it overrides the
game’s randomness so the event will be triggered the next time it can be.

For example, you want to test a culture event. You cannot use doeventstory because the command
wouldn’t know which city to apply to, and there are many such events, so using eventstorymaxprio is a
good idea. Use this command and then trigger a culture level-up (through the game editor preferably) - the
event you want will be triggered. If it doesn’t trigger, there’s a good chance something is wrong with the event.

Troubleshooting events
By Solver

So you have an event that refuses to trigger even though the conditions seem right. Typical. If an event won’t
trigger, not even with eventstorymaxprio, chances are something is wrong with the event.

One good trick to use is the output from doeventstory. If the event could potentially work with that
command (i.e. no complicated triggers) then the output you get can provide a clue. Here’s example output
when the command fails to trigger an event (it gets logged as an error in Unity):

[Assert] EVENT FAIL

Event Story: EVENTSTORY_THROUGH_THE_SMOKE
Subjects Found :
0
50
null
Subjects Required :
0:SUBJECT_PLAYER_US
1:SUBJECT_LEADER_US
2:SUBJECT_TRIBAL_COURTIER
3:SUBJECT_CAPITAL_US
4:SUBJECT_TRIBE_PEACE_OR_TRUCE
5:SUBJECT_LEADER_TRIBE_PEACE_OR_TRUCE
Subject Extras :
0:SUBJECT_PLAYER_MAX_THREE_COURTIERS
2:SUBJECT_ADULT_UNDER_30
4:SUBJECT_TRIBE_MAX_NEAR
Subject Not Extras :
NONE
Subject Any :
NONE
Repeat Turns: 90
is EventStory Turn Valid : True
Law Pre: NONE

Trigger: NONE

The most relevant part is the list of subjects that were found:

Subjects Found :
0
50
null

These subjects correspond to the event’s required subject. For the first two subjects, the game was able to find
something (IDs 0 and 50), the third was one null. A null subject means it couldn’t be found and caused the
event not to trigger. In this example, looking at the Subjects Required list, you could deduce that
SUBJECT_TRIBAL_COURTIER is the one not being found.

Whether you know which exact subject fails or no, it’s useful to understand the two most common general
causes why events won’t trigger:

●​ A subject cannot be located. The game cannot find a subject that would fulfill the requirements
(SubjectExtras, SubjectRelations, etc). In some cases this could be an incorrectly designed event that
requires things that are technically possible but do not normally occur. For example, a teenager with an
archetype. It’s possible but doesn’t normally occur because characters get an archetype when they
become adults.

●​ One of the event options specifies a bonus that cannot apply to a subject. It could be something as
simple as a trait, you cannot add a trait to a character who already has that trait. Often it’s something a
bit more complicated, for example a bonus instructs a character to become the general of some unit but
the character is too old.

To distinguish between the two cases, a simple trick is to remove all bonuses from the event’s options. Then
you have options that effectively do nothing. If the event triggers now, the problem was probably with the option
bonuses, otherwise it was with the subjects.

	Event Browser Documentation
	Previewing Events
	Open the EventBrowser
	The Anatomy of an Event

	
	Creating Your First Event
	Setting up a Mod
	Making a Ruins Event
	Triggering an Event
	Event Subjects
	Options and Bonuses
	Flavor

	Creating an Event in the Wizard
	Further Topics
	Advanced Subjects
	The Search Bar
	Event Links
	Editing Events in the Wizard
	The Advanced Text Editor
	Event Field Reference
	Common Bonuses
	Triggering events
	Troubleshooting events

