
version 1.0.0

—
Presented by

Manuel Araoz
CTO, Zeppelin

March 12th, 2018

​​​​1

01. Introduction

This document includes the results of the audit performed by the Zeppelin team on the
Augur Core project, at the request of the Augur team. The audited code can be found in the
public augur-core Github repository, and the version used for this report is commit

3b5a63d372d205a0214e3061293d5bca0fd5636a

Some fixed and partially fixed issues from a previous audit can also be found in Appendix A.

The goal of this audit is to review Augur’s solidity implementation for its decentralized
prediction market, study potential security vulnerabilities, its general design and
architecture, and uncover bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as
well as general observations that traverse the entire codebase horizontally, which could
improve its quality as a whole.

​​​​2

https://zeppelin.solutions/
http://www.augur.net/
https://github.com/AugurProject/augur-core/tree/3b5a63d372d205a0214e3061293d5bca0fd5636a

— Disclaimer

Note that as of the date of publishing, the contents of this document reflect the current
understanding of known security patterns and state of the art regarding smart contract
security. Given the size of the project, the findings detailed here are not to be considered
exhaustive, and further testing and audit is recommended after the issues covered are
fixed.

— Methodology

Augur’s whitepaper was analyzed and synthesized into a series of specifications and
expected behaviours, and the codebase was studied in detail in order to acquire a clear
impression of how such specifications were implemented. The codebase was then subject
to deep analysis and scrutiny, resulting in a series of observations. The problems and their
potential solutions are discussed in this document and, whenever possible, we identify
common sources for such problems and comment on them as well.

— Structure of the document

This report contains a list of issues and comments on different aspects of the project:
General Observations, Trading, Reporting, Forking, and Miscellaneous. Each issue is
assigned a severity level based on the potential impact of the issue, as well as a small
example to reproduce it and recommendations to fix it, if applicable. For ease of navigation,
an index by topic and another by severity are both provided at the beginning of the report.

— Documentation

For this audit, we used the following sources of truth about how the Augur Core system
should work:

http://docs.augur.net/
Whitepaper
https://augur.stackexchange.com/

These were considered the specification, and when discrepancies arose with the actual
code behaviour, we consulted with the Augur team or reported an issue.

​​​​3

http://docs.augur.net/
http://www.augur.net/whitepaper.pdf
https://augur.stackexchange.com/

02. About Zeppelin

Zeppelin Solutions is a leading technology firm in the blockchain industry, providing
consulting and security audits for organizations. Zeppelin Solutions has developed industry
security standards for designing and deploying smart contract systems.

Zeppelin Solutions is the creator, maintainer, and major contributor of OpenZeppelin, the
standard framework for secure smart contract development, maintained by a community of
3000+ developers distributed around the globe.

Over $600 million have been raised with Zeppelin’s audited smart contracts. Clients include
Golem, Brave, Augur, Blockchain Capital, Status, Cosmos, and Storj, among others.

More info at: https://zeppelin.solutions

​​​​4

https://zeppelin.solutions/

03. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

​​​​5

04. List of issues by severity

Use safe math (new) 13

An attacker can manipulate the tentative winning outcome in case a fork 30

An attacker can prevent forking-market traders from claiming their fees 30

Markets can be migrated after finalization 31

Markets are not sanity-checked in trading module 46

Universe open interest can be manipulated by an attacker 47

Complete sets of shares can be purchased for free 48

Alternative denomination tokens can be stolen from a Reporting Window 49

Order info is repeated as arguments when cancelling an order 49

It may not be possible to stake tokens on an invalid outcome 55

Markets ether balance can be stolen by the first reporter 55

All reporting fees can be frozen by a Market creator 55

A market owner can block the Participation token purchase 56

Extractable functionality is not necessary and error prone 15

Non-potential-winning dispute crowdsourcers can redeem their REP tokens 27

Market number of ticks can be zero 27

Self-reference in market nudging mechanism 28

Tight coupling between contracts 39

Anyone can trigger Augur events 40

​​​​6

Cancelling an order with share tokens in escrow will fail 50

Markets can be created with malicious Cash tokens 51

Shareholders fees can be frozen by a malicious market creator 51

Spender contracts cannot be re-approved if updated 59

Favor pull payments over push payments (new) 15

Integer index types are unnecessarily small 16

Unbound iteration in arrays (new) 16

Unbound iteration in arrays 17

Users are allowed to place orders for a market independently of their state 24

Unclear relation between MIN_ORDER_VALUE and MINIMUM_GAS_NEEDED 24

Reentrancy risk in FillOrder 25

Markets can be initially reported in a locked universe 28

Forking market can be migrated 32

Fork values for child universes must be manually updated 32

Trading contracts upgradeability may become useless 35

Controller does not guarantee that dev mode cannot be turned on again 35

Whitelisted contracts are not explicit to the user 40

Favor pull payments over push payments 41

It is possible to create orders for untrusted markets 52

Markets can be created in a locked universe 57

Eventually it will not be possible to produce further forks 57

Naming issues 17

​​​​7

Repeated code for factory contracts 18

Unused boolean return values 18

Unsolved TODO comments 18

Instances of Map contract left in blockchain storage 19

Unused Set library 19

Inconsistent usage of getter functions and state variables 20

Use a standard toolchain for building contracts 20

No assertions for detecting broken invariants 21

Install OpenZeppelin via NPM 22

OpenZeppelin standard tokens were modified 22

Outdated OpenZeppelin's contracts 23

Outdated documentation 23

Orders are vulnerable to front-running 26

Basic token implementation allows transfers to the zero address 26

Lack of Report abstraction 29

Universe open interest is not decremented in bad times 29

Markets can fork into more than N+1 universes, N being the number of outcomes (new) 32

Markets may fork in more than N+1 universes, N being the number of outcomes 33

When a market forks, stake tokens and disputes of other markets are reset 34

Unchecked token transfers and approvals 36

ShareToken is unnecessarily whitelisted 36

Use safe math 41

Remove unused code 45

The Trade logic treats a lack of gas as a complete order fill 52

Market creators may not be able to collect their corresponding fees 53

Delegator memory allocation not working for arguments larger than 32 bytes 59

Delegator not working for return data greater than 32 bytes 60

​​​​8

05. List of issues by topic

A. General Observations 13

Use safe math (new) 13

Extractable functionality is not necessary and error prone 15

Favor pull payments over push payments (new) 15

Integer index types are unnecessarily small 16

Unbound iteration in arrays (new) 16

Unbound iteration in arrays 17

Naming issues 17

Repeated code for factory contracts 18

Unused boolean return values 18

Unsolved TODO comments 18

Instances of Map contract left in blockchain storage 19

Unused Set library 19

Inconsistent usage of getter functions and state variables 20

Use a standard toolchain for building contracts 20

No assertions for detecting broken invariants 21

Install OpenZeppelin via NPM 22

OpenZeppelin standard tokens were modified 22

Outdated OpenZeppelin's contracts 23

Outdated documentation 23

B. Trading 24

Users are allowed to place orders for a market independently of their state 24

Unclear relation between MIN_ORDER_VALUE and MINIMUM_GAS_NEEDED 24

​​​​9

Reentrancy risk in FillOrder 25

Orders are vulnerable to front-running 26

Basic token implementation allows transfers to the zero address 26

C. Reporting 27

Non-potential-winning dispute crowdsourcers can redeem their REP tokens 27

Market number of ticks can be zero 27

Self-reference in market nudging mechanism 28

Markets can be initially reported in a locked universe 28

Lack of Report abstraction 29

Universe open interest is not decremented in bad times 29

D. Forking 30

An attacker can manipulate the tentative winning outcome in case a fork 30

An attacker can prevent forking-market traders from claiming their fees 30

Markets can be migrated after finalization 31

Forking market can be migrated 32

Fork values for child universes must be manually updated 32

Markets can fork into more than N+1 universes, N being the number of outcomes (new) 32

Markets may fork in more than N+1 universes, N being the number of outcomes 33

When a market forks, stake tokens and disputes of other markets are reset 34

D. Miscellaneous 35

Trading contracts upgradeability may become useless 35

Controller does not guarantee that dev mode cannot be turned on again 35

Unchecked token transfers and approvals 36

ShareToken is unnecessarily whitelisted 36

E. Notes & Additional Information 37

​​​​10

APPENDIX A - Fixed and partially fixed issues

A. General Observations 39

Tight coupling between contracts 39

Anyone can trigger Augur events 40

Whitelisted contracts are not explicit to the user 40

Favor pull payments over push payments 41

Use safe math 41

Remove unused code 45

B. Trading 46

Markets are not sanity-checked in trading module 46

Universe open interest can be manipulated by an attacker 47

Complete sets of shares can be purchased for free 48

Alternative denomination tokens can be stolen from a Reporting Window 49

Order info is repeated as arguments when cancelling an order 49

Cancelling an order with share tokens in escrow will fail 50

Markets can be created with malicious Cash tokens 51

Shareholders fees can be frozen by a malicious market creator 51

It is possible to create orders for untrusted markets 52

The Trade logic treats a lack of gas as a complete order fill 52

Market creators may not be able to collect their corresponding fees 53

C. Reporting 54

It may not be possible to stake tokens on an invalid outcome 54

Markets ether balance can be stolen by the first reporter 55

All reporting fees can be frozen by a Market creator 55

A market owner can block the Participation token purchase 56

C. Forking 57

Markets can be created in a locked universe 57

​​​​11

Eventually it will not be possible to produce further forks 57

D. Miscellaneous 59

Spender contracts cannot be re-approved if updated 59

Delegator memory allocation not working for arguments larger than 32 bytes 59

Delegator not working for return data greater than 32 bytes 60

E. Notes & Additional Information 61

​​​​12

06. Issue Descriptions and Recommendations
A. General Observations

Use safe math (new)

Arithmetic operations on integers may overflow silently causing bugs.
As a critical example, the function derivePayoutDistributionHash of the Market
contract uses an unsafe addition. This operation can overflow and still be equal to the
required number of ticks, yielding an invalid set of payout numerators. This can be used by
an attacker to manipulate the Universe open interest via calculateProceeds of the
ClaimTradingProceeds contract. This can reduce the open interest to zero, effectively
freezing the universe by causing all subsequent calls to reducing open interest to throw.

46 additional unsafe operations were found:

source/contracts/libraries/math/RunningAverage.sol
12:15 Avoid using arithmetic operation '/' directly.

source/contracts/libraries/token/StandardToken.sol
19:53 Avoid using arithmetic operation '-' directly.

source/contracts/reporting/DisputeCrowdsourcer.sol
34:28 Avoid using arithmetic operation '/' directly.
34:28 Avoid using arithmetic operation '*' directly.
35:35 Avoid using arithmetic operation '/' directly.
35:35 Avoid using arithmetic operation '*' directly.
49:30 Avoid using arithmetic operation '-' directly.
65:35 Avoid using arithmetic operation '/' directly.
65:35 Avoid using arithmetic operation '*' directly.

source/contracts/reporting/FeeWindow.sol
97:31 Avoid using arithmetic operation '+' directly.

source/contracts/reporting/Market.sol
34:58 Avoid using arithmetic operation '/' directly.
35:47 Avoid using arithmetic operation '-' directly.
76:21 Avoid using arithmetic operation '/' directly.
87:40 Avoid using arithmetic operation '+' directly.

​​​​13

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L447
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ClaimTradingProceeds.sol#L74-L77
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ClaimTradingProceeds.sol

176:53 Avoid using arithmetic operation '-' directly.
215:65 Avoid using arithmetic operation '/' directly.
252:28 Avoid using arithmetic operation '-' directly.
252:28 Avoid using arithmetic operation '*' directly.
252:50 Avoid using arithmetic operation '*' directly.
392:28 Avoid using arithmetic operation '-' directly.
473:58 Avoid using arithmetic operation '+' directly.
479:25 Avoid using arithmetic operation '+' directly.
480:25 Avoid using arithmetic operation '+' directly.

source/contracts/reporting/RepPriceOracle.sol
10:40 Avoid using arithmetic operation '*' directly.

source/contracts/reporting/Reporting.sol
10:50 Avoid using arithmetic operation '*' directly.
10:50 Avoid using arithmetic operation '*' directly.
12:53 Avoid using arithmetic operation '/' directly.
13:51 Avoid using arithmetic operation '/' directly.

source/contracts/reporting/ReputationToken.sol
76:25 Avoid using arithmetic operation '/' directly.

source/contracts/reporting/Universe.sol
296:41 Avoid using arithmetic operation '*' directly.
301:15 Avoid using arithmetic operation '*' directly.
364:27 Avoid using arithmetic operation '/' directly.
366:24 Avoid using arithmetic operation '+' directly.
370:26 Avoid using arithmetic operation '/' directly.
373:24 Avoid using arithmetic operation '+' directly.
379:21 Avoid using arithmetic operation '-' directly.
403:33 Avoid using arithmetic operation '/' directly.
403:33 Avoid using arithmetic operation '*' directly.
425:45 Avoid using arithmetic operation '*' directly.
425:45 Avoid using arithmetic operation '*' directly.

source/contracts/trading/FillOrder.sol
321:67 Avoid using arithmetic operation '-' directly.
322:44 Avoid using arithmetic operation '+' directly.
326:66 Avoid using arithmetic operation '-' directly.
335:35 Avoid using arithmetic operation '-' directly.

source/contracts/trading/Orders.sol
182:20 Avoid using arithmetic operation '+' directly.
185:20 Avoid using arithmetic operation '+' directly.

source/contracts/trading/TradingEscapeHatch.sol
70:36 Avoid using arithmetic operation '/' directly.
70:36 Avoid using arithmetic operation '-' directly.

Consider using the existing SafeMathUint256 and SafeMathInt256 libraries for all
arithmetic operations.
Update: Fixed in f164ac53644795072753c99bb7e391f7b2a42493.

​​​​14

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/math/SafeMathUint256.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/math/SafeMathInt256.sol
https://github.com/AugurProject/augur-core/commit/f164ac53644795072753c99bb7e391f7b2a42493

Extractable functionality is not necessary and error prone

Augur's codebase presents an horizontal feature that allows many contracts to return
tokens or Ether back to the owner in case they were wrongly transferred to them. This
functionality is held within the Extractable contract, and is extended by many contracts
like Cash, Orders, Universe, among others.
Given many of the contracts that inherit said functionality can hold some token balances,
they need to declare a set of protected tokens to exclude those balances from the
Extractable functionality. This is error prone, and relies entirely on the developer to have
declared that set properly.
For example, Cash and FeeToken are not declared as protected tokens for the
InitialReporter and the DisputeCrowdsourcer contracts, although these
contracts can own said tokens balances. The same happens for the Cash contract, it
doesn't mark Ether as a protected token. This means that the Controller can extract
these tokens at will.
As shown, this functionality can cause several problems if it is not well implemented. Given
it is not a core functionality for Augur, consider removing the whole feature from Augur's
codebase to reduce the attack surface.

Update: Fixed in 53c15f956580caa67771e60b5fa2cc5d76474e82.

Favor pull payments over push payments (new)

Many ETH transfers are executed using a low level call. This allows the recipient to execute
arbitrary code upon the transfer (due to the gas stipend allocated), and also to throw upon
receiving a payment, thus blocking the application flow. For more info on this problem,
please see this note.

10 places were found were a low level call is triggered:

- DisputeCrowdsourcer#redeem (L39)
- InitialReporter#redeem (L35)

- InitialReporter#withdrawInEmergency (L62)

​​​​15

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/Extractable.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol#L15
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Orders.sol#L18
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L22
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/InitialReporter.sol#L116-L121
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol#L109-L114
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol#L57-L59
https://github.com/AugurProject/augur-core/commit/53c15f956580caa67771e60b5fa2cc5d76474e82
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol#L39
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/InitialReporter.sol#L35
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/InitialReporter.sol#L62

- FillOrder#fillOrder (L390)

- CashAutoConverter#cashToEth (L35)

- FeeWindow#redeemInternal (L124)

- ClaimTradingProceeds#claimTradingProceeds (L49)

- Market#initialize (L89)

- Market#withdrawInEmergency (L314)

- Mailbox#withdrawEther (L33)

Even though no attacks were found regarding this issue, consider using transfer instead of a
low-level call in all these scenarios. Moreover, most cases use Cash#withdrawEtherTo
which in turn makes the low-level call. Consider using a Cash token transfer instead.

Update: Addressed in 65561b0a0b7064c9f83bad6b8f9883911576ce65. Augur’s comments:
“This is intentional in order to support smart wallets, but worth discussing again to make sure
we agree with the tradeoff. The note about transferring Cash tokens would require users
interact with Cash, which we've explicitly decided is too onerous a UX”.

Integer index types are unnecessarily small

There are several places where a for loop is done using an index variable of type uint8. In
some cases, like Market#isContainerForReportingParticipant, the iterated array is
guaranteed to be of size less than 256. In others, such as Universe#redeemStake, in which
the array is an external input, the array could have more than 256 elements. If this happens,
the loop will get stuck due to the index variable overflowing after exceeding 255, the
maximum number for integers of that size.

Regardless, the EVM word size is 256 bits, so there is no additional benefit to using a
smaller integer variable. There is, in fact, an additional cost due to the operations required to
simulate overflow semantics.

Consider using uint256 for all loop index variables.

Update: Fixed in 3dc92eff16dc121e38abd0ac11447ca135bbcdc7.

​​​​16

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/FillOrder.sol#L390
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/CashAutoConverter.sol#L35
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol#L124
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ClaimTradingProceeds.sol#L49
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L89
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L314
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Mailbox.sol#L33
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol#L38
https://github.com/AugurProject/augur-core/commit/65561b0a0b7064c9f83bad6b8f9883911576ce65
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L463-L467
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L468-L474
https://github.com/AugurProject/augur-core/commit/3dc92eff16dc121e38abd0ac11447ca135bbcdc7

Unbound iteration in arrays (new)

There are several loops in the contracts which can eventually grow so large as to make
future operations of the contract cost too much gas to fit in a block. Additionally, gas
exhaustion could be used as an exploit to block the application flow.

For example, the finishedCrowdsourcingDisputeBond function of the Market
contract iterates over an unbounded participants array.

Consider ensuring that array maximum lengths are checked on iteration.

Update: Fixed in 16065f39efedadf11ca3ccaaa3bc4f04cb97b143.

Unbound iteration in arrays

There are several loops in the contracts which can eventually grow so large as to make
future operations of the contract cost too much gas to fit in a block. Additionally, gas
exhaustion could be used as an exploit to block the application flow. Furthermore, if the
index used for iteration is an 8-bit integer, the array’s length must be checked to be under
256, to prevent infinite loops.

For example, Market.sol#derivePayoutDistributionHash in L415 iterates over
an unbounded array using an uint8.
Consider reviewing all for-loops and ensure that array maximum lengths are checked on
iteration.

Update: The Augur team decided not to fix this problem: "These were reviewed and found to
have implicit bounds".

Naming issues

Some functions in the Augur codebase are named in a way that does not describe their
actual behavior. For example:

​​​​17

https://solidity.readthedocs.io/en/latest/security-considerations.html#gas-limit-and-loops
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L149-L164
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/commit/16065f39efedadf11ca3ccaaa3bc4f04cb97b143
https://solidity.readthedocs.io/en/latest/security-considerations.html#gas-limit-and-loops
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol

- The Market contract has a getTotalStake function that actually returns a
subset of the total amount of staked tokens. Consider the name
getParticipantsStake.

- The function assertReputationTokenIsLegit of the ReputationToken
contract actually checks that a given ReputationToken is a sibling, i.e. that it
belongs to a child universe of its parent universe. This means that a valid
ReputationToken can still return false to this function. Consider the name
assertReputationTokenIsLegitSibling.

Consider reviewing all function names and fixing those that don't describe their actual
behavior to reduce confusion.

Update: Fixed in 137e28c606dbce1363f315e23d2c610465c9a281.

Repeated code for factory contracts

There is a lot of repeated or very similar code in the factory folder, for Factory contracts.
This makes any change to the way factories work tedious to implement and error-prone.

Consider creating a low-level generic factory contract in assembly, and retaining only
interfaces for the particular implementations.

Update: Augur team decided not to follow this suggestion.

Unused boolean return values

Many functions in the codebase return boolean values which are never used. For example
the BaseReportingParticipant contract defines a fork function that returns a
hardcoded true value. This function is called from
Market#finishedCrowdsourcingDisputeBond but the return value is never used.
Another example are the functions ethToCash and cashToEth of the
CashAutoConverter contract.

​​​​18

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L319-L325
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/ReputationToken.sol#L106-L112
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/ReputationToken.sol
https://github.com/AugurProject/augur-core/commit/137e28c606dbce1363f315e23d2c610465c9a281
https://github.com/AugurProject/augur-core/tree/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/factories
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/BaseReportingParticipant.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/BaseReportingParticipant.sol#L35-L46
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/BaseReportingParticipant.sol#L45
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L156
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/CashAutoConverter.sol#L22-L27
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/CashAutoConverter.sol#L29-L38
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/CashAutoConverter.sol

Consider removing these unused return values to avoid confusion and reduce the amount
of code to be deployed.

Update: Augur team decided not to follow this suggestion.

Unsolved TODO comments

Some TODO comments were found in the contracts:

source/contracts/Controller.sol
29:4 'TODO' comment.

source/contracts/reporting/ReputationToken.sol
82:4 'AUDIT' comment.
88:4 'AUDIT' comment.
94:4 'AUDIT' comment.
100:4 'AUDIT' comment.

source/contracts/trading/ClaimTradingProceeds.sol
16:0 'AUDIT' comment.

source/contracts/trading/FillOrder.sol
66:8 'TODO' comment.
393:8 'AUDIT' comment.

source/contracts/trading/ShareToken.sol
15:4 'FIXME' comment.

Consider having all these reminders removed by the time these contracts are deployed to
avoid confusion.

Update: Fixed in 137e28c606dbce1363f315e23d2c610465c9a281.

Instances of Map contract left in blockchain storage

The Map contract provides a mapping with a count of items. It is used, for example, in the
Market contract to save all of the DisputeCrowdsourcer instances corresponding to
each given payout distribution. When the mapping needs to be deleted because the
crowdsourcing dispute was finished, it is simply overwritten with the address of a new
instance of Map. This is in fact mentioned in the documentation for Map: “allows for a clean

​​​​19

https://github.com/AugurProject/augur-core/commit/137e28c606dbce1363f315e23d2c610465c9a281
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/collections/Map.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol

way to clear an existing map by simply creating a new one”. However, this results in
potentially several "garbage" Map instances left behind in blockchain storage.

Consider clearing the Map storage when it becomes unused. To do this, define a new
function in Map that calls selfdestruct, and call it when an instance becomes unused. If
there are more complex situations such as a Map instance being necessary by more than
one contract, consider a reference counting mechanism.

Update: Augur team decided not to follow this suggestion.

Unused Set library

The Augur codebase includes a library to manage data sets. Although this library is
imported and declared in the FeeWindow contract, it is never used.

Consider removing this whole library to reduce the amount of code deployed and the attack
surface.

Update: Fixed in 137e28c606dbce1363f315e23d2c610465c9a281.

Inconsistent usage of getter functions and state variables

Many contracts define getter functions to abstract the way some behavior is implemented.
However, there are some cases where these getters are not used and state variables are
queried manually.

For example, the Universe contract declares a forkingMarket variable to keep track of
the forking Market. Then, it defines a function called isForking to tell whether said
Universe is forking or not. However there are some places where the forkingMarket
variable is queried manually within the Universe contract. The same occurs within some
Market functions.

​​​​20

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/collections/Set.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol#L9
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol#L27
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol
https://github.com/AugurProject/augur-core/commit/137e28c606dbce1363f315e23d2c610465c9a281
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L28
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L112-L114
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L56
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L201
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L28
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L70
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L175
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L299-L300

Another example is the supply variable defined in the BasicToken contract to keep
track of the total supply of it. This variable is accessed manually in the redeem and
withdrawInEmergency functions of the DisputeCrowdsourcers contract.

This pattern is error-prone. Consider using the defined getter functions consistently instead
of related state variables, to avoid confusion and reduce the attack surface.

Update: Fixed in c13fa15ab625b070754df87375d2a40db60c5e14.

Use a standard toolchain for building contracts

Script CompileSolidity.tsmanually walks the Solidity contracts in the project and
builds them for deployment purposes. The same is reimplemented in conftest.py as
part of the test suite. Furthermore, the methods executed from the deployment scripts are
defined manually in ContractInterfaces.ts, which is cumbersome and highly error
prone (for instance, method StandardToken#approve_ should be marked as constant
in its ABI for consistency).

Instead of reimplementing these features, consider using an existing build tool such as
truffle, to simplify operations and leverage other tools compatible with it.

In particular, tools such as solidity-coverage, which require a standard setup for
both compilation and for running the tests via testrpc, could be used to measure automated
tests code coverage and detect untested paths.

Alternatively, an ad-hoc coverage solution for this codebase could be implemented:

1. Instrument contracts using solidity-coverage
2. Compile them from conftest.py
3. Install a log_listener in the testing chain to capture all events from all tests
4. Output all captured events during the tests run to an allFiredEvents file
5. Use solidity-coverage to generate the coverage info from the allFiredEvents file

Update: The Augur team prefers to keep using their custom tools.

​​​​21

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/BasicToken.sol#L15
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/BasicToken.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol#L34-L35
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol#L65
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol
https://github.com/AugurProject/augur-core/commit/c13fa15ab625b070754df87375d2a40db60c5e14
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/libraries/CompileSolidity.ts
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/tests/conftest.py#L109
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/libraries/ContractInterfaces.ts
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/libraries/ContractInterfaces.ts#L120
https://github.com/trufflesuite/truffle
https://github.com/sc-forks/solidity-coverage
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/tests/utils.py#L34
https://github.com/sc-forks/solidity-coverage/blob/master/lib/app.js#L243

No assertions for detecting broken invariants

Augur stores important data elements in its state such as:

- The balance of tokens
- The open interest
- The list of orders in the order book
- The universe tree structure
- etc.

Many elements of such state maintain specific relationships of value between each other
and define the integrity of Augur’s state. Some examples are:

● There is a particular relationship between the amount of minted ShareTokens and
the value escrowed in a market.

● The value of openInterestInAttoEthmust exactly match the sum of all
escrowed amounts at different markets.

● The size of the dispute bond for all participants must ensure a 50% ROI for the
winning outcome.

Consider implementing a mechanism to assert the integrity of invariants via:

1) Assertions in solidity carried out after important operations that change state, or
2) External assertions that read the state and evaluate its integrity.

With such a mechanism in place, Augur would have a clearer understanding of when to
apply emergency mechanisms, when to upgrade contracts, etc.

Update: The Augur team confirmed they will add this kind of assertions in a near future.

Update 2: Fixed in 51b78bc40d1756a1af69f94f86fee495a6f0e2b7.

Install OpenZeppelin via NPM

Ownable, ERC20Basic, ERC20, BasicToken, and StandardToken appear to
have been copied from the OpenZeppelin repository. This violates OpenZeppelin’s MIT
license, which requires the license and copyright notice to be included if its code is used,
and makes it difficult and error-prone to update to a more recent version.

​​​​22

https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/Universe.sol#L36
https://github.com/AugurProject/augur-core/commit/51b78bc40d1756a1af69f94f86fee495a6f0e2b7
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/Ownable.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/ERC20Basic.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/ERC20.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/BasicToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/StandardToken.sol

Consider following the recommended way to use OpenZeppelin contracts, which is via the
zeppelin-solidity NPM package. This allows for any bug-fixes to be easily integrated into the
codebase.

Update: Even though a license file was included in
d075d9c0176a08fea521ff31a373776f134828d5, the Augur team made clear that managing
Solidity dependencies with NPM is not aligned with their plans.

OpenZeppelin standard tokens were modified

Additionally to copying OpenZeppelin’s contracts instead of installing them via NPM, some
of them were modified. For example, the contract StandardToken was modified to
implement the eternal approval functionality, the BasicToken contract was modified adding
an internalTransfer method.

This is not the way OpenZeppelin standard contracts should be used. Making changes to
open-source libraries, instead of using them as is, can be dangerous and won’t allow you to
integrate bug-fixes into the codebase easily.

Consider inheriting from the OpenZeppelin standard contracts to implement additional
functionality.

Update: Even though a note listing which files were modified was included in
d075d9c0176a08fea521ff31a373776f134828d5, the Augur team prefers to use their own
version of OpenZeppelin contracts.

Outdated OpenZeppelin's contracts

Apart from copying and modifying some OpenZeppelin’s contracts, these seem to be
outdated. For example, the contract StandardToken does not include the increase
approval and decrease approvalmitigations included since one of the latest
releases of OpenZeppelin.

​​​​23

https://blog.zeppelin.solutions/r/?url=https%3A%2F%2Fgithub.com%2FOpenZeppelin%2Fzeppelin-solidity%23getting-started
https://blog.zeppelin.solutions/r/?url=https%3A%2F%2Fwww.npmjs.com%2Fpackage%2Fzeppelin-solidity
https://github.com/AugurProject/augur-core/commit/d075d9c0176a08fea521ff31a373776f134828d5
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/StandardToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/BasicToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/token/BasicToken.sol#L32
https://github.com/AugurProject/augur-core/commit/d075d9c0176a08fea521ff31a373776f134828d5
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/StandardToken.sol
https://github.com/OpenZeppelin/zeppelin-solidity/blob/v1.7.0/contracts/token/ERC20/StandardToken.sol#L73-L77
https://github.com/OpenZeppelin/zeppelin-solidity/blob/v1.7.0/contracts/token/ERC20/StandardToken.sol#L73-L77
https://github.com/OpenZeppelin/zeppelin-solidity/blob/v1.7.0/contracts/token/ERC20/StandardToken.sol#L89-L98

Consider using the version of the contracts included in the latest release of OpenZeppelin.

Update: Partially fixed in 534b92e5f12ad5974572d4ecb2abf0f524ccb36c.

Outdated documentation

Augur public documentation is outdated: “These docs are currently being updated as we
approach the launch of Augur. The Augur Team plans to have these docs fully updated prior
to launching Augur”.

Consider updating the documentation as mentioned, to make sure users understand how
Augur works without confusion.

Update: The Augur team is still working on this.

​​​​24

https://github.com/OpenZeppelin/zeppelin-solidity/tree/v1.7.0/
https://github.com/AugurProject/augur-core/commit/534b92e5f12ad5974572d4ecb2abf0f524ccb36c
http://docs.augur.net/#overview

B. Trading

Users are allowed to place orders for a market independently of their state

The Trade contract allows users to place a short or long orders through the publicSell
or publicBuy functions respectively. Both alternatives will end attempting to fulfill any
existing order with the incoming one. However, there is no precondition validating that the
given Market is not finalized, or being disputed, or actually in a state that allow users to
place orders.

The same thing happens with the publicCreateOrder function of the CreateOrder
contract. It allows users to create an order without validating the market state. Event this
may not be a vulnerability per se, it won't prevent people from wasting their money due to
an inconsistent market.

Consider adding a precondition in the Trade#trade function, that is where all the Trade
public functions converge, to validate that the given Market is in a valid state. Add an
additional precondition to the CreateOrder#createOrder function to check this too.

Update: The Augur team considers this a valid scenario.

Unclear relation between MIN_ORDER_VALUE and MINIMUM_GAS_NEEDED

CreateOrder checks that order_price * order_amount > MIN_ORDER_VALUE.
This makes spamming orders to the order book expensive for an attacker.

Trade’s fillBestOrder, has FillOrder perform a series of expensive state changing
operations that cancels bids and asks on a one-to-one basis using a while loop, and to
avoid this loop from running out of gas and reverting, msg.gas >=

MINIMUM_GAS_NEEDED is used.

​​​​25

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L24
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L20
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CreateOrder.sol#L18
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CreateOrder.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L37
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CreateOrder.sol#L22
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/Order.sol#L119
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/Trade.sol#L49
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L382
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L382

It is important to note that the relationship between MIN_ORDER_VALUE and
MINIMUM_GAS_NEEDED is a very delicate one, and must be meticulously balanced. Any
mis-calibration in this value pair will result in making a spam attack on the order book
feasible.

We recommend that a test for this specific situation is implemented in order to ensure that
the relation between MIN_ORDER_VALUE and MINIMUM_GAS_NEEDED is correctly set.
Alternatively, consider adding the ability to manually adjust such values.

Update: The Augur team clarified our understanding, and it’s not an issue.

Reentrancy risk in FillOrder

Consider the following situation: An attacker performs a trade operation such as a
publicSell which fills an order. Such operation will call fillOrder which will be
entered a first time, resulting in the selling of complete sets via
tradeMakerSharesForFillerShares, which will send ether to the attacker.

Now, the attacker’s malicious fallback method can’t re-enter fillOrder via publicSell again
because it is protected from re-entrancy with the nonReentrantmodifier, but it can
re-enter via publicFillOrder, thus entering fillOrder a second time. This cannot be
done consecutively because publicFillOrder itself is protected by another nonReentrant
guard.

Even if the damage that can be done in the situation described above is not significant, it
illustrates how internal methods that can be accessed from different locations are
moderately exposed to complex re-entrancy attacks. Using nonReentrant guards on the
public methods that reach such internal methods may not be enough for situations that
reach a given level of complexity.

We recommend that internal methods are protected by nonReentrant guards instead of
the public methods that use them.

Update: The Augur team mentioned this issue was fixed avoiding calls to external accounts.
However, this is still an issue. Notice that an external call is performed through the
fillOrder function of the FillOrder contract.

Update 2: Fixed in 39718842e8362366b4af167f4e2e8ffbbd65354a.

​​​​26

https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/Trade.sol#L24
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/Trade.sol#L62
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L380
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L100
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/Trade.sol#L24
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L376
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/FillOrder.sol#L390
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/FillOrder.sol
https://github.com/AugurProject/augur-core/commit/39718842e8362366b4af167f4e2e8ffbbd65354a

Orders are vulnerable to front-running

Calls to Trade#publicTakeBestOrder drives the market price up/down (see Trade
L59) as orders are filled. Upon observing a call to publicTakeBestOrder in a pending
transaction, an attacker could call that function with a higher gas price, in order to front-run
the buyer. This allows him to purchase the shares before the price increase from the
original transaction.

This issue is mitigated by having a _price bound in the call, which limits up to how
much the original caller is willing to pay to fill the orders. A narrow _pricemargin would
abort the purchase if it gets front-runned. However, it still signals the intention from the
original buyer to make the purchase, which the attacker can leverage.

See this post for an explanation on frontrunning on the Bancor protocol, and a list of
possible solutions and their trade-offs. As a simple solutions, consider adding a
maxGasPrice check to mitigate the issue, which only allows front-running by malicious
miners.

Update: The Augur team decided not to fix this issue: “We're getting rid of market orders in
the UI so this will only be available initially via the API, so anyone putting themselves in this
position was extremely aware of their actions”

Basic token implementation allows transfers to the zero address

The BasicToken contract is a basic implementation of the ERC20 standard extended by
all the different token contracts of Augur. The transfer function implemented by this
contract allows to transfer funds to the zero address. This could derive in undesired token
transfers.

Consider adding a precondition to validate the recipient is not the zero address. To keep
supporting burn operations, which are done as a transfer to the zero address, consider
using the VariableSupplyToken contract, or performing a transfer to another
hardcoded address (such as 0x1).

​​​​27

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L32
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L59
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L58
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/BasicToken.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/BasicToken.sol#L32-L38
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/VariableSupplyToken.sol#L31

Update: The Augur team decided not to fix this issue.

C. Reporting

Non-potential-winning dispute crowdsourcers can redeem their REP tokens

When a DisputeCrowdsourcer reaches its size, it is considered as a new potential
winning participant and the rest of the crowdsourcers of that FeeWindow are
disavowed. However, there is no precondition to prevent disavowed crowdsourcers to
redeem their REP tokens and get proportional funds in return. This can be done since
anyone can call the redeem function for a disavowed DisputeCrowdsourcer. The
whitepaper is unclear about how the system should behave in this scenario.

Consider excluding disavowed crowdsourcers in the redeemInternal function of the
FeeWindow where the proportional funds are calculated.

Update: Augur team informed this is intended behavior. Whitepaper updated.

Market number of ticks can be zero

There is no precondition to check that the numTicks for a Market are a non-zero number,
which can be set up by creating a scalar market in Universe#createScalarMarket.
This causes odd behaviours in the Market, such as having only one possible valid outcome
(all zeros), not being able to create orders for that Market (see Order.sol L59), or being
able to purchase complete sets of shares at zero cost (see CompleteSets.sol L35).

Consider adding a precondition to check that the given number of ticks is greater than zero
in the Market constructor.

​​​​28

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L153
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L153
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L153
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L153
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol#L25-L45
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/DisputeCrowdsourcer.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol#L114-L126
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L46
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L451-L457
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Order.sol#L59
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/CompleteSets.sol#L35

Update: Fixed in 3ee0fae51d68c2d23d8c3ac56e5659fcfc6fdeb2.

Self-reference in market nudging mechanism

The market nudging mechanism implies that Augur uses self-reference to operate. It uses
one of its own markets to report on the price of REP, and then uses such reported price to
determine the fees reporters will have on future windows. This self-reference seems
dangerous in general, as the dynamics are not clear, but we found some concrete problems.

For example, reporters are incentivized to report on smaller prices, given this would make
reporting fees higher, making REP tokens gain value with time.

Despite the whitepaper's claim that the game theory backing this nudging mechanism
holds, the fact that such mechanism is implemented in a completely automated form is
concerning. Consider making the nudging mechanism customizable by the Augur team at
least during the initial dev mode phase.

However, when looking at the implementation, found in contract RepPriceOracle, we
see that the nudging mechanism is not implemented via an Augur market, but from an
external source, we recommended. As such, it’s not affected by the problem described
above, but the issue is pointed out to signal concern over the designed mechanism.

Update: The Augur team decided not to include this fix by now, since the nudging mechanism
is currently implemented in a centralized way.

Markets can be initially reported in a locked universe

It is unclear from the white paper whether a Market can be initially reported in a locked
Universe, as no reporting should occur during a fork, and no rewards should be paid (initial
reporting pays out bonds).

​​​​29

https://github.com/AugurProject/augur-core/commit/3ee0fae51d68c2d23d8c3ac56e5659fcfc6fdeb2
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/Universe.sol#L355
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/RepPriceOracle.sol#L8
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol

Consider either clarifying on the white paper whether initial reporting is accepted during a
fork, or add a restriction in doInitialReport to prevent invocation during forks.

Update: Augur team clarified this is intended and will update the whitepaper to specify this
behavior.

Lack of Report abstraction

Large part of the reporting module needs the report itself to carry out different
functionalities. However, reports are not modeled explicitly forcing many functions to send
and receive the attributes of every report separately.

For instance, many functions receive the payout numerators set with the invalid attribute
and then call the Market contract to get the corresponding distribution hash. For example,
the doInitialReport, contribute and createChildUniverse handle a payout
numerators set with the invalid attribute and call the
derivePayoutDistributionHash of the Market to carry out their behavior.

Consider modelling a report explicitly including all the needed attributes to improve the
interfaces and reduce code complexity.

Update: The Augur team decided not to fix this issue

Universe open interest is not decremented in bad times

Whenever shares are exchanged for ETH in a market, such as in
ClaimTradingProceeds#claimTradingProceeds or
CompleteSets#sellCompleteSets, the corresponding universe open interest is
decremented via a call to decrementOpenInterest (see ClaimTradingProceeds
L38 and CompleteSets L57).

​​​​30

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L117
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L131
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L141
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L172
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L440-L453
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://www.youtube.com/watch?v=TFj0rxyNCtc
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L24
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L50
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L38
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L57

However, when shares are burned in exchange for ETH in
TradingEscapeHatch#claimSharesInUpdate, the universe open interest is not
decremented, and may reflect an invalid value.

Note that this issue is mitigated by the fact that the trading escape hatch can only be used
in the event of an emergency stop.

Consider adding a call to decrementOpenInterest with _amountToTransfer value
to reduce the open interest as needed.

Update: The Augur team considers this a valid scenario in order to keep this logic as simple
as possible.

Update 2: Fixed in c13fa15ab625b070754df87375d2a40db60c5e14.

D. Forking

An attacker can manipulate the tentative winning outcome in a fork

The Universe contract has a function named
updateTentativeWinningChildUniverse that is called every time some REP
tokens are migrated to a child Universe to keep track of the tentative winning payout
distribution and finalize the forking market if possible. This function declares an uint256
local variable called _currentTentativeWinningChildUniverseRepMigrated to
store the amount of REP tokens migrated to the current tentative winning child Universe
temporary. However, said amount is queried but never stored in the local variable
mentioned above. This means that any payout distribution hash could be tracked as the
tentative winning one, given it just requires to have an amount of REP tokens migrated
greater than the amount stored in the
_currentTentativeWinningChildUniverseRepMigrated variable, which will
always be true.

Then, notice that the function getWinningChildUniverse would assume that the
tentative winning payout distribution is the final one if the fork end time has passed.

​​​​31

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/TradingEscapeHatch.sol#L20
https://github.com/AugurProject/augur-core/commit/c13fa15ab625b070754df87375d2a40db60c5e14
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L183
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L186
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L188
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L186
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L200-L207

Fix the updateTentativeWinningChildUniverse logic to use the local variable
_currentTentativeWinningChildUniverseRepMigrated correctly.

Update: Fixed in 1dbaa4307a699729bf33133f09d4d23c9c425237.

An attacker can prevent forking-market traders from claiming their fees

The Market contract has a finalizeFork function which is called every time a forking
market is finalized. This function sets the finalizationTime state variable of the
Market with the current timestamp.

On the other hand, the ClaimTradingProceeds contract has only one public function
allowing traders to claim their fees three days after a Market was finalized. It performs a
precondition to check that it's been at least 3 days from the finalization time.

Given the finalizeFork function is public and there are no preconditions to guarantee it
is not called many times, an attacker can call it more than once to get the
finalizationTime updated every time. This means, they will need to call this function
once every three days for a forking market to prevent traders from claiming their fees.

Add a precondition in the finalizeFork function to prevent anyone from calling it more
than once.

Update: Fixed in 1dbaa4307a699729bf33133f09d4d23c9c425237.

Markets can be migrated after finalization

Function Market#migrateThroughOneForkmigrates the market from its current
Universe to the winning one in the event of a fork, removing all reports except for the initial
report.

If the Market was already finalized, this method can still be invoked, which will remove all
reports except for the initial one, effectively changing the return value of
getWinningReportingParticipant and getWinningPayoutNumerator back to
the initial report, which are used to determine how share tokens fees are paid out (see
ClaimTradingProceeds#calculateProceeds). Furthermore, since

​​​​32

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L183
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L186
https://github.com/AugurProject/augur-core/commit/1dbaa4307a699729bf33133f09d4d23c9c425237
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L185-L191
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L54
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ClaimTradingProceeds.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ClaimTradingProceeds.sol#L29
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L185-L191
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L54
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L185-L191
https://github.com/AugurProject/augur-core/commit/1dbaa4307a699729bf33133f09d4d23c9c425237
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L261-L296
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L391-L393
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L395-L398
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ClaimTradingProceeds.sol#L74-L77

winningPayoutDistributionHash is not cleared out, the market is kept finalized and
cannot be disputed.

The same happens when calling Market#disavowCrowdsourcers, which clears out all
participants except for the initial reporter, effectively changing the winning payout
numerator.

Check that a market is not finalized when attempting to migrate it.

Update: Fixed in 1dbaa4307a699729bf33133f09d4d23c9c425237.

Forking market can be migrated

The migrateThroughOneFork function of the Market contract has no checks to
ensure that it cannot be called for the forking market itself. The only condition preventing
this is the call to _initialParticipant.resetReportTimestamp, which fails if the initial
participant was forked beforehand. Note that the contracts do not enforce fork to be
called in the reporting participants the event of a fork, meaning that this call could be
missed.

Consider adding a check to ensure that the forking market cannot be migrated.

Update: Fixed in 1dbaa4307a699729bf33133f09d4d23c9c425237.

Fork values for child universes must be manually updated

Each Universe has its own reputation goal, fork threshold and initial
report value. When a fork occurs many child Universes are created and this values

​​​​33

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L167
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L298-L307
https://github.com/AugurProject/augur-core/commit/1dbaa4307a699729bf33133f09d4d23c9c425237
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L261-L296
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L283
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/BaseReportingParticipant.sol#L35-L46
https://github.com/AugurProject/augur-core/commit/1dbaa4307a699729bf33133f09d4d23c9c425237
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L31
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L32
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L33
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L33

need to be recalculated since they are derived from the REP total supply. The function in
charge of updating this values is updateForkValues.

Given that updateForkValues is not called from any contract, it must be called
manually. Moreover, it has to be called every time some REP tokens are migrated to a child
Universe. This implies that the platform relies on manual work which is error prone. For
example, if the function is not called, the fork reputation goal won't be updated causing new
forks to be cheap.

Consider calling this function within the REP tokens migration flow.

Update: Augur team replied: “Doing this in the suggested automated fashion would be
impossible as it involves iterating an unbounded array (all sibling universes)”.

Markets can fork into more than N+1 universes, N being the number of outcomes
(new)

Based on the whitepaper: "When a market forks, new universes are created. Forking creates a
new child universe for each possible outcome of the forking market (including Invalid). For
example, a “binary” market has 3 possible outcomes: A, B, and Invalid." (Augur Whitepaper, 9.
Fork, Page 6)

However, any participant can report multiple valid outcomes through the contribute
function of the Market contract. This means there are multiple combinations of possible
reports for a binary market, which in turn means multiple child universes can be created in
case of a fork.

Even this is not a real problem, the way the code works does not correspond to the one
described in the documentation. Consider updating the documentation to reflect actual
behavior.

Update: Augur team will update the whitepaper.

​​​​34

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L64-L70
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Universe.sol#L64-L70
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L138
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L138

Markets may fork in more than N+1 universes, N being the number of outcomes

Reporters can stake their REP tokens buying StakeTokens for a market. This tokens are
created using an array of payoutNumerators, which is required to have the same length
as the number of outcomes, and that the sum of all the contained values is equal to the
number of ticks of the givenmarket. This is how a dispute works too through the
disputeDesignatedReport or the disputeFirstReporters functions of the
Market contract, buying StakeTokens for a payoutNumerators set. Then, there are a
lot of possible StakeTokens for the same market, at least more than the number of
outcomes.

Besides, based on the documentation when a market forks, many child universes are
created as the number of outcomes with the possibility of one more universe in case of an
invalid outcome.

However, when a fork occurs, child universes are created based on , which means that there
may be an amount greater than the number of outcomes. For example, suppose a binary
market with 1000 Ticks, it has three different possible outcomes: A, B and Invalid. Then, we
can stake REP tokens on the outcome A submitting a payoutNumerators set like
[1000, 0], and we can also stake tokens on B submitting [0, 1000]. However, if we
submit a payoutNumerators set like [500, 500], it will pass the precondition checks,
meaning that if a fork happens, more than three possible universes will be created.

Even this is not a real problem, the way the code works does not correspond to the one
described in the documentation. Consider updating the documentation to reflect actual
behavior.

Update: The Augur team confirmed they are going to update the whitepaper to match the
actual behavior.

When a market forks, stake tokens and disputes of other markets are reset

When a market forks, the rest of the markets are set to the AWAITING_FORK_MIGRATION
state. In order to move forward, the migrateThroughOneFork function of each market
has to be called. This function migrates a market to the winning universe, and it also clears
its reference to the StakeTokens and to the designated, first and last dispute bonds.

​​​​35

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L27
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L151
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L155
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://docs.google.com/document/d/1bCcIRYH0CaIT6uhHsxns8vDibYCmpf3-oLlg-5I9mmg/edit#heading=h.50khge44kxaj
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/IMarket.sol#L19
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L312

Moreover, there is a public function called disavowTokens in the market contract that
seems to be unused since the migrate function is already carrying out that logic.

Then, reporters would need to call the redeemDisavowedTokens function of the
StakeToken contract to receive their REP tokens back. They also need to call the
withdrawDisavowedTokens function of the DisputeBond contract to do so in case of
a dispute.

However, if reporters forget to call any of those functions, they won't be able to claim their
reporting fees, since market won't recognize their StakeTokens based on the
preconditions needed to redeem them. This also means that reporters will have to re-stake
their REP tokens, or re-dispute an outcome.

Consider implementing an alternative flow to allow users to report on a fork without getting
their StakeTokens reset.

Update: The Augur team confirmed they will not change how this works now, but doesn't
discard reviewing it in the future.

Update 2: Intended. This is done currently so that more REP may participate in the fork.

​​​​36

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L355
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L85
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/DisputeBond.sol#L54
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/DisputeBond.sol

D. Miscellaneous

Trading contracts upgradeability may become useless

One part of the deployment script is to whitelist all the trading contracts. Then, during dev
mode, the Controller owner will be the only address whitelisted besides all these
contracts. Once dev mode is turned off, the Controller owner is removed from the
whitelist, meaning that only the trading contracts will be able to whitelist new contracts, but
none of them implement such behavior.

This means that if the Controller owner does not whitelist another account controlled by the
Augur team, then none of the trading contracts will be able to be upgraded, since no one will
be able to whitelist it.

Consider either whitelisting an account controlled by the Augur team explicitly in the
deployment script or to use the Controller owner address only for this purpose.

Update: Fixed in 821bee17bff898ef449fe498bc7a5180e95bcd64.

Controller does not guarantee that dev mode cannot be turned on again

"Augur will launch with three temporary security measures, or “training wheels”. These
measures will be removed once Augur’s developer community feels that the platform has
been thoroughly tested."

The dev mode is a particular status of the Controller contract and it is considered
turned on only when the Controller's owner is whitelisted. Given the only way to whitelist a
new address is from a whitelisted caller, and none of the whitelisted contracts implement
such functionality, there must be a whitelisted account controlled by Augur to whitelist

​​​​37

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/libraries/ContractDeployer.ts#L41
https://github.com/AugurProject/augur-core/tree/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/Controller.sol
https://github.com/AugurProject/augur-core/commit/821bee17bff898ef449fe498bc7a5180e95bcd64
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/Controller.sol

future contracts. This means that the owner address can be whitelisted again in a future,
turning on the dev mode again.

Consider implementing the dev mode explicitly through a state variable within the Controller
contract instead of combining the whitelisting and ownable features to avoid confusion and
hold what's mentioned in the whitepaper.

Update: Intended. Augur team replied: “This is not an issue as there needs to be an on chain
audit to determine if we have actually relinquished control no matter the mechanism. Since
we can effectively rewrite all the contracts until that point there is no simple way to determine
malicious actions by us without a comprehensive on chain audit.”

Unchecked token transfers and approvals

All the tokens of the platform inherit from StandardToken, which is an implementation of
the ERC20 token standard. This standard makes clear that the transfer,
transferFrom and approve functions must return a boolean value to indicate whether
the transaction was successful or not.

In the Augur codebase, every time a token transfer or approval is performed, its return value
is not checked. For example, the redeemInternal function of the FeeWindow contract
performs a REP token transaction without checking its result.

Consider wrapping all the transfers and approvals within a require statement.

Update: Fixed in 65561b0a0b7064c9f83bad6b8f9883911576ce65.

ShareToken is unnecessarily whitelisted

The Controller contract includes a simple authorization flow that can be used by many
contracts to call each other in a secure way. This feature is used by all the trading contracts,
in fact, one part of the deployment script is to whitelist all of them.

However, the ShareToken contract is the only trading contract that doesn't call any other
whitelisted contract, meaning that there is no need to have it whitelisted. Moreover, note

​​​​38

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/StandardToken.sol
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#transfer
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#transferfrom
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#approve
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol#L92-L128
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol#L103
https://github.com/AugurProject/augur-core/commit/65561b0a0b7064c9f83bad6b8f9883911576ce65
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/Controller.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/Controller.sol#L33-L36
https://github.com/AugurProject/augur-core/tree/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/libraries/ContractDeployer.ts#L41
https://github.com/AugurProject/augur-core/tree/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ShareToken.sol

this contract is used through the Delegator, so it does not make sense to have the
deployed implementation whitelisted.

Consider removing the ShareToken contract from the whitelisted contracts to reduce the
attack surface.

Update: Fixed in 137e28c606dbce1363f315e23d2c610465c9a281.

​​​​39

https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/Delegator.sol
https://github.com/AugurProject/augur-core/commit/137e28c606dbce1363f315e23d2c610465c9a281

E. Notes & Additional Information

● Augur contracts are annotated with version pragma solidity 0.4.18. At the time of writing,
the latest update released for that version was 5 months ago. Bear in mind that version
0.4.20 was released recently. Consider upgrading to a more recent version to enforce the
use of an updated compiler.

● The ShareToken contract declares a decimals state variable of type uint256. Consider
changing it to uint8 type to be ERC20 compliant.

● Some of the ERC20 token contracts declare a decimals state variable using a uint256
type. For example Cash, ShareToken and ReputationToken. Consider changing those
state variables to a uint8 type following the ERC20 standard.

● FeeToken and FeeWindow contracts are ERC20 tokens, yet they do not define the optional
decimals, name or symbol public fields. Consider adding these fields for better
compatibility with user-facing software.

● Some unnecessary inheritance relations between contracts were found. For example, the
CancelOrder contract inherits from MarketValidator unnecessarily. Consider
removing those relations to reduce code complexity and avoid confusion.

● Some unused functions were found. For example, the Controller contract declares a
function called assertOnlySpecifiedCaller that is never used. Consider removing all
unused functions to reduce the attack surface and code complexity.

● Some code duplication was found in the Augur codebase. For example, the Cash contract
defines two functions withdrawEther and withdrawEtherTo to carry out Ether
transfers, which repeat most of the code. Consider reducing code duplication to reduce
code complexity and the probability of making a mistake.

● There is a library called DirectionExtentions in the FillOrder.sol that is never
used, although it is declared in the FillOrder contract. Consider dropping this unused
library to reduce code complexity and the attack surface.

​​​​40

https://github.com/ethereum/solidity/tree/v0.4.20
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ShareToken.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ShareToken.sol#L17
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#decimals
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol#L19
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/ShareToken.sol#L17
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/ReputationToken.sol#L23
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md#decimals
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeToken.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/FeeWindow.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/CancelOrder.sol#L24
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/MarketValidator.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/Controller.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/Controller.sol#L108-L111
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol#L31-L36
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/Cash.sol#L38-L43
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/FillOrder.sol#L359-L367
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/FillOrder.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/trading/FillOrder.sol#L373

● The ERC20 specification suggests emitting a Transfer event from the address 0x0 when
minting new tokens. Consider emitting such event in the VariableSupplyToken#mint

function. Additionally, we suggest also emitting a Transfer event to the address 0x0 when
burning tokens in the VariableSupplyToken#burn function.

● Keep in mind that there is a possible attack vector on the approve/transferFrom
functionality of ERC20 tokens, described here. Consider using the mitigations implemented
in OpenZeppelin’s StandardToken.

● There is no precondition to avoid creating a Market using the zero address as the
designated reporter. Consider adding a validation to check that the designated reporter is a
non zero address in the initialize function of the Market contract.

● Many functions in the project return a hardcoded boolean when they are actually calling
another function with a return value of their own. For example, the Augur contract defines a
trustedTransfer function that returns always true besides what the internal call to
transferFrom returns. Consider returning the result of those internal calls instead of a
hardcoded boolean.

● Many functions handle strings through a bytes32 typed variable. Based on Solidity docs,
string variables should be used for arbitrary-length UTF-8 data.

● There are some view functions that could be defined as pure ones. For example, the
Orders contract defines a getOrderId function that does not perform any state read or
write. Consider declaring those functions as pure instead.

● Comment “intentionally not a safeSub since minValue may be negative” in
TradingEscapeHatch L57 is confusing, since there is no subtraction operation in the
following lines, and there is no minValue variable in the context. Consider removing or
fixing the comment.

● Avoid code repetition/naming in things like fillOrder in FillOrder L380 and
fillOrder in Orders L174.

● Consider using scientific notation to declare numeric constants to avoid typos.

Update: Fixed in 137e28c606dbce1363f315e23d2c610465c9a281 and
55c89e94a1bba5f06da3264601c3a057d614e1a6.

​​​​41

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#transfer-1
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/VariableSupplyToken.sol#L18-L24
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/libraries/token/VariableSupplyToken.sol#L31-L37
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/OpenZeppelin/zeppelin-solidity/blob/v1.4.0/contracts/token/StandardToken.sol#L64-L85
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol#L61-L92
https://github.com/AugurProject/augur-core/blob/3b5a63d372d205a0214e3061293d5bca0fd5636a/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/Augur.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/Augur.sol#L37
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/Augur.sol#L39
https://solidity.readthedocs.io/en/develop/types.html#dynamically-sized-byte-array
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Orders.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Orders.sol#L90
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/TradingEscapeHatch.sol#L57
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L380
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/FillOrder.sol#L380
https://github.com/AugurProject/augur-core/commit/137e28c606dbce1363f315e23d2c610465c9a281
https://github.com/AugurProject/augur-core/commit/55c89e94a1bba5f06da3264601c3a057d614e1a6

08. Appendix A - Fixed and partially fixed issues
A. General Observations

Tight coupling between contracts

The general architecture of Augur possesses a high degree of afferent (incoming) and
efferent (outgoing) couplings between its contracts. This is often referred to as tight
coupling and is a measure of how fragile the software is to replacing one of its
components. This associated degree of interconnections is also known to increase the
attack surface of the software, which is particularly relevant in smart contracts.

For example, Market’s tryFinalize calls ReportingWindow’s
updateMarketPhase, which in turn calls back to Market’s getReportingState,

which in turns calls other methods in ReportingWindow again.

An established flow of information with unidirectional pathways leads to a more loosely
coupled software architecture which is more robust, more secure and more resilient to
change and scaling.

It is recommended that the Augur team studies the degree of tight coupling / software
complexity systematically, and that evaluate what changes in the architecture could create
a more unidirectional flow of information, or what design could be used as a foundation
framework that simplifies such flow.

Also, consider evaluating the possibility of splitting up the entire code base into completely
standalone modules that can be independently tested: i.e. a trading module, a reporting
module and a central module to unify the other two.

Update: Even though the trading module is still part of the whole codebase, the Augur team
reduced the reporting module coupling in
1de558ec7aa0583750e2a90200e13bfc28d35fb1.

​​​​42

https://github.com/AugurProject/augur-core/blob/audit/source/contracts/trading/CompleteSets.sol#L45
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/ReportingWindow.sol
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/ReportingWindow.sol
https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/Market.sol#L590
https://github.com/AugurProject/augur-core/commit/1de558ec7aa0583750e2a90200e13bfc28d35fb1

Anyone can trigger Augur events

Most of the events of Augur are triggered from the Augur contract itself. All functions are
public, and many of them perform a precondition to check the sender, but not all of them.
All those preconditions are performed using the Universe given by parameters, which
could be a malicious contract to bypass those checks. Then, an attacker can trigger invalid
events.

This may not cause a problem directly, but it can flood the blockchain with invalid events,
making it unreliable for those who want to browse it.

Consider adding a precondition to check that the msg.sender is a trusted one to those log
functions that doesn't have it yet. Additionally, add another precondition to validate that the
given universe is a valid one.

Update: Fixed in a0ba05f3d229c796090c2c5dbcbc7c2bee668468.

Whitelisted contracts are not explicit to the user

The backbone of Augur is composed of a series of whitelisted contracts of singleton nature,
which compose a network of allowed interactions on key elements of the architecture. A
whitelisted contract has extraordinary privileges within the code, such as the ability to mint
ShareTokens or even add other addresses to the whitelist itself. Given that there is no
explicit tracking of which addresses are whitelisted, there is potential for mistrust form the
user’s perspective, which can’t know the exact member addresses or contracts conforming
the whitelist.

Consider making the members of the whitelist explicit to the user. This could be achieved
by using an array of whitelisted addresses apart from the mapping that is already used. The
mapping provides quick verification that an address is whitelisted and the array exposes the
list to the public. Alternatively, add events to signal changes to the whitelist. This would
have the additional benefit of being able to detect if the whitelist mechanism has been
deployed incorrectly or has been compromised.

Update: Fixed in d075d9c0176a08fea521ff31a373776f134828d5.

​​​​43

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/Augur.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol
https://github.com/AugurProject/augur-core/commit/a0ba05f3d229c796090c2c5dbcbc7c2bee668468
https://github.com/AugurProject/augur-core/commit/d075d9c0176a08fea521ff31a373776f134828d5

Favor pull payments over push payments

All ETH transfers are executed via call.value. This allows the recipient to execute arbitrary
code upon the transfer (due to the gas stipend allocated), and also to throw upon receiving
the payment, thus blocking the application flow. For more info on this problem, see this
note.

This enables the following issues listed in the document:

- All reporting fees can be frozen by a market creator
- Shareholders fees can be frozen by the market creator
- A market owner can block the Participation token purchase
- Markets ether balance can be stolen by the first reporter

Consider using OpenZeppelin’s PullPayment contract to implement pull payments, or
use the safer transfer keyword for ETH sending.

Update: Partially fixed in 2c7c1dd36b1512b440faea205111520f5e9a37e7. There still are
some low level calls to be fixed (see the newly reported issue).

Use safe math

Given that arithmetic operations on integers may overflow silently, causing bugs, consider
using the existing SafeMathUint256 and SafeMathInt256 libraries for all arithmetic
operations.

For instance, Market#derivePayoutDistributionHash uses unsafe addition in
L417. This operation can overflow and still be equal to the target number of numTicks,
yielding an invalid set of payout numerators.

As an example, given numTicks == 1000, the array [2**256-1, 1001] is deemed
as valid. Nevertheless, this issue is not propagated since the constructor of StakeToken,
which replicates exactly the same check, does use safe math (see StakeToken L32),
and raises an error when attempting to create a token for such invalid payout distribution.

The following unsafe operations were found:

​​​​44

https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/payment/PullPayment.sol
https://github.com/AugurProject/augur-core/commit/2c7c1dd36b1512b440faea205111520f5e9a37e7
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#417
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol

trading/Order.sol
128 Arithmetic operation (++)

libraries/Extractable.sol
28 Arithmetic operation (++)

libraries/collections/Map.sol
24 Arithmetic operation (+=)
37 Arithmetic operation (-=)

libraries/arrays/AddressArrays.sol
18 Arithmetic operation (-)
23 Arithmetic operation (++)
24 Arithmetic operation (+)

libraries/arrays/Bytes32Arrays.sol
18 Arithmetic operation (-)
23 Arithmetic operation (++)
24 Arithmetic operation (+)

libraries/arrays/Uint256Arrays.sol
18 Arithmetic operation (-)
23 Arithmetic operation (++)
24 Arithmetic operation (+)

libraries/collections/Set.sol
23 Arithmetic operation (+=)
37 Arithmetic operation (-=)

libraries/math/RunningAverage.sol
12 Arithmetic operation (/)
16 Arithmetic operation (++)
17 Arithmetic operation (+=)

reporting/DisputeBond.sol
34 Arithmetic operation (*)

reporting/Market.sol
85 Arithmetic operation (/)
90 Arithmetic operation (++)
95 Arithmetic operation (+)
117 Arithmetic operation (++)
120 Arithmetic operation (++)
127 Arithmetic operation (/)
163 Arithmetic operation (+=)
189 Arithmetic operation (+=)

​​​​45

323 Arithmetic operation (-)
408 Arithmetic operation (+=)
415 Arithmetic operation (++)
417 Arithmetic operation (+=)
579 Arithmetic operation (+)
587 Arithmetic operation (+)
677 Arithmetic operation (+)
678 Arithmetic operation (++)
683 Arithmetic operation (+)
684 Arithmetic operation (+)

reporting/ReportingWindow.sol
49 Arithmetic operation (*)
65 Arithmetic operation (+=)
155 Arithmetic operation (-=)
204 Arithmetic operation (+)
212 Arithmetic operation (+)
216 Arithmetic operation (+)
221 Arithmetic operation (-)

reporting/StakeToken.sol
31 Arithmetic operation (++)
89 Arithmetic operation (*)
89 Arithmetic operation (/)
116 Arithmetic operation (*)
116 Arithmetic operation (/)
145 Arithmetic operation (-)
168 Arithmetic operation (*)
168 Arithmetic operation (/)
210 Arithmetic operation (++)

reporting/Universe.sol
59 Arithmetic operation (+)
109 Arithmetic operation (/)
113 Arithmetic operation (+)
125 Arithmetic operation (+)
125 Arithmetic operation (+)
125 Arithmetic operation (+)
125 Arithmetic operation (+)
129 Arithmetic operation (-)
137 Arithmetic operation (+)
261 Arithmetic operation (*)
266 Arithmetic operation (*)
375 Arithmetic operation (*)
375 Arithmetic operation (*)
380 Arithmetic operation (+)

trading/ClaimTradingProceeds.sol

​​​​46

26 Arithmetic operation (+)
32 Arithmetic operation (++)

trading/CompleteSets.sol
36 Arithmetic operation (++)
64 Arithmetic operation (++)

trading/FillOrder.sol
95 Arithmetic operation (++)
110 Arithmetic operation (-=)
111 Arithmetic operation (-=)
134 Arithmetic operation (-=)
135 Arithmetic operation (-=)
158 Arithmetic operation (-=)
159 Arithmetic operation (-=)
186 Arithmetic operation (++)
190 Arithmetic operation (-=)
191 Arithmetic operation (-=)
320 Arithmetic operation (-)
321 Arithmetic operation (+)
321 Arithmetic operation (++)
325 Arithmetic operation (-)
334 Arithmetic operation (-)

trading/Orders.sol
189 Arithmetic operation (-=)
190 Arithmetic operation (-=)
191 Arithmetic operation (-=)

trading/TradingEscapeHatch.sol
24 Arithmetic operation (++)
55 Arithmetic operation (++)
83 Arithmetic operation (++)

Update: This issue was partially fixed in d075d9c0176a08fea521ff31a373776f134828d5. The
Augur team decided not to use SafeMath library for those impossible-to-overflow scenarios
to avoid extra gas usage. Note there are still scenarios that could indeed overflow (see the
newly reported issue).

​​​​47

https://github.com/AugurProject/augur-core/commit/d075d9c0176a08fea521ff31a373776f134828d5

Remove unused code

There are some contract interfaces that are never used in the project. For example the
IRegistrationToken and ITrade contracts. This increases the code complexity.

Additionally, some of the contracts of the codebase define functions that are never used.
For example, the FillOrder contract defines getShortShareBuyerSource and
getLongShareBuyerSource, which are unused. This increases the code complexity, the
attack surface and the size of the bytecode to be deployed.

Consider removing the unused contracts and functions to avoid the kind of problems
mentioned above.

Update: Fixed in 1de558ec7aa0583750e2a90200e13bfc28d35fb1.

​​​​48

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/IRegistrationToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ITrade.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/FillOrder.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/FillOrder.sol#L202
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/FillOrder.sol#L198
https://github.com/AugurProject/augur-core/commit/1de558ec7aa0583750e2a90200e13bfc28d35fb1

B. Trading

Markets are not sanity-checked in trading module

Several functions from contracts in the trading folder accept an IMarket as a parameter.
Multiple properties are obtained from that market, such as its denomination and share
tokens, its outcomes, its winning outcome, its universe, its reporting window, etc.

These functions do not validate that the market was indeed created from a valid Augur
MarketFactory. As such, they are subject to manipulation through maliciously crafted
contracts, that implement the same IMarket interface, though with different semantics.

The following public functions from contracts in trading accept an IMarket:

- CancelOrder.sol#cancelOrder

- ClaimTradingProceeds.sol#claimTradingProceeds

- CompleteSets.sol#publicBuyCompleteSets

- CompleteSets.sol#publicSellCompleteSets

- CreateOrder.sol#publicCreateOrder

- Order.sol#create

- Trade.sol#publicBuy

- Trade.sol#publicSell

- Trade.sol#publicTrade

- Trade.sol#publicTakeBestOrder

- TradingEscapeHatch.sol#claimSharesInUpdate

These contracts are set as whitelisted callers, as per
ContractDeployer#whitelistTradingContracts (L167), which implies that
all functions decorated with the onlyWhitelistedCallersmodifier are callable by
them. Such methods often make sensitive modifications to a contract’s state, not available
to the public.

Inserting a malicious IMarket contract in the Trade.sol public methods has no
apparent effects, since only the address of the contract is used as an identifier for the order.

​​​​49

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/libraries/ContractDeployer.ts#167

However, given that the remaining functions do rely on information returned by the contract,
they are potentially vulnerable.

Consider adding a check in all these methods that the market is a valid Market created by
a valid ReportingWindow contract through a createMarket call. This can be checked
by a isContainerForMarket call to the market’s universe, which must also be
validated. The latter can be done by tracking all created universes in the Augur contract
singleton, and validating that the universe being checked is listed in it.

The following critical vulnerabilities, enabled by this issue, were detected:

- Universe open interest can be manipulated by an attacker
- Complete sets of shares can be purchased for free

Update: Fixed in a0ba05f3d229c796090c2c5dbcbc7c2bee668468.

Universe open interest can be manipulated by an attacker

The universe contract keeps track of the open interest from all markets through the state
variable openInterestInAttoEth. This variable can be incremented or decremented by
whitelisted callers through methods incrementOpenInterest (L244) and
decrementOpenInterest (L250).

Function claimTradingProceeds from ClaimTradingProceeds.sol can be
publicly invoked, and accepts an IMarket without performing any validation on it.

An attacker can submit a maliciously crafted IMarket implementation that returns a fake
stake token, in which the msg.sender has balance on the market’s winning outcome. This
causes the call to divideUpWinnings in L35 to return a non-zero amount of
_proceeds for the caller.

If the market returns any valid Augur universe in the call to getUniverse in L38, then the
contract will call decrementOpenInterest into such universe, which will succeed as
ClaimTradingProceeds is a whitelisted caller.

This allows an attacker to arbitrarily call decrementOpenInterest in any Augur
universe. This has the immediate effect of decrementing the targetRepMarketCap in

​​​​50

https://github.com/AugurProject/augur-core/commit/a0ba05f3d229c796090c2c5dbcbc7c2bee668468
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol#L244
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol#L250
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L24
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L35
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L38

L266, which increases the currentFeeDivisor in L355 up to a global maximum, thus
decrementing incrementing the reporting fees.

A more critical side effect of calling decrementOpenInterest arbitrarily is that an
attacker could reduce the value of a universe’s openInterest down to zero. Given that
decrementOpenInterest uses SafeMathUint256.sol#sub, which reverts the
transaction if the subtrahend is larger than the minuend, any subsequent calls to
decrementOpenInterest will then fail. This means that any user legitimately invoking
claimTradingProceeds to collect their proceeds, will cause a call to
decrementOpenInterest in L38, causing the transaction to revert.

This effectively prevents all users from all markets in the universe from collecting their
winnings.

Consider implementing the suggestion described in “Markets are not sanity-checked in
trading module” to fix this issue.

Update: Fixed in a0ba05f3d229c796090c2c5dbcbc7c2bee668468.

Complete sets of shares can be purchased for free

Function CompleteSets#publicBuyCompleteSets handles purchases of complete
sets of shares for a given market. Given that no check is performed on that market, an
attacker could submit any contract that adheres to the required interface.

In particular, an attacker could invoke the function with a market that returns any
denomination token with no intrinsic value, and returns the share token for a different
market.

On L35 of CompleteSets, the contract transfers denominationToken (ie Cash)

from the caller to the market. In return, on L37, the contract creates shares of the market
ShareToken (for each outcome) for the caller.

If the market contract returns a mock ERC20 token in the getDenominationToken call
in L31 (in which the msg.sender has a positive balance), and returns the share tokens of
another market in L37, then CompleteSets will create shares of an arbitrary market for

​​​​51

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol#L266
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol#L355
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L38
https://github.com/AugurProject/augur-core/commit/a0ba05f3d229c796090c2c5dbcbc7c2bee668468
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L23
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L35
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L37
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L31
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CompleteSets.sol#L37

the attacker, at the expense of an arbitrary (and potentially valueless) Cash token. This
allows an attacker to buy complete sets of shares from any market at no cost.

Consider implementing the suggestion described in “Markets are not sanity-checked in
trading module” to fix this issue.

Update: Fixed in a0ba05f3d229c796090c2c5dbcbc7c2bee668468.

Alternative denomination tokens can be stolen from a Reporting Window

Uses of alternative denomination tokens (ie tokens used as Cash in markets, that are not
the controlled Cash instance) are not properly managed. Their uses are intermixed in the
code with the global Cash, making it difficult to ensure that the correct token is used in each
scenario.

As an example, contract ClaimTradingProceeds L55 transfers a reporter’s share
from a market’s denomination token to a ReportingWindow. Since ReportingWindow
contract is Extractable, and only the global Cash instance is marked as protected as per
L416, any user can steal all alternative denomination tokens from a ReportingWindow.

Note that several comments in the ReportingWindow contract (L264, L285, L306)

seem to imply that the feature of managing multiple denominations is not fully
implemented.

To prevent these issues, consider restricting markets to work only with the controlled global
Cash instance, which is a wrapped ETH implementation, or work with ETH directly.

Update: Fixed in 6c4941bbfce7f574cc0d601b6787076041291df6.

Order info is repeated as arguments when cancelling an order

Function CancelOrder#cancelOrder receives the ID of the order to cancel. However, it
also receives the order type, market, and chosen outcome, which are used to determine

​​​​52

https://github.com/AugurProject/augur-core/commit/a0ba05f3d229c796090c2c5dbcbc7c2bee668468
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L55
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L416
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L264
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L285
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L306
https://github.com/AugurProject/augur-core/commit/6c4941bbfce7f574cc0d601b6787076041291df6
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L29

how the order should be refunded. All that information is already present in the order itself,
and a user could supply different parameters to cancelOrder.

As a grave consequence of this, a malicious trader could send the opposite order type to
attempt to collect shares from the opposite outcomes as their refund.

For instance, given an Ask order with escrowed shares for an outcome A, the malicious
trader could cancel it using Bid as the order type. Then, the call to
getOrderSharesEscrowed in L35 would return the original number of escrowed shares
for A, but L59 would return shares for all outcomes except A, given that the order type
parameter is Bid.

Consider retrieving order type, market and outcome from the order itself given the order ID,
using the getters available in Orders, rather than accepting them as parameters.

Update: Fixed in 6c4941bbfce7f574cc0d601b6787076041291df6.

Cancelling an order with share tokens in escrow will fail

Function CancelOrder#refundOrder refunds the share and denomination tokens
escrowed back to its creator when an order is cancelled. In L59 and L64, the contract
executes a transfer of share tokens to the order creator. However, the CancelOrder
contract does not hold share tokens itself, so both of those transfers should fail, making it
impossible to cancel an order with share tokens in escrow.

Note that the tests in test_cancelOrder.py that exercise that code do not test for
shares refund, only for ETH refund.

Consider changing the transfer call in L59 and L64 to a transferFrom(market), since
it is the associated market who holds the shares in escrow, and add a test to verify its
correct implementation.

Update: Fixed in 6c4941bbfce7f574cc0d601b6787076041291df6.

​​​​53

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L35
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L59
https://github.com/AugurProject/augur-core/commit/6c4941bbfce7f574cc0d601b6787076041291df6
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L53
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L59
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L64
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L59
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CancelOrder.sol#L64
https://github.com/AugurProject/augur-core/commit/6c4941bbfce7f574cc0d601b6787076041291df6

Markets can be created with malicious Cash tokens

Markets are created by invoking ReportingWindow.sol#createMarket. Among the
parameters received is the address of the token to be used as a denomination token within
the market, this is, a wrapper for Ether.

A malicious user could initialize a market with any implementation of ICash, including a
malicious one that sends a fraction of token to the attacker for every transfer, as an
example.

Another possible exploit is submitting an ICash token controlled by the attacker, which
throws at the attacker’s will. This can be used to block the application flow at any time the
denomination token is used; for instance, when attempting to finalize an invalid market (see
Market L283), thus causing ReportingWindow#allMarketsFinalized to never be
true.

To prevent these issues, consider restricting markets to work only with the controlled global
Cash instance, which is a wrapped ETH implementation, or work with ETH directly.

Update: Fixed in 6c4941bbfce7f574cc0d601b6787076041291df6.

Shareholders fees can be frozen by a malicious market creator

Once a Market is finalized, shareholders can claim their winning share fees calling the
claimTradingProceeds function of the ClaimTradingProceeds contract. This
function will divide the winnings between the requesting shareholder and the market
creator, and transfer those amounts to them.

A malicious market creator could own a market through a controlled contract defining a
payable fallback function that throws every time someone transfers ether to it. Then, the
market creator would be effectively freezing the fees of all the shareholders.

Consider using pull payments to avoid handling ether transfers in the same flow of the
claiming fees logic. Alternatively, the claimTradingProceeds flow could be split to
allow shareholders and the market owner to claim their fees separately.

​​​​54

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L56
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L283
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L237
https://github.com/AugurProject/augur-core/commit/6c4941bbfce7f574cc0d601b6787076041291df6
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L24
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L24

Update: Fixed in 2c7c1dd36b1512b440faea205111520f5e9a37e7.

It is possible to create orders for untrusted markets

There are two possible ways for a user to create orders for a given Market. A user can use
any of the options that the Trade contract provides, and the CreateOrder contract also
defines a publicCreateOrder function to do so. In fact, Trade functions call the
CreateOrder contract if it couldn't fill any of the existing orders with the incoming one.

No function in the create order flow validates that the given market is a trusted one.
Therefore, an attacker could ask someone to place an order for a self-controlled malicious
market to steal their money.

Consider adding a precondition in createOrder to validate that the given market is a valid
one using the isContainerForMarket function from Universe, and checking that the
universe returned by the market is a valid one.

Update: Fixed in a0ba05f3d229c796090c2c5dbcbc7c2bee668468.

The Trade logic treats a lack of gas as a complete order fill

The documentationmakes clear that a trading transaction will return 1 if the order was
filled completely. The trade function of the Trade contract has a statement that halts the
execution and returns 1 if the amount of given gas is not enough to cover the transaction,
based on the MINIMUM_GAS_NEEDED constant.

Consider using another return value to handle this scenario in order to avoid confusing a
successfully order filled case with an insufficient gas provided one.

Update: The Augur team fixed this statement in the documentation.

​​​​55

https://github.com/AugurProject/augur-core/commit/2c7c1dd36b1512b440faea205111520f5e9a37e7
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CreateOrder.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CreateOrder.sol#L18
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/CreateOrder.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol#L187
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Universe.sol
https://github.com/AugurProject/augur-core/commit/a0ba05f3d229c796090c2c5dbcbc7c2bee668468
http://docs.augur.net/#trade-tx-api
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L42
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/Trade.sol#L18

Market creators may not be able to collect their corresponding fees

Once a Market is finalized, shareholders can claim their winning share fees calling the
claimTradingProceeds function of the ClaimTradingProceeds contract. This
function will divide the winnings between the requesting shareholder and the market
creator, and transfer those amounts to them.

This means that market creators will receive their corresponding fees only if shareholders
claim their fees too. Then, it would take just one shareholder that does not claim their fees,
to make sure that the market creator does not receive their whole corresponding fees. For
example, there could be a shareholder with a huge amount of money invested that loses his
account private key.

Consider splitting the claimTradingProcees flow allowing shareholders and the market
owner to claim their fees separately.

Update: Fixed in d075d9c0176a08fea521ff31a373776f134828d5.

​​​​56

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol#L24
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/trading/ClaimTradingProceeds.sol
https://github.com/AugurProject/augur-core/commit/d075d9c0176a08fea521ff31a373776f134828d5

C. Reporting

It may not be possible to stake tokens on an invalid outcome

As per StakeToken#isInvalidOutcome, an outcome is considered invalid if all its
payout numerators are equal. The StakeToken constructor checks for this condition,
and requires that if the invalid flag received as a parameter is set, then the numerators are
invalid (see L35).

This check is incorrectly implemented, since L35 checks for the value of the invalid state
variable, which is only assigned afterwards in L38. As such, the state variable will always be
false, and not reflect the value of the parameter.

Check the value of the _invalid parameter instead of the invalid state variable in L35.
Alternatively, evaluate removing the invalid parameter altogether, and assign the state
variable from the result of isInvalidOutcome. Note that this last option forbids having a
valid outcome where all payout numerators are equal, which may or may not be desirable.

Furthermore, the requirement of all payout numerators being equal may not be feasible, due
to the additional restriction of having their sum equal to numTicks (see L34). For example,
a market set up with 3 outcomes and 1000 numTicks cannot be marked as invalid, since
1000 is not divisible by 3.

Consider adding a check on market construction that numTicks % numOutcomesmust
equal to zero, or relax the requirement on the payout numerators for invalid outcomes.

Additionally, consider writing a special case for invalid outcome payouts, which doesn’t
require payout numerators as an argument.

Update: Fixed in 1de558ec7aa0583750e2a90200e13bfc28d35fb1.

​​​​57

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L209
http://docs.augur.net/#payout-set
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L35
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L35
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L38
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L35
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L34
https://github.com/AugurProject/augur-core/commit/1de558ec7aa0583750e2a90200e13bfc28d35fb1

Markets ether balance can be stolen by the first reporter

The Market contract defines the firstReporterCompensationCheck public function
which is called from the buy function of the StakeToken contract every time a buy occurs.
This is how first reporters get compensated with the reporting gas costs and the no-show
REP bond. This function transfers said tokens to the first reporter, and then the reporting
gas costs through a call.value(reporterGasCostsFeeAttoeth).

An attacker could call the StakeToken buy function from a smart contract that defines a
payable fallback function to perform a reentrance to the buy function every time it receives
ether. The only precondition to transfer those fees to the first reporter is that the
tentativeWinningPayoutDistributionHash is not set, which will be always true
since it gets updated after the firstReporterCompensationCheck is called from
StakeToken#buyTokens. This allows an attacker to withdraw all the ether balance of a
Market.

Consider using pull payments to avoid handling Ether transfers in the same flow of the
market logic. Alternatively, consider adding a reentrancy guard to the StakeToken buy

function.

Update: Fixed in 1de558ec7aa0583750e2a90200e13bfc28d35fb1.

All reporting fees can be frozen by a Market creator

There are three different possible reporting fees that reporters can claim. First, they can call
the redeemWinningTokens function of the StakeToken contract to claim their fees
based on their staked REP tokens. Then, they may also use the withdraw function of the
DisputeBond contract to claim fees in case of a dispute. And finally, there is also a
chance to claim ParticipationTokens fees, in case there were no markets on which to
report.

An attacker could create (and thus own) a market through a malicious contract, defining a
payable fallback function that only throws. In this case, market owners can prevent their
markets from closing, which means a single market owner can freeze all the reporting fees
of a ReportingWindow.

​​​​58

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L388
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L45
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L398
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L42
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L42
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L392
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L388
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L80
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L42
https://github.com/AugurProject/augur-core/commit/1de558ec7aa0583750e2a90200e13bfc28d35fb1
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L109
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/DisputeBond.sol#L39
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/DisputeBond.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ParticipationToken.sol

All the fee payment mechanisms described above use the
internalCollectReportingFees function of the ReportingWindow contract. This
function performs a precondition to check that all the markets of the ReportingWindow
are finalized. If the malicious Market is unfinalized, it will prevent all the reporters of a
ReportingWindow from claiming their fees.

Consider using pull payments to avoid handling ether transfers in the same flow of the
market logic.

Update: Fixed in 2c7c1dd36b1512b440faea205111520f5e9a37e7.

A market owner can block the Participation token purchase

The ParticipationToken contract defines a buy function to allow reporters to
exchange their REP tokens for Participation ones in case there are no markets on which to
report. Indeed, this function performs a precondition to check that all the markets of a
ReportingWindow are finalized.

The only way to finalize a Market is through the tryFinalize function. It performs
some state changes over the market and transfers the validity bond to the owner. Then, a
malicious market creator could own a market through a contract, defining a payable
fallback function that throws every time it receives ether. In this case, a market owner will
block the ParticipationToken purchases.

Consider using pull payments to avoid handling ether transfers in the same flow of the
market logic.

Update: Fixed in 2c7c1dd36b1512b440faea205111520f5e9a37e7.

​​​​59

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L256
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L26
https://github.com/AugurProject/augur-core/commit/2c7c1dd36b1512b440faea205111520f5e9a37e7
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ParticipationToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ParticipationToken.sol#L27
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L265
https://github.com/AugurProject/augur-core/commit/2c7c1dd36b1512b440faea205111520f5e9a37e7

C. Forking

Markets can be created in a locked universe

As described in the whitepaper, when a fork occurs “the parent universe becomes
permanently locked. In a locked universe, no new markets may be created [...]”. In
ReportingWindow’s createMarket(...) we observe that, during a fork, the code
does not appear to explicitly check for this. Moreover, there are no tests implemented for
this requirement.

Explicitly check for the condition specified in the whitepaper that the reporting window in
question does not belong to a lock universe, and exit early if it resolves to true. Additionally,
we recommend creating a test for this specification. As a general practice, using state for
explicitly and declaratively early exiting during functions makes the code more robust,
easier to understand and resilient to change.

Update: Fixed in 1de558ec7aa0583750e2a90200e13bfc28d35fb1.

Eventually it will not be possible to produce further forks

At the time of writing, it would cost approximately 4.3 M dollars (149,600 REP) to fork a
universe, considering 1,100 REP to dispute the designated report, 11,000 REP to dispute the
first report, and 137,500 REP (1.25% of total supply) to dispute the last one.

Consider a heavily disputed market. There could be black swan scenario where most
people think outcome A will happen, and outcome B actually happened, but questionably.
For example, a president election market may cause a fork if a lot of people think there was
fraud, since there is no incentive to vote for truths. If many such scenarios come through,
causing a considered amount of forks until we have a universe without the necessary

​​​​60

https://github.com/AugurProject/augur-core/blob/audit/source/contracts/reporting/ReportingWindow.sol#L56
https://github.com/AugurProject/augur-core/commit/1de558ec7aa0583750e2a90200e13bfc28d35fb1
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Reporting.sol#L24
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Reporting.sol#L25
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Reporting.sol#L26

supply of REP tokens to afford a dispute, there may be a time where reporters won't be able
to dispute a market anymore.

Consider using an amount of REP tokens proportional to the supply of the universe for
dispute bonds, rather than using fixed amounts.

Update: Fixed in 44b757f74c7c000a3446bb143d1412764fda7358.

​​​​61

https://github.com/AugurProject/augur-core/commit/44b757f74c7c000a3446bb143d1412764fda7358

D. Miscellaneous

Spender contracts cannot be re-approved if updated

A comment in function Market.sol#approveSpenders correctly reads: “This will need
to be called manually for each open market if a spender contract is updated”. However, the
function is marked as private, and cannot be invoked except from the market’s constructor,
thus making it impossible to approve updated contracts. This breaks all existing markets
when one of the contracts listed in L116 or L121 is updated.

Change the private modifier to public, and add a check that it is invoked only by a trusted
entity.

Update: Fixed in 5ae5f9685b3795c1ff1a20b0542cc9ccc91c6260.

Delegator memory allocation not working for arguments larger than 32 bytes

Delegator.sol Uses a very simple algorithm to pad memory allocation to 32 bytes block
which however ignores cases when the argument size is larger than 32 bytes.

Consider using an algorithm that handles padding to multiples of 32 for all of the cases,
like:

_size := and(add(calldatasize, 0x1f), not(0x1f))

For more info on how this works, please see this Solidity documentation example.

Update: Fixed in d075d9c0176a08fea521ff31a373776f134828d5.

​​​​62

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L114
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L93
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L116
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L121
https://github.com/AugurProject/augur-core/commit/5ae5f9685b3795c1ff1a20b0542cc9ccc91c6260
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/Delegator.sol#L28
http://solidity.readthedocs.io/en/develop/assembly.html#example
https://github.com/AugurProject/augur-core/commit/d075d9c0176a08fea521ff31a373776f134828d5

Delegator not working for return data greater than 32 bytes

The Delegator contract defines a payable fallback function that delegates calls to its
controller. The way the delegatecall is implemented, it is assuming that return data will
always have a length of 32 bytes. This may not always be true since the return data size
may be of arbitrary size.

Consider dropping this assumption and updating the code to accept an arbitrary length
return value. It is possible to use a mechanism of manual data allocation with
returndatacopy and returndatasize Solidity assembly opcodes added in the
Byzantium hard fork with EIP211.

Update: Fixed in 3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c.

​​​​63

https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/Delegator.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/Delegator.sol#L15
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/Delegator.sol#L39
https://solidity.readthedocs.io/en/develop/assembly.html#opcodes
https://solidity.readthedocs.io/en/develop/assembly.html#opcodes
https://github.com/ethereum/EIPs/pull/211
https://github.com/AugurProject/augur-core/commit/3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c

E. Notes & Additional Information

● A lot of contracts define public getter functions for public state variables. There is no need
to do that since, based on the docs, a public getter variable is generated automatically for
each public variable. For example, the StakeToken contract defines a getMarket
function that returns the market state variable. Consider removing those getter functions.
Update: Fixed in 3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c.

● The following constants are unused:

○ Reporting#DEFAULT_DESIGNATED_REPORT_NO_SHOW_BOND

○ Reporting#REGISTRATION_TOKEN_BOND_AMOUNT

○ ReportingWindow#BASE_MINIMUM_REPORTERS_PER_MARKET

Note that DEFAULT_DESIGNATED_REPORT_NO_SHOW_BOND should be returned from
the getter getDefaultDesignatedReportNoShowBond, which currently returns
DEFAULT_DESIGNATED_REPORT_STAKE instead. Consider removing the other ones for
clarity.
Update: Fixed in 14501676bd8129c2d3830d73f4b344888e9d7698.

● The library ContractExists declares only one function and it's being used just once in
the LegacyReputationToken contract. Unless this library is being shared somewhere
else, consider inlining that function to reduce code complexity.
Update: Fixed in fb5749cbe25c2e8f3aa217c612729ba79143ba64.

● Function Market.sol#migrateThroughOneFork in L335 resets the market’s
designatedReportReceivedTime to block.timestamp-1 if it was set. Consider
adding a comment to explain the rationale behind this.
Update: Fixed in 3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c.

● The Market contract defines three functions for disputing,
disputeDesignatedReport, disputeFirstReporters and
disputeLastReporters, but the first is the one that triggers a migration in case of a
fork, through the triggersMigrationmodifier. Consider adding that modifier to the rest
of the dispute functions.
Update: Fixed in 3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c.

​​​​64

https://solidity.readthedocs.io/en/develop/contracts.html#visibility-and-getters
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L192
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/StakeToken.sol#L23
https://github.com/AugurProject/augur-core/commit/3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Reporting.sol#L15
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Reporting.sol#L10
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/ReportingWindow.sol#L40
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Reporting.sol#L54
https://github.com/AugurProject/augur-core/commit/14501676bd8129c2d3830d73f4b344888e9d7698
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/libraries/ContractExists.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/LegacyReputationToken.sol
https://github.com/AugurProject/augur-core/commit/fb5749cbe25c2e8f3aa217c612729ba79143ba64
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L335
https://github.com/AugurProject/augur-core/commit/3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L151
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L155
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L185
https://github.com/AugurProject/augur-core/blob/45e1afb7eb1a895d923c97fe01e068c772c583ef/source/contracts/reporting/Market.sol#L66
https://github.com/AugurProject/augur-core/commit/3e8ee86cdd900b0e6c8c130c0e2147dcd0a8bc3c

