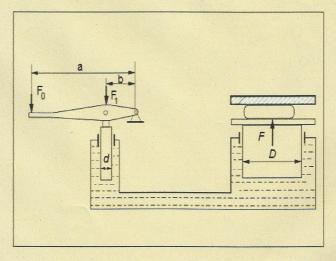
PROBLEMAS CIRCUITOS HIDRÁULICOS Y NEUMÁTICOS. SELECTIVIDAD.

Problema 1

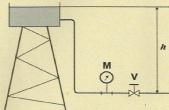
Por una tubería horizontal de 20 mm de diámetro circula un fluido con una velocidad de 3 m/s.


- a) Calcular el caudal en I/min.
- b) Calcular la velocidad en otra sección de la misma línea de 10 mm de diámetro.
- c) Si el fluido es agua, calcular la diferencia de alturas entre dos tubos verticales colocados inmediatamente antes y después del estrechamiento. Densidad del agua 1 g/cm³.

(Selectividad andaluza)

6

Problema 23


Una prensa hidráulica como la esquematizada en la figura consta de un émbolo de diámetro d que es accionado mediante una palanca de brazos a y b. Al aplicar una fuerza Fo sobre el extremo de la palanca, ésta ejerce una fuerza F1 sobre el émbolo, la cual se transmite y amplifica hidráulicamente hasta un pistón de diámetro D > d, que finalmente ejerce una fuerza F sobre la prensa. Calcular cuánto vale esta fuerza F sabiendo que d = 10 cm, D = 1 m, a = 1,5 m, b = 30 cm y Fo = 100 N.

(Selectividad Andaluza))

Problema 6

- a) Aplicando Bernouilli, deducir la expresión de la presión que indicará el manómetro M con la válvula V cerrada. ¿Qué sucede en la lectura del manómetro si se abre la válvula V?
- b) ¿A qué velocidad sale el líquido de un depósito abierto a la atmósfera a través de un orificio que está situado dos metros por debajo de la superficie libre?

Problema 8

De un cilindro neumático de simple efecto se conocen las siguientes características:

- Diámetro del émbolo: 50 mm.
- Diámetro del vástago: 10 mm.
- · Presión: 6 bar.
- Pérdidas de fuerza por rozamiento: 10%.

Determine las fuerzas de empuje tanto en avance como en retroceso.

Problema 15

Calcule la fuerza de un cilindro de doble efecto, tanto en el avance como en el retroceso, que tiene las siguientes características:

Diámetro del cilindro: 80 mm. Diámetro del vástago: 25 mm.

Presión de trabajo: 6 Kgf/cm².

Fuerza de rozamiento: 10% de la fuerza teórica.

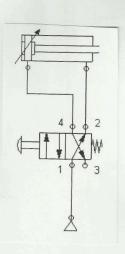
Problema 24

Un cilindro que trabaja a $250~{\rm Kg/cm^2}$, con un rendimiento del 85~%, tiene las siguientes características:

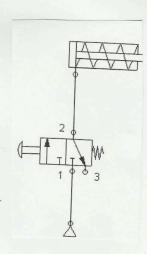
Diámetro: 60 mm.

Diámetro del vástago: 30 mm.

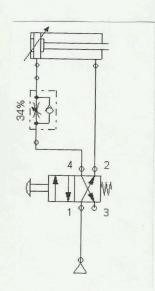
Carrera: 180 mm.

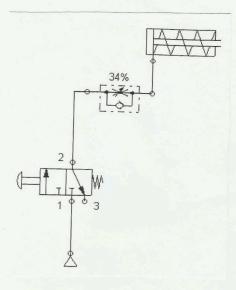

Si el vástago se mueve a razón de 5 ciclos por minuto, determine:

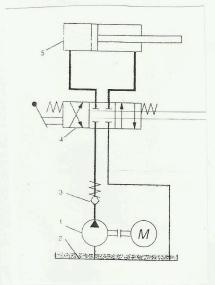
- a) Si se trata de un cilindro neumático o hidráulico. Razone la respuesta.
- b) Las fuerzas efectivas de avance y retroceso del vástago y el consumo de fluido, suponiendo que el cilindro es de simple efecto.
- c) Las fuerzas anteriores suponiendo que el cilindro es de doble efecto.

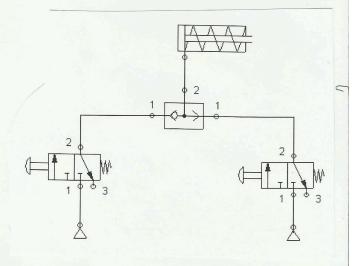

EJERCICIOS DE NEUMÁTICA E HIDROSTÁTICA

Explica detalladamente los siguientes circuitos e indica el nombre de cada uno de los elementos que intervienen:


1)


2)




3)

4)

