
Lazy Tensor in S4TF

Status: Draft | In Review | Approved | Final | Obsolete
Authors: bgogul@google.com
Contributors (in alphabetical order): apassos@google.com, asuhan@google.com, burmako@google.com,
saeta@google.com
Last Updated: 2019-06-20

The document outlines the design of a Swift For TensorFlow (S4TF) runtime mechanism called
Lazy Tensor that provides an efficient way to stage machine learning computations to an
accelerator device like GPU or TPU.

Background
There have been several different approaches to staging machine learning computations to
accelerators such as GPUs and TPUs . Traditionally, TensorFlow expected the programmer to1

build dataflow graphs that capture the semantics of their machine learning models. The
dataflow graphs are then evaluated by a sophisticated runtime, which performs various
optimization on the user-generated graph before launching the computations on an accelerator.
This is known as the graph mode in TensorFlow.

Executing models in graph mode provided great performance as the runtime could perform
various optimizations such as op fusion before launching the computations. However, they do
not provide for a great user experience as graph mode is incompatible with the imperative
programming model that programmers are familiar with: (1) performing line-by-line debugging is
difficult as the computations don’t execute until the whole graph is built, (2) control
dependencies should be explicitly specified instead of using natural control flow constructs in a
given language. Most recently, TensorFlow provides an eager executionmode, an imperative
programming environment that evaluates operations immediately, without building graphs.

While eager mode addresses the usability issues in graph mode, kernel dispatch overheads
become a significant performance tax when using TensorFlow today. Further, the TPU software
stack (XLA) cannot perform advanced compilation optimizations such as operator fusion in
eager mode. As a result, it’s very valuable (for both GPUs and TPUs) to build up representations
larger than a single kernel.

1 This section provides just enough background and is not intended to be a survey.

mailto:bgogul@google.com
mailto:apassos@google.com
mailto:asuhan@google.com
mailto:burmako@google.com
mailto:saeta@google.com
http://www.tensorflow.org
https://www.tensorflow.org/guide/graphs
https://www.tensorflow.org/api_docs/python/tf/control_dependencies
https://www.tensorflow.org/api_docs/python/tf/control_dependencies
https://www.tensorflow.org/guide/eager

Related work: TensorFlow provides a@tf.function decorator that can be added to a python
function so that the computations in the function are staged into a computational graph before
execution. TensorFlow uses a combination of tracing and AST transformations to compile the
function into a tensorflow graph. While most of the discussion so far has focussed on
TensorFlow, other frameworks like PyTorch have very similar programming models. For
instance, PyTorch uses an imperative programming environment and provides mechanisms
such as tracing and@torch.jit.script decorator to stage computations before launching them on
accelerators.

In this document, we outline an approach called Lazy Tensor to extract and execute graph
fragments from an unmodified Swift for TensorFlow program containing tensor computations.

Lazy Tensor Design
The idea behind lazy tensor is pretty simple and is inspired by lazy evaluation in programming
languages, which delays the evaluation of an expression until its value is needed. Instead of
evaluating a tensor computation right away, the runtime captures enough information about the
operation so that it can be evaluated at a later time when it is needed. Even though this
document discusses tensorflow-specific implementation, the ideas are very generic. In fact,
lazy evaluation has already been shown to be effective for staging computations to xla in
pytorch.

Virtualization of TensorHandle
First, we introduce an abstraction for the TensorHandle used with the TensorFlow library.

/// This protocol abstracts the underlying representation of a tensor. Any type

/// that conforms to this protocol can be used as a `TensorHandle` in the

/// `TensorFlow` library.

public protocol _AnyTensorHandle: class {

var _tfeTensorHandle: TFETensorHandle { get }

}

The only requirement of an _AnyTensorHandle protocol is that there is a way to convert it into
a TFETensorHandle that represents a concrete tensor handle in the TensorFlow Eager runtime.

Representation of a LazyTensor
Now the _AnyTensorHandle protocol allows us to define a LazyTensor type. A LazyTensor is
either a concrete TFE_TensorHandle or the symbolic result of a deferred tensor operation
(LazyTensorOperation).

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/function
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/function
https://pytorch.org/
https://pytorch.org/docs/stable/jit.html#torch.jit.trace
https://pytorch.org/docs/stable/jit.html#torch.jit.ScriptModule
https://en.wikipedia.org/wiki/Lazy_evaluation
https://github.com/pytorch/xla/tree/master/torch_xla/csrc
https://github.com/pytorch/xla/tree/master/torch_xla/csrc

class LazyTensor: _AnyTensorHandle {

enum Handle {

/// Bool indicates if this concrete TFETensorhandle was a result of

/// materialization.

case concrete(TFETensorHandle, materialized: Bool)

/// Bool indicates whether this is a live tensor. This flag is used to

/// heuristically determine whether this symbolic tensor should also be

/// materialized whenever materialization of any other tensor is triggered.

case symbolic(LazyTensorOperation, index: Int, isLive: Bool)

}

}

class LazyTensorOperation: TFTensorOperation {

enum Attribute {

case boolValue(Bool)

case intValue(Int)

...

}

let name: String

var attrs: [String: Attribute]

var inputs: [LazyTensor] // The actual implementation distinguishes

// single inputs and list inputs.

}

We will touch upon the materialized and isLive attributes later in the document.

Materialization of a LazyTensor
A symbolic tensor gets materialized into concrete tensor whenever the computed
_tfeTensorHandle property of a LazyTensor is accessed:

class LazyTensor {

// ...

var _tfeTensorHandle: TFETensorHandle {

switch handle {

case .concrete(let h, _): return h

case .symbolic(let op, let index, _):

let h = materialize(op: op, index: index)

// memoize the result as well.

handle = .concrete(h, materialized: true)

return h

}

}

}

Materialization of a symbolic tensor triggers the execution of all the deferred tensor
computations on which the given symbolic tensor depends on. After materialization, the result
is also memoized to avoid multiple executions of the same operation. The algorithm to convert
a LazyTensor into a concrete TFETensorHandle, i.e., materialize a LazyTensor is as follows:

func materialize(op: LazyTensorOperation, index: Int) -> TFETensorHandle{

// 1. Collect the set of reachable lazy tensor operations `ops`

// by performing a dfs starting from op and following the inputs.

// 2. Convert the set `ops` into a TensorFlow function and evaluate.

// 3. Return the result of the evaluation at `index`.

}

Consider the following example:

let a = Tensor<Float>(10.0)

let b = Tensor<Float>(2.0)

let c = Tensor<Float>(3.0)

let w = a + b

let x = w - c

let y = x + x + w

let z = y + y

print(z)

Materialization is triggered when the runtime encounters the print statement. The extracted
trace is as follows:

lazyTrace_8() -> (float) {

%0 = Const[dtype: float, value: 10.0]()

%1 = Const[dtype: float, value: 2.0]()

%2 = Add[T: float](%0, %1)

%3 = Const[dtype: float, value: 3.0]()

%4 = Sub[T: float](%2, %3)

%5 = Add[T: float](%4, %4)

%6 = Add[T: float](%5, %2)

%7 = Add[T: float](%6, %6)

return %7

}

Practical Considerations
Lazy evaluation defer the execution of the tensor operations as until it is actually needed:

● Host code requires it -- for example printing tensor elements or making a control flow
decision based on tensor elements.

● After each training step, since the graph is complete at that point and constructing
graphs must be wrapped up at natural boundaries which maximize the chance to see the
same graph for the entire duration of training and thus avoid recompilation.

Otherwise, the runtime costs associated with lazy evaluation may outweigh the benefits
obtained by staging computations to a graph. In an ideal situation, all the tensor computations
in the program would be staged to a single graph. However, that does not always happen in
practice. In this section, we discuss the various aspects that have an effect on the frequency of
materialization and associated runtime costs. We also discuss solutions to reduce the impact
on the performance.

Proactively materialize LazyTensor instances
Note that a trace extracted for concretizing a symbolic tensors also contains computations
necessary to concretize other symbolic tensors in the program. For example, in the extracted
trace lazyTrace_8, values %2, %4, and %6 correspond to the tensor variables w, x, and y,
respectively. Consequently, w, x, and y can also be materialized along with z, if we mark these
values as outputs as follows:

lazyTrace_8() -> (float, float, float, float) {

%0 = Const[dtype: float, value: 10.0]()

%1 = Const[dtype: float, value: 2.0]()

%2 = Add[T: float](%0, %1)

%3 = Const[dtype: float, value: 3.0]()

%4 = Sub[T: float](%2, %3)

%5 = Add[T: float](%4, %4)

%6 = Add[T: float](%5, %2)

%7 = Add[T: float](%6, %6)

return (%2, %4, %6, %7)

}

However, increasing the number of outputs can have a negative impact on performance. For
example, if you have ResNet-50 and don't fuse the forward and the backward graphs, there will
hundreds of tensors which need to be inputs to the backward graph and need to be materialized
as outputs of the forward graph, which leads to OOM at high batch sizes. Therefore, we should
be conservative when marking a value in the extracted trace as an output. One heuristic that
seems to work well is to only mark those values that will potentially be used outside of the
extracted function. When this heuristic is used, note that %5 is not marked as an output as it
corresponds to x + x, the result of which is not used outside.

We keep track of useful operations by observing the LazyTensorOperation instances in the
initialization and deinitialization of LazyTensor instances. Effectively, a LazyTensorOperation

is considered useful if any symbolic LazyTensor refers to it. The only exception to this rule is
that symbolic LazyTensor instances that are only used as inputs of a LazyTensorOperation
are ignored. Typically these correspond to the operations such as x + x in lazyTrace_8. The
isLive attribute of a symbolic LazyTensor is used to distinguish these cases.

Our heuristic to track usefulness works quite well in practice. For example, in the trace extracted
for a model with several layers, only the operations in the last layer of the network are marked as
outputs.

We can improve the logic for marking outputs further if we have liveness information from the
compiler. For example, w, x, and y are not considered live at print(z). Therefore, if we have
liveness information, we will only mark z as the output, which is the most desirable outcome for
this example.

Function Caching

In a typical model, materialization happens at the end of every iteration of a training loop and the
extracted trace should be identical at each materialization step. To avoid the repeated cost of
creating the tensorflow function and running all the ensuing optimizations at every iteration, it is
important to cache them. The TensorFlow and XLA runtimes already have caching mechanisms
based on structural similarity of functions. In the case of XLA, the shapes are also used as the
part of the cache key. To leverage the caching mechanism in XLA and TensorFlow (as well as to
cache extracted traces in the S4TF runtime), we need to preserve the structural similarity of the
extracted traces at materializations points. In this section, we will discuss a few techniques for
this purpose.

Deterministic order for the operations in the trace

This is easily achieved as we collect the necessary operations by performing a DFS starting
from the symbolic tensor under consideration. We can have a deterministic order by adding the
operations to the trace in the order in which they were visited during DFS.

Promotion of constant tensors to arguments
Note that the constants in the program are baked into the extracted program. This is not always
desirable. Consider the following example:

var sum = 0.0

for i in 1...10 {

sum = sum + Float(i)

print ("\(sum)")

}

Let us unroll the execution of few iterations of the loop:

sum0 = 0

i1 = 1.0

sum1 = sum0 + Float(i1)

print ("\(sum1)")

sum2 = sum1 + Float(i2)

print ("\(sum2)")

sum3 = sum2 + Float(i3)

print ("\(sum3)")

// ...

If we always bake the constants into the extracted trace, we will get a different function each
time:

lazyTrace_sum1() -> (float) {

%0 = Const[dtype: float, value: 0.0]() // sum0

%1 = Const[dtype: float, value: 1.0]() // i1

%2 = Add[T: float](%0, %1)

return %2

}

lazyTrace_sum2() -> (float) {

%0 = Const[dtype: float, value: 1.0]() // sum1

%1 = Const[dtype: float, value: 2.0]() // i2

%2 = Add[T: float](%0, %1)

return %2

}

lazyTrace_sum3() -> (float) {

%0 = Const[dtype: float, value: 3.0]() // sum2

%1 = Const[dtype: float, value: 3.0]() // i3

%2 = Add[T: float](%0, %1)

return %2

}

To promote constants to arguments of functions, we use the following heuristics:

Promote materialized tensors. If the constant tensor was the result of materializing a lazy tensor,
promote it to an argument. The `materialized` field of a concrete `LazyTensor` is used to track
such `materialized` tensors. In our example, sum1 and sum2 will be promoted to a function
argument:

lazyTrace_sum2(%0: float) -> (float) {

%1 = Const[dtype: float, value: 2.0]() // i2

%2 = Add[T: float](%0, %1)

return %2

}

lazyTrace_sum3(%0: float) -> (float) {

%1 = Const[dtype: float, value: 3.0]() // i3

%2 = Add[T: float](%0, %1)

return %2

}

Note that this is still not ideal as sum0, `i1`, and `i2` will not be promoted as a function argument
because they were originally a constant tensor in the program and is not the result of
materialization. T

Promote based on history. If the currently extracted function has a similar signature to a
previously extracted function, we compare the operations in the traces by doing a linear scan. If
the functions differ only due to a subset of the constant tensors, we promote all these constants
to function arguments. This strategy will promote sum0, i1, i2, i3 to be function arguments as
well. Note that this heuristic similar to the widening heuristic in formal program analysis.

Using both these heuristics, we will get the following trace for every iteration of the loop:

lazyTrace_sum3(%0: float, %1: float) -> (float) {

%2 = Add[T: float](%0, %1)

return %2

}

Shape Computations + Lazy Tensor
We do not track the shapes of tensors on the swift side. Consequently, anytime a shape is
required (e.g., Flatten, DropOut), the corresponding lazy tensor gets materialized. Such
materialization has the unfortunate consequence of increasing the frequency of materialization
and making the extracted traces shorter.

In some cases, it is possible to rewrite these layers to use a shape operation that is stageable,
such as tf.Shape. However, it is not always a viable solution. For example, the implementation of
matmul in tensorflow/swift-apis has control-flow that depends on the result of the shape
computation. One idea that is promising is to use the shape inference function associated with
a registered TensorFlow op to keep track of shapes on the swift side. Note that the shape
functions won’t trigger materialization.

https://en.wikipedia.org/wiki/Widening_(computer_science)
https://github.com/tensorflow/swift-apis/blob/7f4fc9331947392bb1bf87d6b57b3b8f8f41fadc/Sources/TensorFlow/Layers/Core.swift#L96
https://github.com/tensorflow/swift-apis/blob/7f4fc9331947392bb1bf87d6b57b3b8f8f41fadc/Sources/TensorFlow/Layers/Core.swift#L19
https://github.com/tensorflow/tensorflow/blob/1aef10221d2c2df0736ac4c26333bdc8be2a5057/tensorflow/core/ops/array_ops.cc#L1688
https://github.com/tensorflow/swift-apis/blob/9a59c89cb523d39653c17a44567597952905338e/Sources/TensorFlow/Operators/Math.swift#L1874
https://github.com/tensorflow/tensorflow/blob/0ff7955a0c1a42e2767afb0a5cc202dfe4d6ff19/tensorflow/core/framework/op.h#L251

Control Flow
Control-flow constructs like if and for get unrolled in the extracted trace. Staging them in lazy
evaluation requires further support at the library level (functional if and while) and possibly the
compiler as well. One of the key issues that need to be addressed is how to deal with the
non-tensor code either in the conditional or the loop body. For instance, do the results of
executing non-tensor code during staging get baked into the staged function? Alternatively, do
they get executed every time the staged function is executed? Staging control-flow constructs is
a topic in itself and we plan to address it in a separate design review.

Composability with AutoDiff
LazyTensor composes nicely with AutoDiff. Note that AutoDiff generates the code for gradient
computations at compile time. Lazy Tensor simply stages and evaluates the gradient
computations at runtime.

Diagnostics
We don’t have a great way to diagnose errors encountered during the execution of extracted
traces. Ideally, we would like to report the source line that is relevant for failing operation along
with a runtime stack trace. However, deferred evaluation prevents us from getting a useful stack
trace to diagnose the failure.

When we start doing shape inference while building the traces, we should be able to raise most
of these errors sooner and get a reasonable stack trace. This is also the approach used in
pytorch/xla. Once we sort these issues out, runtime crashes should only occur in rare instances
(e.g., division by zero, square root of negative, etc.). One could also turn off lazy evaluation and
go back to op-by-op dispatch to debug the issue if needed.

Compiler Support
While we don’t need compiler support for the implementation of Lazy Tensor, the compiler can
help in many ways. Clearly, adding compiler support is a huge topic and requires a separate
design review on its own. We just present some half-baked ideas here to give a taste of the
possibilities:

- Functionalization of control-flow constructs like `if` and `for`.
- Transform functions such that frequency of materialization is reduced (e.g, by moving

code that triggers materialization as late as possible).
- Optimizations like Common subexpression elimination (CSE) can help in reducing the

size of the extracted functions when we have a large number of tensors that depend on
mostly-overlapping computations.

- Transformations to aid runtime failure diagnostics.

https://github.com/pytorch/xla
https://en.wikipedia.org/wiki/Common_subexpression_elimination

- ...

Preliminary Results
We have some preliminary results with using lazy evaluation. We are able to fuse the entire
training loop for models like MNIST and ResNet18 into a single trace. We show the extracted
traces for MNIST. We haven’t done an exhaustive performance evaluation yet, but running
MNIST on GPU with lazy tensor is about 10% faster than eager (op-by-op dispatch) execution.
We will be doing more evaluations and applying the ideas on more models in the coming days
and keep the community posted.

Extracted training loop with XLA optimizations like op fusion (svg):

https://storage.googleapis.com/swift-tensorflow-artifacts/images/lazy_tensor/mnist.after_optimizations.svg

Extracted training loop before any optimizations (svg):

https://00e9e64bace6e81a50a8c0a58c9068bb359f5ca1a8c8f6412b-apidata.googleusercontent.com/download/storage/v1/b/swift-tensorflow-artifacts/o/images%2Flazy_tensor%2Fmnist.before_optimizations.svg?qk=AD5uMEvLf4kkGbdPt6fVLxghWA8nDtK_o1j0HlAepk32nc2Ob7KAdAiYJiFCoyVrg2jiWT-3-VuN35IJ3MYSa_SAFgQDL087F-KZvSYWRhOWkRjP9aMaOU0Lxi6yxGayI1kZH8uvsZdSSn9Oo5i3euwU4B9PS6VPriAuJf_uIKQgnhKpzcxyWoDgqFcJn4oCmq5ZR5Cuugr5RR2RNaLu97rtYWYcotBuEB3phW7JY6WzcYf_6SqLYenlFuZUNAQphStxVrd0b3xJ41x7ErnTeFvqDlP9DpeYQJimTL2zyLlOaW8LU_MVkJb7vYPbUFepMXqn3r3W-Aiofo2Faq84Xn5qaiLR72njmK-FVDpaqLJsQZJlLgJfrdaNhoJNynKgRJurUb_JaPRI7VPVEkKkdu7kvYVP5dYqMnDGNh0c_WMW-W2-ZH__LQ7wWpVcmv7mGOHNMcolqf-HiAZeM6AZT_5OfyhEwGX66jZPvoVdPPTvGnwLwknZErQ2QhKjS9P1SdcZJDvgvd4nIoKYF2TmlGTddxPRBsjFQ6XckSAlTNcHNtIB-fx2KTN5oRTsqrqhC7KeTBBw0Qf8KDOXFb9GlDO736Y_cS02ALra0w1_H-66q1URraWPYR4iwY5G5GzYe49jan_M9S28TR_EGFfWTpzf7pkTR3hskkHGWhQWT8AlHUCa3UezkG3LYUF02ynDsVzD404SOw1RE2TjiP9hMoTr7pFfuIz8NclHKD8rHLe0AaO1luXDcjN4SwuSdgALWHtrnlGRNPvhoO5hl2PV1rfaNd8-UZsIY_y2DcJPy4sKF6zkH1_Ew_s55O5gtP9nA3Ze1bBG-IuSEqEoiVh-3kmzv--BwZTEkw

