Table of Contents
What are Databases?
Properties of an Ideal Database:
Types of Databases:
All things DBMS:
Can be found here:
Types of SQL statements / languages:
Data Definition Language:
Constraints in MySQL:
ALTER table command.:
Creating a table with same features, constraints, layout, attributes, etc of another table:
Data Manipulation Language:
INSERT Query, IN and NOT IN, UPDATE and DELETE, SQL functions:
SELECT query for data retrieval:
Aliasing:
Mathematical expressions and built in functions:
Constants:
Unique values using DISTINCT:
Order of Query Execution:
Sorting using ORDER BY:
Grouping using GROUP BY:
Filtering groups using HAVING:
ANY and ALL in SQL:
Extracting metadata of a table / database:
SQL Joins
Why have data in multiple tables?
Cross Joins - Cartesian Product
JOIN query in MySQL:
Set operations:
Join on multiple columns:
Join multiple tables:
Non equi Joins:
Natural Joins:
Anti Joins:
SQL Subqueries:
Types of subqueries based on return data:
Types of subqueries based on working of subquery:
Where can you use subqueries?
USE statement:
WITH statement:

Check multiple memberships using IN:
Query optimization:-
Correlated subquery:
Inserting a table in another table using subqueries:
Subqueries cannot manipulate their results internally:
Updating a table using subquery:
Window Functions:
FRAMES:
Aliasing window clauses:
Calculating Quantiles using WITHIN:
Segmentation using NTILE():
IF ELSE / WHEN THEN / CASE in MySQL:
Cummaulative Distribution using CUME_ DIST\():
Database engine:
Famous MySQL DB engines:
Components of DBMS:
Collation:
COUNT(*) vs COUNT(col) vs COUNT(1):
Dealing with NULL values:
COALESCE(col _name, fill_value):
DELETE vs TRUNCATE:-
Data Types in MySQL:
String Data Types:
CHAR
VARCHAR
TEXT
MEDIUMTEXT
LONGTEXT
ENUM
SET
Numeric Data Types
INT
TINYINT
SMALLINT
MEDIUMINT
BIGINT
FLOAT
DOUBLE
DECIMAL
BLOB Data Type
TINYBLOB
BLOB
MEDIUMBLOB
LONGBLOB
Spatial Data Types

GEOMETRY
JSON
Data Normalization
Why can’t a single table hold all the data?
Redundant information
Insert Anamoly
Delete Anamoly
Update Anamoly
What is Data Normalization?
Levels of Normalization (Normal Forms)
1st Normal Form (INF)
2nd Normal Form (2NF)
3rd Normal Form (3NF)
3.5th Normal Form (3.5NF) (BCNF)
4th Normal Form (4NF)
5th Normal Form (5NF)
6th Normal Form (6NF)
Views
Read only Vs Updatable Views
Materialized Views
Advantages of Views
User Defined Functions
Syntax
Example Functions
Hello World
Proper Name
Deterministic vs Non Deterministic Functions
Stored Procedures
Benefits of Stored Procedures
String Functions:
Wildcards (LIKE operator):
MISCELLANEOUS RESOURCES:

A Database is a shared collection of logically related data and description of these data, designed to
meet the information needs of an organization.

> Data Storage: A database is used to store large amounts of structured data, making it easily
accessible, searchable, and retrievable.

> Data Analysis: A database can be used to perform complex data analysis, generate reports, and
provide insights into the data.

> Record Keeping: A database is often used to keep track of important records, such as financial
transactions, customer information, and inventory levels.

> Web Applications: Databases are an essential component of many web applications, providing
dynamic content and user management.

Integrity

Availability

Security

Independent of Application
Concurrency

SANE SN

RDBMS, Online Transactional Processing (OLTP), Row databases are mainly used for
websites and backend. Whereas, Column databases, OLAP, Data Warehousing is used mainly for
data analysis.

& I‘jﬁgnfff ‘5&'-— w{’"""‘“ﬁ“\aﬂs_fj ._ff

. poL (Doka dclinition L“”jwnﬁzj>
(REATE
ALTER
DRo?
TRUNCAT E

DML (Dolfﬂ Mam;?uiods‘m la\/\g%?ﬂ,)
TNSEAT
UPDATE
DELETE
SELECT

DL (Datm Conben) - \oin sgone)
GAANT ¥*
REVOKE

TRren CTvansqum—s onbeo\ o~)
(oMMIT ' s i

PO LLBnac

(REATE DATABASE 1F NoT ExIsT:e

—

) pRof PATABKSLC IF Extste {"dﬁ&

i, ————

y (RepTE TRSLE ASsers (
user_id INTECER
Narn~e VAR(HAR(25S), -
email VARCHAR (zgsﬁ,,f

) TRUNCATE TRBLE users i-
Tancaker /[ven-oveh @vc-’gh’mﬁ
tob\e

P e 4

Y bRoy TABLE T& EXTSTS e

Constraints

& (onshvaints Mf\ SRL
. LL& pﬁll coniivoints'
N NOT NUull
2> UNIKRUE
PRIMARY . KEY
1) AATO ITNCREMENT
CHECK
DEFAuLT

_FORE TGN KEY) aesd

: ,,gﬁk&mHmk Ackons '

y RESTRrcT

2> (RSCADE

3% SET Null
% SET DEFAGLT

._\éu_ A O!Ad aw\ﬂ'va{n¥5 a&c(CQ‘L’EP\I'\J

CREF“'" TABLE us@u(
User_id INTEGER NOT Nutl uNIéWi*}

R LﬂLlQ{Q Ca s l ft'ff‘\gﬂll F ;

)| \ (arg » /‘\ j‘! "
1\%6"\"7“"’ L((“SU':"H*\: '
Core

RFATE TABLE ucsecs (
i ibecid STRITEGE &,
pare NPRCH AR (259)
ernail VARCHAN (248
_passwacd VPRCHAR (255)

_(ONSTRATANT usges _Unigine UNIBUE (nan, e)|

__onsTRATNT | users_ ole - RRIMARY. ke @)

Dt Dl sl sonsabin, s in] cen i B

L 'E\Lcov\,uc?m,fz\‘avxfo’g ,i,m.a.,’!\.;bﬂf Q,,Q@élﬂ’ﬁim& A T

| 5 ,,ff‘ra.bl_e..n,aMf&__ga}hihuit‘___fcmsha?&f_. B ey) wabl ol

4 = _(;lmu,k ,OGY\J‘_{/KO_E_"’,L(”*_ﬁ_W—r—r—f—w— —

N\

L " -7...,7._‘,;_7. St = I.., A‘CL\L‘;\
—oq¢ IN.I.ECE.R_'(_HECK_.(@%&_ > 4 & AND oge &1

et ey L s oo | B = ; = = M_—
_ cipcke Gooe 6
_ CONSTRAINT dable_age-cheds € ”jgg/qj)ﬂ

e ——

Pats: _ ; B
L)(A 1 “ 1) r?,Au*;(,Lﬁg}—q ,}L [;‘Jg

. h”/\ CAE Ay Ser¢ .
‘ Q(.F‘Vk'{i \} \iaku eS. I"r')(g\;/(f L

p., OV '\C CA oA - f‘(/ le L

PATETIME (oNSTRAINL:

EO'—CE%D, er% Cd"\j\/faimr‘f ot)

Q'm?ro\er Lo tables namel ,7@«4\160 ZV cuShomer
esher erdes hon aidecnid &3 Rvinmory e,
A& cid _ovden_dake ar other ealvibotos |

Custownes has cfgﬂA?ﬂ mqy_;j_k_c’/_ﬁ__ o e,
ermcul as olaer ol

_ WNow, pobice Haakinds, _ocders dable - Sor-e ofhes | €
o }OL[CJY il F(;Y\q@(\;}, k@/\\) 5 PY:CI@V\"_ _Q§ _an ,,AFN\&,ML(.
: ,,Qﬁrd&ff ; ,)qif ,,,,,Cio\._ whid. il cadmmear tables -

Pf\ ‘md&fj._ k?ﬂ in;__t_&r, £} 70@ e {O\fﬁi:(\:}h__ k@\j tUn
odecs okl e an give teat veshainb by

ONSTRATNT avdews Pk FoRETen KEY (rid) —%
REEEencEs. qpel oo i)

__Date .

Nowd, SIACE e howe added fo &

@ SN ¥ on . C ‘“C)\
¥ L

('(‘J;CSV) ?/

: A
L | Oy AexS ‘
\ l o (\ J e A/ e j

3 .IQ&Q_E' /f‘(]u
‘K‘({f ‘ L\(. (@) CQC"F(‘S sf (J'\lD\C Af?ﬁmckoy-, Y 2 Ll fon ~

} ,1{‘\ \e.. W L\C,;J‘ ey (e (Z‘Q A Bhacry

v -\”lAC

J ; (M 0 'F-_',VT.,‘ s 10‘ JL,‘ -
t-~"‘}]\ aﬂi (d‘ Hﬂ(ﬂ O(t* oc &(1)0\ < 2 bu‘.)\r CoONV evse s

\;(}T True -

,.N(;Q(/'J 5 g}_hf & () T.A Cnt &C{)@h{j\ o~ firb TS

_Cae Adelne odd i Bonal ‘Hr.'./\a; Hiak ¢ hell + AN

| ovdecs table csill be a@e&mﬂ, Ll (Lamﬁ_%__b

| asstorneds Fable . cte dn Hh B___El_j_. 5}?:: c;‘% (T

r, ,,,___ﬁzfc_(@g bl aclions (Resl, ¢ (r,f)iccgmdgj
 sek nuld, gt Aclauld) . _Eﬁ =LIEAT

r | ONSTRATNT ovdoes Ol FoRETGn KEY (aid) REFERENCE

e | T it dinkie i Galidtiine AL . s
4 ON DELETE” (AS(@pEo elliiborn o o
1IN UPDATE. . (ASCRDE oo v

. C%S(a_dc QUO*(LCS 3 bj . |M|‘}’O\1’;h6 'H"Q (L_\(ﬁn%efﬁ ‘
rade do fee indegodeat tohle Costmeasd

%{M&nc@u\r lodole (oedensd. For ik‘?‘mf’]célﬁ
F 2 aubene, W S'f?ff(lﬁ bic aigd s ded Sed ko

——— il iR

Date : ——

(C_U’Lan*\(v f "(’h‘r’) “"“”'\ C""'QJ ihf}a"“"(eA df J’%Q}
C:L,LS o e in Hae ('W'//L@" "*OJﬂ \e wo ” bé’ dd ddj.
€ . charge He cid Je a s stormer i, Cousts

O™MCr

tadole, hc cid will alo be danged 14 oxdecs.

By defoutt, fe veberenhol adion ic RESTRTCT
So 1+ Hvows on oY Jf LoE. '“O? b dnczwcic:

[

castormess Yecape oidery ¢ eperdont o M

e SETUNOAYE £ SETDF FAGWT colodde as cjau e

___u»&:a would | bedswddny. m

o BLTER TABLE tormnand -

siath sed o med_f@- Sudhiuve sF ,ex,:ﬁilzimﬂ__ table.
_Sons T Jﬁb\?ﬂﬁfb@&m_ci,a indasde ! add cola wan), |
el addﬁc,wtum,ﬂf = 7&0_5*71\, ,7(’0_[4.41!_\4\!:\.45,,.,, j&u_cgm =

_ salen mod_fsfj e corsbraginks MS“QV—%%U
_ StGke Ppgable: 0 a0 ,

command:

i qSCA _('D Mﬁd %‘budqmciﬁ e,X(SI’L"\S
= §0M¢ fr- “n Aﬁj‘ Mﬁm a2 hol,ugOLC ﬁa{a(o |
el Ca(u\mﬁr _papeht! fﬂ Glagaakt® Npdl cpmig L0

silen W\odfa ,Jﬂfc oSlraints - ms\w\ﬁiﬂﬂuﬂ_,,,
5}*0}«*6‘.»*\04/\\'

ALTE g TAOBLE chsha raens .
9 (LUMN__Surmare VARCHAR (255) perep crall
opp (OLUPN r)C\Sf(ﬂéfO\ VARCHAR (259 Mot my L
pQOf’ (OLUMN __ Suvname | :
OWIMN__ password

-
"S

_\ pRof

[EBEE?{ (DAAERER : ,
BDD (6LMMN aﬂe_ INTPQF?-

aMoDLEY COLUMN c«?)«» I!\‘H:C(Pg No¥ NULL 4 | i
7 999 GNSTRATNT cusl-LcncL,,cﬂ&cL\ak CHECK (q6e>I§3
| DRo? CoNSTRAINT customnecs._oge- chede SRS, LIS
D ONSTRALNT custemess_oge- checke (HECK (agc >5>

NOR %W\S AL A1 EQ \HBLE

modtls o CQY\SLVQIJ"\A' A\ rgc}hj,’r Ql@,

| bt drop He conflvaink Wt aad 1odd . fee
?-‘“@twvcc\ .Ccﬂ_ﬂ'f&“d’__f_czﬁﬁg"_».,_f-——-f——— R -

Creating a table with same features, constraints, layout,

attributes, etc of another table:

CREATE TABLE main.t1 LIKE main.t2

Data Manipulation Language:

INSERT Query, IN and NOT IN, UPDATE and DELETE, SQL
functions:

PML ~ Daka Ma“‘f)“)“)?m L s bl

| e =
({k“’vl) P o

e Hee (ilg) } (::r,z?\f(.&'!"é)-r i &~

g
t il’ ~ Fo (Q(:/“ A \’) aNE . ﬁ 0(EsdAh f) }Pj
adna. uses Means Yo seledk " aser! Sablo

L.

Ko v ‘adaa’ dedchbovse .

TN SERTin TNTD voubied . cuserre i1 lisise, 1l e
——‘kC,(mcj marlw AJ it

vawgs: (et " aobga 5 %q@ 3%1 a1

—5—

_ _?,w&kf___‘ ikt O!V_"-_CAG‘_CS_.(.«LM{/L\‘&__ bﬂ- T_?% oo Si
jcM COA LL_@,:.\%:;,,HZ_ iﬁﬁ/uar_\CLQ’Q @H«riL U,u,L,@b .

T35 cas C\/{JCL _Oih(\in_'Bﬁ@, ,@j{!‘?bu)cc g rme)) JD,\&} i

>

- Hewn Gou have o melte suve o aﬁfc-_\f_aiuﬂ_.

e Corcedh @m:l&, Jg ,G:ﬂylb(p}tfd e Mg l"_o__.b\c»‘mfdj. o
o Heak case no.ff vakue = T O

v Ihf@rh"n_g Mw“—{()(c'row_é'.'“ r

B and NOT T :-
=

; 1 - ™~ R : 1 .
‘3\‘1-1‘ A NAaAMe j (SAn -JLA.,‘,C'}) 5 (77;"()()’4_)

dee UPORTH &=

ufpA TC oo\:kaa. startphene SET
_peoce 55‘0{,-,‘?{63’\01;! oLm@q:ika’ W HERE
j?qo@,s;_oy T G -)) BVA e

T FRo™ odf‘agﬂ,SchPL@_vgbf WHERE

_Sricp. DinecenoiN lEai

o s SR ’ ASer d(f"ﬁé’
,r’lr\

B

e, givesohe

: e e
S B

* ‘\mﬁg; fenchord i-
SELECT MAXx (IDV'(C\ =Rom aat,’bq Sha gl

{ ! WY VD Y V) A% l AL ‘(ﬁ - 'lmj(

PL“M i

SELECT PV (vo)ﬂ‘ FP\DM adk, ‘Ba JMG(
WHERF b{o.r\o(-marv\ef i (J(e .

SELEGT it I*L FRoM aowba St plymg
WHERE braadname = SG'\’\TMHS

P

SELEBT 1 (ou@T_(OJSTJ:N T (bran cJ..namﬂ FrRoM
acl f."‘da St~ r-v_l»oo_neA.,_ =,

ﬁ" SCQAGY fUnCL\'w;.- e

These incle de Agg()
Rounp () ek,

CEIL(.) , Floor(,

SELECT query for data retrieval:

SELECT * FROM adya.smartphones WHERE 1;

/* Here, the 'SELECT' query 1is used to choose columns specified after 1it.

The * symbol denotes all columns.

WHERE 1is a keyword used for filtering rows. So, WHERE 1 means select all rows
because 1 is always True.

By default, WHERE is 1, so you don't need to type it while selecting all the rows
in the table */

Every derived table (subquery that is a SELECT query) needs to have an alias after it.
All we need to do to resolve this error is to add an alias after the closing bracket.

Aliasing:
-- ALIASING

SELECT phone_model, os AS 'Operating system', battery capacity AS 'mAh' FROM
adya.smartphones;

/* You can also give temporary alias names to tables and columns */

FROM adya.employess emp

Mathematical expressions and built in functions:

/* Mathematical expressions and built in functions */

SELECT phone_model, os,
SQRT(width*width + height*height) AS pixel per_inches FROM adya.smartphones;

Constants:

SELECT phone_model, 'smartphone’' AS 'type' FROM adya.smartphones;

/* This will create another column ‘type' with all values as 'smartphone'’
This 1s sort of a constant */

Unique values using DISTINCT:

SELECT DISTINCT(brand_name) FROM adya.smartphones;
/* You can also get unique combinations of columns */

SELECT DISTINCT brand_name,os FROM adya.smartphones;

Order of Query Execution:

FROM — JOIN — WHERE — GROUP BY — HAVING — SELECT — DISTINCT — ORDER BY —
LIMIT

Sorting using ORDER BY:

COL-Y\O\MCA HS(/DES(LIV“’WIT 19

e Tre Vit Sroterent s oviltben il Hais:
_LTM LTt aﬁSc'r,n_a-O’f_.xawf ks _ 7
- The ook ic wmo.6klvoue i} waqte b flc]r 4
[V\ol- menkmcd\ ih e e

.-___szlr E\j mU\,L rLe- CoLmh-S—-—f——r——rf' e

‘3P\DETL BY bmhc(_hcm% PsSC , Yo ng DE>C

Grouping using GROUP BY:

N oy b
vaie

* reudiogie

CEECY bandanme, (OUNT (20 FRof
o LG - Sy \]‘k‘oru'_B (\RO(”“ P E\/ L’f'av‘of"_t’\a g

— ————

Filtering groups using HAVING:

Cilteing, _waing HAVING :-

\."‘“« :« "':*1"4 jL{ t‘j{u"l,,u-rf') o= 3-14.,]0 Lj AS ‘} r‘li
HMAVY \,\; G

eyl rml\’f }o Fd::éd:%‘z ﬁﬁc&%
po. u&fh Da.l—qr.mn(, 3 uc{()

WHERE © SELECT _HMINQ C\@o ur BY

HAVINCG s uJ'tO‘__oV\ cvﬁvc_cjahm ﬁxncfn@ma

,—

Exarn \)e;?“‘ SLU—CT \:Na'\/:\.-harﬂc , (OUNT (k\ ,B;,S T
v G CPn(e) AS o,ua,[)r;_@ EROM

ao\(\ﬂja‘ SPaw L',%on%

CRout BY Yad -na g

HPVING round > Lo

ANY and ALL in SQL:

Works just like ‘any’ and ‘all’ in python.
SELECT students FROM database WHERE marks > ALL(subquery that returns a column)

Extracting metadata of a table / database:

MySQL itself maintains a database that has metadata of all other databases and tables.

Why have data in multiple tables?

2 Lo ot o b o o T

MCY"\O'YE (m (5 \ess L.r_tr_'w/.fﬁ :
wedua ndon ¢ deta iy § > ,

. el o
Fwivwaftj kc5 al e_avAgr;{ok L. cACeesiA es,
(3- H“""’ﬁ Vi SGPGVOJ" bbley s raued, nor
AT cnly cbhianty Han \no\,.fmg A ’m%.: Cornbir
5‘ram)» Yable.

CA’\O\M

-~ Updake anaumely 4o Deleke anamaly -

S‘hu) Tin Hee {o«Sc (,,w-\bihcd 914,\4— l—ab{() HAtve
O\)m b‘— \o"j £ VcotunaAanP da.}—a/ wyola}cég
Addc il Lake Yc,lo-\r\“f&{«j oY e j-irvxc Hoal,
diskibuted /didivedtdivided Yable date.

o .?~§30"I“[_3_§:/ TL\,'J ?'ro(c)'[6ﬁ d?us'dfhﬁ c}\o}a ik S'e‘para}c

——

sr;)o\e/s P-ro’,e(lb ¥ coMed D_,QJ’M‘C'J_['___Z&}‘IO‘Q-

Cross Joins - Cartesian Product

e CROSS Toins - (avlesion product

T \'\3\?& a/(- \Sofr_\ s V¢;3 saser .~ zvg, e e
¢

No cormaraon Mkib_u&cs / coliarm s And Gou S?MPrj
Pc‘fﬂatm A cay hzsvarm P“fﬁOLMC‘x"- Ie :jo“‘ s = ‘.

- sl el A R T

te H(N "‘u’\ m~ A L Ve Cal) e qf)((‘h" o ‘9’"{7)
l“‘(\" i‘,(-\ﬁkl,—'\((l, Ll‘l&\‘(
Yoal vt Ha ol

will baase e Bl s

3 . ()J__{}]_)\((4QV‘«"\})D.IP‘\G'A v Pk fjf

L‘-{\‘c 1 A i ahle 2 VDWS.

JOIN query in MySQL:

&k

SELECT #» fRoM

aﬂ‘c‘}a . w\cmbqi/\{f?
L8F TYPE_OF_ JoIN JoIA a.a’jc\- U3 €S
ON-: 1 adias useriid =

‘32,__014'% U Ser QGL

r NoTE:- Tou can't peclovm Full ouTg R

Joil iree M:)IQL s ok‘wfr:c“(:) o hgr: =
wse o _[_00'\0\»*‘__0\(_. gk

Set operations:

| Ly Soavnie abvribuker
2> UNIToN ALl s - YeAE@rm; Unizn~ (iAo wdk

V‘emo\J“’% 00_,»{41@"@ ol

3 T NIERSI=CY
L EXCEF’T/MIN% .

SELECT A FROM. pduc. table

. UNIonN ,
__ SELECT 2 FRoM ,ao(.uo,. Yobled

"};Mﬁpfm_ _union o _iug\cﬁljcg;n.__gc.,;ﬂ L

_\,j_tﬁ]\t\;.__” Vol T

SELECT A& FROM ,ao'.ba»,mcm_bc’r;bLP_ 7 W

_BLEFT Jorw adfa.u\serj'tl il | N

= 2. u__s_'cxf,,\'ol_ e

. ON ‘]’.;1, . user_y
_UNION Pl £ el
SELECT % FRoM ay(ﬁq. rf‘tﬂ‘_bdafsl—\[f: s ok M
_RIGUT Jotn adua. tses ko S
ON 41 user_id = Ez-us.w_\'c}

Join on multiple columns:

You can join on multiple columns using AND logic.

JOIN x ON y AND x ON z

SELECT * FROM database.table
JOIN x

ON y

JOIN x

ON z

In a non equi join, the join condition is based on operators other than equality. Specifically, the join
condition can use operators such as greater than, less than, or not equal to, among others. Non equi
joins are useful when you need to join tables on columns with similar but not identical data, or
when you need to join tables based on a range of values rather than an exact match.

For example, if you have Name and player_id in a table, and you want to get all possible matches,
then you could do not equal to join, ON t1.player_id != t2.player_id

A natural join is a type of join in SQL where two tables are joined based on the columns with the
same name and data type. In other words, it is a join where the join condition is implicitly based on
the column names that exist in both tables, and it eliminates the duplicate columns from the result
set.

If you perform natural joins even if there are no matching column names, a simple cross join i.e.
cartesian product will be performed.

An excluding join, also known as an anti-join, is a type of join operation in SQL that returns only the
rows from one table that do not have any matching rows in another table. In other words, it returns
the rows that are not included in the result set of an inner join between the two tables.

e Left excluding join - same as A - B set operation

e Right excluding join - same as B - A set operation

e Full excluding join - same as (A-B)U(B-A) or (AUB - A_intersect_B)
You can find more here:

https://learnsql.com/blog/sql-joins/

1. Scalar values: When the subquery returns a single value
2. Row data; when subquery returns a single column with multiple rows
3. Table data: when the subquery returns a table

1. Independent: when the inner query is independent of the outer query
2. Correlated: when the inner query is dependent on the outer query and can't be executed
independently

INSERT
UPDATE
DELETE
SELECT
WHERE
FROM
HAVING

You can do USE db_name; to use that db going on forwards in the SQL script.

In MySQL, you can’'t use LIMIT in certain versions, so you can use WITH statement to create
a temporary db and you can store the subquery which uses LIMIT in that temp db.

WITH top_directors AS (
SELECT director FROM movies GROUP BY director ORDER BY SUM(gross) DESC LIMIT 3

SELECT * FROM movies WHERE director IN (
SELECT * FROM top_directors

You can check multiple columns in a list of lists basically. It's basically equivalent to item in list in

python.

WHERE (name, brand) IN (subquery that returns a n by 2 table)

Conventionally, searching operation is faster than sorting, right?
In MySQL, the columns are generally indexed (new concept), so sorting is as fast as searching.

In this type, the inner query requires the outer query to be executed.

For example, you have to find all movies that have a rating higher than the average rating of movies
in the same genre. Now, the thing here is that the genre changes for every movie, so you can't
hardcore the average value. So, you calculate the average for each row (genre) in a loop of sorts.

SELECT * FROM movies ml

WHERE score > (
SELECT AVG(score) FROM movies m2 WHERE m2.genre = ml.genre

Another example: Find the favourite food of each customer. So, each customer orders a certain
food each time they order. For each customer, you have to find the most ordered food.

WITH favourites AS (
SELECT COUNT(*) AS 'count', us.user_id, food.f_name FROM orders od

JOIN order_details odd ON od.order id = odd.order_id
JOIN users us ON us.user_id = od.user_id
JOIN food ON food.f_id = odd.f_id
GROUP BY us.user_id, food.f_name
)
SELECT * FROM favourites f1

WHERE count = (
SELECT MAX(count) FROM favourites f2 WHERE fl.user_id = f2.user_id

/* Notice that the query 1is calculating the MAX(count) for each and every row,
even if the user_id has repeated. So, instead, we store the info about max count
in another table and use that table to retrieve the favourite food. */

WITH favourites AS (
SELECT COUNT(*) AS 'count', us.user_id, food.f_name FROM orders od
JOIN order_details odd ON od.order id = odd.order_id
JOIN users us ON us.user_id = od.user_id
JOIN food ON food.f_id = odd.f_id
GROUP BY us.user_id, food.f_name

)>
fav_count AS (

SELECT user_id, MAX(count) AS 'num' FROM favourites GROUP BY user_id

SELECT * FROM favourites f1
WHERE count = (
SELECT num FROM fav_count f2 WHERE fl.user_id = f2.user_id

Inserting a table in another table using subqueries:

-- You don't write VALUES when inserting Like this

INSERT INTO zomato.loyal users

(user_id, name)

SELECT us.user_id, us.name

FROM orders odd

JOIN users us ON us.user_id = odd.user_id
GROUP BY user_id, name

HAVING COUNT(*) > 3

Subqueries cannot manipulate their results internally:

Therefore ORDER BY clause cannot be added to a subquery. You can use an ORDER BY clause in the
main SELECT statement (outer query) which will be the last clause.

Updating a table using subquery:

UPDATE loyal users
SET money = (
SELECT SUM(amount) FROM orders WHERE loyal users.user_id = orders.user_id

)

Window functions in SQL are a type of analytical function that perform calculations across a set of
rows that are related to the current row, called a "window". A window function calculates a value for
each row in the result set based on a subset of the rows that are defined by a window specification.

The window specification is defined using the OVER() clause in SQL, which specifies the
partitioning and ordering of the rows that the window function will operate on. The partitioning
divides the rows into groups based on a specific column or expression, while the ordering defines
the order in which the rows are processed within each group.

-- Find all the students who have marks higher than the avg marks of their
respective branch

SELECT * FROM (

SELECT *,AVG(marks) OVER(PARTITION BY branch) AS 'branch_avg' FROM marks
) t1
WHERE t1.marks > tl.branch_avg;

-- Rank each student in their respective branch based on marks

SELECT * ,

RANK() OVER(PARTITION BY branch ORDER BY marks DESC),
DENSE_RANK() OVER(PARTITION BY branch ORDER BY marks DESC)
FROM marks;

-- Find 2 most paying customers of each month

SELECT *
FROM (

SELECT name, MONTHNAME(date) AS 'month', SUM(amount) AS 'total',
DENSE_RANK() OVER(partition by MONTHNAME(date) order by SUM(amount)) AS 'rank'’
FROM orders od

JOIN users us ON od.user_id = us.user_id

GROUP BY name, month

) t1
WHERE tl.rank IN (1,2)
ORDER BY month

A frame in a window function is a subset of rows within the partition that determines the scope of

the window function calculation. The frame is defined using a combination of two clauses in the
window function: ROWS and BETWEEN.

The ROWS clause specifies how many rows should be included in the frame relative to the current
row. For example, ROWS 3 PRECEDING means that the frame includes the current row and the
three rows that precede it in the partition.

The BETWEEN clause specifies the boundaries of the frame.
Examples:

e ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW - means that the frame
includes all rows from the beginning of the partition up to and including the current row.

e ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: the frame includes the current row and
the row immediately before and after it.

e ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING: the frame
includes all rows in the partition.

e ROWS BETWEEN 3 PRECEDING AND 2 FOLLOWING: the frame includes the current row and
the three rows before it and the two rows after it.

You define these clauses in the OVER() clause at the end.

WINDOW window name AS (
PARTITION BY temp ORDER BY temp ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING

)

A Quantile is a measure of the distribution of a dataset that divides the data into any number of
equally sized intervals. For example, a dataset could be divided into deciles (ten equal parts),
quartiles (four equal parts), percentiles (100 equal parts), or any other number of intervals.

Each quantile represents a value below which a certain percentage of the data falls. For example,

the 25th percentile (also known as the first quartile, or QI) represents the value below which 25% of
the data falls. The 50th percentile (also known as the median) represents the value below which
50% of the data falls, and so on.

--Q1. Find the median marks of all the students

SELECT *,

PERCENTILE_DISC(©.5) WITHIN GROUP (ORDER BY marks) OVER() AS 'median_marks'

-- Here, the 0.5 means 50th percentile or median.

-- To calculate the percentile, the data must be sorted by some parameter (marks).
-- That's why we use WITHIN GROUP(ORDER BY marks)

FROM marks

-- Q2. Find branch wise median of student marks

SELECT *,

PERCENTILE_CONT(©.5) WITHIN GROUP (ORDER BY marks) OVER(PARTITION BY branch) AS
"median_marks'

-- Here, percentile cont 1is used. That 'cont' means continuous. It interpolates
the marks and returns a value that may not be originally present in the marks
column.

-- percentile_disc is discrete and returns a value that is present in the original
dataset

FROM marks

-- Q3. Removing outliers using IQR (Inter quartile range)

SELECT * FROM (

SELECT *,

PERCENTILE CONT(©.25) WITHIN GROUP (ORDER BY marks) OVER(PARTITION BY
branch) AS 'quartilel',

PERCENTILE_CONT(©.75) WITHIN GROUP (ORDER BY marks) OVER(PARTITION BY
branch) AS 'quartile3'

FROM marks
) t1
WHERE tl.marks > tl.quartilel - (1.5*(tl.quartile3 - til.quartilel)) AND

tl.marks < tl.quartile3 + (1.5*(tl.quartile3 - tl.quartilel))

-- Here, we are selecting the data which excludes the outliers.

Segmentation using NTILE():

Segmentation using NTILE is a technique in SQL for dividing a dataset into equal-sized groups
based on some criteria or conditions, and then performing calculations or analysis on each group
separately using window functions.

It essentially creates equal sized bins or buckets.

SELECT *,

NTILE(3) OVER(ORDER BY marks DESC) AS 'buckets'

FROM zomato.marks

-- What NTILE(n) essentially does is divides the data into n groups.

-- For n=3, you get 3 buckets for 33th, 66th and 99th percentile.

-- For n=4, you get 4 buckets for 25th, 50th, 75th and 100th percentiles.

-- Each bin ideally has equal no. of 1instances.

-- In the not rare scenario where 20 instances are to be divided in 3 buckets,
obviously 1 or 2 buckets will have extra instance(s).

IF ELSE / WHEN THEN / CASE in MySQL:
Here, if else is replaced by when then and the whole thing can be wrapped in a case.

-- For example, when you want to segment the smartphone dataset and assign a phone
type based on the price to each model.

SELECT *,
CASE
WHEN bucket
WHEN bucket
WHEN bucket
END AS ‘phone_type"
FROM (
SELECT brand_name, model, price,
NTILE(3) OVER(ORDER BY price DESC) AS 'bucket’
FROM aditya.smartphones

1 THEN 'premium'
2 THEN 'mid-range'
3 THEN 'budget'

) t1

Cummulative Distribution using CUME _ DIST():

The cumulative distribution function is used to describe the probability distribution of random
variables. It can be used to describe the probability for a discrete, continuous or mixed variable. It is
obtained by summing up the probability density function and getting the cumulative probability for
a random variable.

It answers the question: "What percentage of the rows in the data set have a value less than or
equal to the current row?"

For example, in the marks dataset, assuming that each row contains 1 student and 1 student is only
represented by 1 row, then if we use CUME_DIST() on marks, then for each row, the function looks
at the marks in the row, finds where it lies in the quartile range distribution or basically finds which
percentile those marks represent and returns it (in this case percent of students that have marks
less than the given marks)

SELECT * FROM (
SELECT *,
CUME_DIST() OVER(ORDER BY marks) AS 'percentile score'
FROM zomato.marks
) t1

e Component of a DBMS software
e Has query optimizer

e Has transaction manager which ensure transactions are executed correctly and consistently

e Has storage manager that handles physical storage of data

e Has buffer manager which is responsible for managing cache of data in memory to optimize
query performance

InnoDB MyISAM

Supports transactions Doesn't support transactions

Has row level locking, analogous to thread lock Has table level locking
in Global Interpreter lock in python

Write operations are faster Read operations are faster, because searching is
much faster because of indexing

Highly scalable Slower for very big databases
1. DB engine
2. Security and access control - to manage user access and permissions and rights
3. Backup and Recovery - create backups and data recovery
4. Data dictionary - used to store metadata of the database (schema, column names,

constraints, key columns, etc)
5. User interface

e Collation refers to the rules and algorithms used to compare and sort characters in a
database. It determines how character strings are compared and sorted, including order of
characters, the treatment of case sensitivity, and handling of accent marks or other special
characters.

e Collation is important in DBM because it affects the way queries are executed and results
are returned. If the collation of a database is not set correctly, queries may return incorrect
results or the database may not sort data properly

e Types of collation:

a. Binary - compares strings byte by byte. Case sensitive and accent sensitive
b. Case insensitive
c. Accent insensitive

d. Case and accent insensitive
e. Unicode

COUNT(*) counts all the number of rows
COUNT(col_name) counts all non null values in the specified column

COUNT(1)

Any comparison, algebraic operations with NULL values result in NULL values.
o WHERE col_name = NULL doesn't work (returns single NULL row). You have to use IS
NULL or IS NOT NULL
When sorting / ordering by a column containing NULL values, NULL values have least value,
i.e. they will be on top when sorting in ascending order.
When grouping by a column containing NULL values, the NULL values are assigned a
separate group.

Aggregate operations:- When performing agg ops in MySQL, NULL values are treated
differently depending on whether or not the group by clause is used.
o Without GROUP BY:-

If agg funcs are sum, avg, max, min, count then NULL values are obviously
ignored and not included in ops.

If the agg func is GROUP_CONCAT or CONCAT, NULL values are included in
the result, but a NULL value is returned if all the values being concatenated
are NULL

o With GROUP BY:-

If agg func is COUNT then NULL values are not included in the count for each
group. However, if you use COUNT(*) instead of COUNT(col_name), then
NULL values are included in the count.

If the agg func is sum, avg, max, min then NULL values are obviously ignored.
If a group contains only NULL values, then the result for that group will be
NULL

If the agg func is GROUP_CONCAT or CONCAT, NULL values are included in
the result for each group, but a NULL value is returned if all the values being
concatenated are NULL

Basically returns the specified column, but the NULL values will be replaced with specified
fill_value. You can use this in SELECT

e DELETE is a Data Manipulation Language (DML) statement, whereas TRUNCATE is a Data
Definition Language (DDL) statement. This means that TRUNCATE requires the ALTER
TABLE privilege, whereas DELETE requires the DELETE privilege on the table.

e DELETE can be rolled back using a transaction log, which means that you can undo the
changes made by DELETE if necessary. TRUNCATE, on the other hand, cannot be rolled back
because it does not generate a transaction log.

e DELETE is slower than TRUNCATE because it generates transaction log entries for each
deleted row. If you need to delete a large number of rows, TRUNCATE may be a better
option for performance reasons.

e If you use foreign key constraints in your database, DELETE can cause integrity issues if you
delete rows that are referenced by other tables. In this case, you should use TRUNCATE or
disable the foreign key constraints before using DELETE.

CHAR

This data type is used to store fixed-length strings. The length of the string is specified
when the table is created, and the field will always use that amount of space, regardless of
whether the string stored in it is shorter or longer. For example, if you define a CHAR(IO)
field and store the string "hello" in it, MySQL will pad the string with spaces so that it takes
up IO characters. CHAR fields are useful when you have a field that always contains the
same length of data, such as a state abbreviation or a phone number.

VARCHAR

This data type is used to store variable-length strings. The length of the string can be up to
a specified maximum, but the field will only use as much space as it needs to store the
actual data. For example, if you define a VARCHAR(IO) field and store the string "hello" in it,
MySQL will only use 5 characters to store the data. VARCHAR fields are useful when you
have a field that can contain varying amounts of data, such as a user\'s name or address.

TEXT

This data type is used to store larger amounts of variable-length string data than VARCHAR.
It can store up to 65,535 characters. TEXT fields are useful when you need to store large
amounts of text data, such as blog posts or comments.

MEDIUMTEXT

This data type is used to store even larger amounts of text data than TEXT. It can store up
to 16,777,215 characters. MEDIUMTEXT fields are useful when you need to store very large
amounts of text data, such as long-form articles or legal documents.

LONGTEXT

This data type is used to store the largest amounts of text data. It can store up to
4,294,967,295 characters. LONGTEXT fields are useful when you need to store extremely
large amounts of text data, such as entire books or large collections of data.

ENUM

The ENUM data type is used to store a set of predefined values. You can specify a list of
possible values for an ENUM column, and the column can only store one of these values.
The ENUM data type can be used to ensure that only valid values are stored in a column,
and it can also save storage space compared to storing string values. Example - gender

ALTER TABLE trial ADD COLUMN GENDER ENUM('male’, 'female')

If you try to set value for gender any other than the defined, it would give you an

SET

The SET data type is similar to ENUM, but it can store multiple values. You can specify a list
of possible values for a SET column, and the column can store any combination of these
values. The SET data type can be used to store sets of values, such as tags or categories, in
a single column. Example - hobbies

ALTER TABLE trial ADD COLUMN hobby SET('sports’gaming’)

INSERT INTO trial (hobby) VALUES ('sports')
INSERT INTO trial (hobby) VALUES ('sports', 'gaming')
INSERT INTO trial (hobby) VALUES ('gaming')

-- If you try to insert anything else, it will throw a warning and insert an EMPTY
STRING
INSERT INTO trial (hobby) VALUES ('swimming', 'gaming')

INT

The INT data type is used to store integers with a maximum value of 2147483647 and a
minimum value of -2147483648. Examples of data that can be stored in INT include
employee IDs, order numbers, and product IDs.

TINYINT

The TINYINT data type is used to store integers with a maximum value of 127 and a
minimum value of -128. Examples of data that can be stored in TINYINT include Boolean
values, such as O for false and 1 for true.

CREATE TABLE trial(
user_id TINYINT,
course_id TINYINT UNSIGNED

If you try to insert a value which is bigger than that attribute’s defined size
constraint, MySQL by default will fill the max value of that constraint instead. For example,
if you try to insert 200 in a TINYINT attribute, the value will be inserted as 127 which is
TINYINT’s max value. It will show a warning

SMALLINT

The SMALLINT data type is used to store integers with a maximum value of 32767 and a
minimum value of -32768. Examples of data that can be stored in SMALLINT include
quantities of items, such as the number of products sold in a transaction.

MEDIUMINT

The MEDIUMINT data type is used to store integers with a maximum value of 8388607 and
a minimum value of -8388608. Examples of data that can be stored in MEDIUMINT include
the number of visitors to a website or the number of followers on a social media platform.

BIGINT

The BIGINT data type is used to store integers with a maximum value of
9223372036854775807 and a minimum value of -9223372036854775808. Examples of data

that can be stored in BIGINT include the total revenue generated by a company or the
number of views on a YouTube video.

FLOAT

The FLOAT data type is used to store single-precision floating-point numbers, which are
numbers with a decimal point. Examples of data that can be stored in FLOAT include the
price of a product or the temperature of a room.

DOUBLE

The DOUBLE data type is used to store double-precision floating-point numbers, which
are numbers with a decimal point that can store more digits than FLOAT. Examples of data
that can be stored in DOUBLE include very large or very small numbers, such as the
distance between planets in the solar system or the size of an atom.

DECIMAL

The DECIMAL data type is used to store exact decimal values with a fixed number of digits
before and after the decimal point. Examples of data that can be stored in DECIMAL
include financial values, such as the cost of an item or the total balance in a bank account.

ALTER TABLE dt_demo ADD COLUMN price DECIMAL(5,2)

UPDATE dt_demo
SET price = 4563.4;

If you try to set value 1234.5 for decimal(5,2), the value will be set to 999.99
If you try to set 123.456 to decimal(5,2), it will round off after 2 decimals to 123.46

There is a precision vs memory trade-off when using float, double vs decimal

The BLOB (Binary Large Object) data type in MySQL is used to store large binary data, such as
images, audio, video, or other multimedia content. In MySQL, there are four types of BLOB data
types that can be used to store binary data with different maximum sizes:

TINYBLOB

Maximum length of 255 bytes. TINYBLOB is the smallest BLOB data type in MySQL. It can
be used to store small binary data, such as icons, small images, or serialized objects.

BLOB

Maximum length of 65,535 bytes (64 KB).BLOB is a medium-sized BLOB data type that can
be used to store larger binary data, such as images, audio, video, or other multimedia files.

MEDIUMBLOB

Maximum length of 16,777,215 bytes (16 MB).MEDIUMBLOB is a larger BLOB data type that
can be used to store even larger binary data, such as high-resolution images or longer
audio or video files.

LONGBLOB

Maximum length of 4,294,967,295 bytes (4 GB).LONGBLOB is the largest BLOB data type in
MySQL, and it can be used to store very large binary data, such as very high-resolution
images, long audio or video files, or even entire documents.

ALTER TABLE trial ADD COLUMN image MEDIUMBLOB;

-- you can directly convert to BLOB format using LOAD FILE() function
-- You need to use forward slashes when mentioning path
INSERT INTO trial (image) VALUES (LOAD_FILE('C:/trial.png'))

Pros of storing files in BLOB columns:
e BLOB columns allow you to Store binary data directly in the database, without
needing to store the file externally.
e Storing files in the database can simplify and restore procedures, as all the data is in
one place.
e Access to BLOB data can be controlled through database user permissions.

Cons of storing files in BLOB columns:
e Storing large files in the database can slow down database performance and increase
storage requirements.
e If you need to access the file outside of the database (e.g. to share it with another
application or user), you'll need to extract it from the database.
e Some file types may not be well-suited for storage in BLOB columns, depending on
their size, structure, and how they are accessed.

GEOMETRY

The GEOMETRY data type is a generic spatial data type that can store any type of
geometric data, including points, lines, and polygons.

ST_ASTEXT(), ST_X(), ST_Y()

JSON

ALTER TABLE trial ADD COLUMN description JSON;
INSERT INTO trial (description) VALUES ('{"os":"android","type":"smartphone"}");

-- You can use the JSON_EXTRACT() function to extract/load the data
-- you pass in the column name and then a string of format '$.column_name'
SELECT JSON_EXTRACT(description, '$.os') FROM trial;

SELECT JSON_EXTRACT(description, '$.type') FROM trial;

Redundant information

For example, consider order_id, user_id, name and detailed info about thge user like
address, phone number, etc. Then for every order placed, redundant data about user info
will be added inflating the table size unnecessarily.

Insert Anamoly

For example, consider the orders, users, and restaurants dataset merged together
(non-normalized data). suppose then a user registers on the website but doesn't place any
order. Then, that user’s details would be filled int the dataset, but other info about the
orders corresponding to that user will be NULL.

Delete Anamoly

Consider the same example. But, this time you want to delete all orders of a certain person,
but you don't want to delete the user’s info. but, consider this, since the data is not

normalized, all orders of that user are linked to that user’s info. If you delete those orders,
you will also loose the user’s info.

Update Anamoly

Consider the same anomaly. But, this time you want to update some specific info about a
user, let’s say the user’s address. To update it, you will need to update the address fields for
all that user’s orders. This will result in unnecessary updates. Also, if you fail to update
address for some orders, then you will have an anomaly, where one user will have
unintentional 2 addresses.

Database normalization is a process used to organize data in a database to reduce data
redundancy and dependency. The goal of normalization is to ensure that each piece of data is
stored in one place, in a structured way, to minimize the risk of inconsistencies and improve
the overall efficiency and usability of the database, There are several levels Of database
normalization, each with its own set Of rules and guidelines. The most commonly used levels of

normalization are:

1.

First Normal Form (INF): This level requires that all data in a table is stored in a way that
each column contains only atomic (indivisible) values, and there are no repeating groups or
arrays.

Second Normal Form (2NF): This level requires that each nonekey attribute in a table is
dependent on the entire primary key, not just a part of it.

Third Normal Form (3NF): This level requires that each non-key attribute in a table is
dependent only on the primary key and not on any other non.key attributes.

There are higher levels Of normalization, such as BCNF (Also called 3.5NF), Fourth Normal
Form (4NF) and Fifth Normal Form (5NF), but they are less commonly used in practice.

1st Normal Form (INF)

A table is in 1 NF if:
e There are only Single Valued Attributes or each col should contain atomic values.
e Attribute Domain does not change data type should not change.
e There is a unique name for every Attribute /Column.
e The order in which data is stored does not matter.

2nd Normal Form (2NF)

A table is in 2NF if:
e Itisalready in INF.
e It does not contain any partial dependency.

Partial dependency - occurs when a non-key attribute is dependent on only the part of
the primary key instead of the entire key.

100 P1 Phone case 2 10
100 P2 Screen guard 3 5
101 B3 Earphones 1 20

Here, assume that Order ID and Product ID together form a composite primary key.
Then, looking at other columns:
e The attribute ‘quantity’ depends on order ID and product ID
e The attribute ‘price per unit’ depending on who you ask, depends both on Order ID
and Product ID (price may change for subsequent orders)
e But, the attribute ‘Product Name’ depends only on Product ID. Hence, it's a partial
dependency. We need to change this to bring this to 3NF

P1 Phone case

100 P2 3 5 P2 Screen guard

101 P3 i 20 P3 Earphones

3rd Normal Form (3NF)

A table is in 3NF if:
e Itis already in 2NF.
e There is no transitive dependency.

A transitive dependency exists, when a non-key attribute depends on another non-key
attribute, which is not part of primary key

001 John Smith New York New York
002 Jane Doe Boston Massachusetts
003 Mike Jones Houston Texas

Here, looking at the columns (assuming Customer ID is Primary key)

e The attribute ‘Sate’ depends on ‘City. Hence, you can see a transitive dependency
here.

001 John Smith New York New York New York
002 Jane Doe Boston Boston Massachusetts
003 Mike Jones Houston | Houston Texas

3.5th Normal Form (3.5NF) (BCNF)
4th Normal Form (4NF)
5th Normal Form (5NF)

6th Normal Form (6NF)

In SQL, a view is a virtual table that does not store any data on its own but presents a customized
view of one or more tables in a database. A view can be thought of as a pre-defined SELECT
statement that retrieves data from one or more tables and returns a specific subset of data to the
user.

So basically it is a logical table instead of a physical table Once a view is created, it can be used in
the same way as a table in SQL queries, and any changes made to the underlying tables will be
reflected in the view.

Simple Views - Created from 1 single table

Complex Views - Created from multiple tables with the help of joins, subquery etc.

Read-only views: As the name suggests, read-only views are views that cannot be updated.
They are used to simplify the process of querying data, but they cannot be used to modify or
delete data in the underlying tables.

Updatable views: Updatable views are views that allow you to modify, insert or delete data in
the underlying tables through the view. They behave like normal tables, but with restrictions.
To make a view updaNtable, certain conditions must be met. For example, the view must not
contain any derived columns, subqueries, or aggregate functions. Additionally, the view must be
based on a single table or a join of tables with a unique rdone-to-one relationship.

A materialized view is a database Object in SQL that contains the results Of a query. Unlike
regular views, which are just virtual tables that store SQL queries, materialized views are
physical tables that store the results of a query. Materialized views are precomputed and stored
on disk, which makes them much faster to access than regular views.

Benefit - Faster queries

Disadvantage - Need to manually update the view

e No physical storage

e Make complex queries simple

e Security - Consider an example where you are a DB admin and you have a table with
sensitive info about your users. And, you want to give access of this table to your
programmers/analysts without the sensitive info. You could do this by creating a view of
that table which doesn'’t include the sensitive info and then give the programmers/analysts
access to this view instead of the original table.

User-defined functions (UDFs) in SQL are functions that are created by users to perform specific
tasks. These functions can be used just like built-in functions in SQL and can take parameters as
input, perform some operations on them, and then return a value.

DELIMITER $$

CREATE FUNCTION IF NOT EXISTS " function_name™ (
Parameter_1 Data_Type,
Parameter_2 Data_Type,
Parameter_n Data_Type,
)
RETURNS return_datatype
[NOT] DETERMINTSTIC
BEGIN
Function Body
Return return_value

END $%

DELIMITER ;

Hello World

DELIMITER $$

CREATE FUNCTION IF NOT EXISTS “hello_world™ ()
RETURNS VARCHAR(255)

BEGIN
Return "Hello World!";
END $$

DELIMITER ;

SELECT hello world() FROM table name
Proper Name

DELIMITER $$

CREATE FUNCTION IF NOT EXISTS " proper_name (
name VARCHAR(255),
gender VARCHAR(255),
is_married VARCHAR(255),

)
RETURNS VARCHAR(255)

BEGIN
DECLARE str VARCHAR(255);
DECLARE prefix VARCHAR(255);

SET str=TITLE(name);

IF gender="'M"' THEN
SET prefix='Mr';

ELSE
IF is_married="Y"' THEN
SET prefix="Mrs"';
ELSE
SET prefix='Ms"';
END IF;
END IF;

str = CONCAT(prefix, " ", str)
Return str;
END $$

DELIMITER ;

SELECT proper_name(name, gender, is_married) FROM table_name

A stored procedure is a named block of SQL statements and procedural logic that is stored in a
database and can be executed by a user or application (like a website, mobile app, python program,
etc).

Stored procedures are often used to encapsulate business logic and application logic, such as data
validation, data processing, and database updates. By using stored procedures, developers can
separate application logic from the presentation layer and simplify the application code.

e Improved performance: Stored procedures are precompiled and optimized, which can
improve performance and reduce network traffic.

e Enhanced security: Stored procedures can be granted specific permissions and access
rights, which can improve security and limit access to sensitive data.

e Encapsulation of business logic: Stored procedures allow developers to encapsulate
complex business logic and make it easier to maintain and update.

e Consistency: Stored procedures ensure that database operations are performed in a
consistent manner, which can help to maintain data integrity.

e Reduced network traffic: By encapsulating data access and manipulation logic in stored

procedures, developers can reduce the amount of data that needs to be transmitted over the
network.

The LIKE operator in MySQL is used to match a string value against a pattern using wildcard
characters. It is commonly used in SELECT, WHERE, and JOIN clauses to filter or join rows
based on a pattern match. The LIKE operator uses two wildcard characters: the percent sign
(%) and the underscore (_). The percent sign represents zero, one, or more characters, while
the underscore represents a single character.

e

Recursive queries with Common Table expressions (CTEs)

http: //database-programmer.blogspot.com /2010 /11 /recursive-queries-with-common-tabl

e.html
SQL Joins https: //learnsgl.com /blog/sql-joins

MySQL Tutorial org https: /www.mysgltutorial.org/

http://database-programmer.blogspot.com/2010/11/recursive-queries-with-common-table.html
http://database-programmer.blogspot.com/2010/11/recursive-queries-with-common-table.html
https://learnsql.com/blog/sql-joins/
https://www.mysqltutorial.org/

	Table of Contents
	
	What are Databases?
	Properties of an Ideal Database:
	Types of Databases:
	Types of SQL statements / languages:
	Data Definition Language:
	
	
	
	Constraints in MySQL:
	ALTER table command:
	Creating a table with same features, constraints, layout, attributes, etc of another table:

	Data Manipulation Language:
	INSERT Query, IN and NOT IN, UPDATE and DELETE, SQL functions:

	
	
	SELECT query for data retrieval:
	Aliasing:
	Mathematical expressions and built in functions:
	Constants:
	Unique values using DISTINCT:
	Order of Query Execution:
	Sorting using ORDER BY:
	Grouping using GROUP BY:
	
	
	
	Filtering groups using HAVING:
	ANY and ALL in SQL:
	Extracting metadata of a table / database:

	SQL Joins
	Why have data in multiple tables?
	
	Cross Joins - Cartesian Product
	
	
	JOIN query in MySQL:
	Set operations:
	
	
	Join on multiple columns:
	
	Join multiple tables:
	Non equi Joins:
	Natural Joins:
	Anti Joins:

	SQL Subqueries:
	Types of subqueries based on return data:
	
	Types of subqueries based on working of subquery:
	
	Where can you use subqueries?
	USE statement:
	WITH statement:
	Check multiple memberships using IN:
	Query optimization:-
	Correlated subquery:
	Inserting a table in another table using subqueries:
	Subqueries cannot manipulate their results internally:
	Updating a table using subquery:

	Window Functions:
	FRAMES:
	
	
	Aliasing window clauses:
	
	Calculating Quantiles using WITHIN:
	Segmentation using NTILE():
	IF ELSE / WHEN THEN / CASE in MySQL:
	Cummulative Distribution using CUME_DIST():

	Database engine:
	Famous MySQL DB engines:

	Components of DBMS:
	Collation:
	COUNT(*) vs COUNT(col) vs COUNT(1):
	Dealing with NULL values:
	COALESCE(col_name, fill_value):

	DELETE vs TRUNCATE:-
	Data Types in MySQL:
	
	String Data Types:
	CHAR
	VARCHAR
	TEXT
	MEDIUMTEXT
	LONGTEXT
	ENUM
	SET

	Numeric Data Types
	INT
	TINYINT
	SMALLINT
	MEDIUMINT
	BIGINT
	FLOAT
	DOUBLE
	DECIMAL

	BLOB Data Type
	TINYBLOB
	BLOB
	MEDIUMBLOB
	LONGBLOB

	Spatial Data Types
	GEOMETRY
	JSON

	Data Normalization
	Why can’t a single table hold all the data?
	Redundant information
	Insert Anamoly
	Delete Anamoly
	Update Anamoly

	What is Data Normalization?
	Levels of Normalization (Normal Forms)
	1st Normal Form (1NF)
	2nd Normal Form (2NF)
	3rd Normal Form (3NF)
	3.5th Normal Form (3.5NF) (BCNF)
	4th Normal Form (4NF)
	5th Normal Form (5NF)
	6th Normal Form (6NF)

	Views
	Read only Vs Updatable Views
	Materialized Views
	Advantages of Views

	User Defined Functions
	Syntax
	Example Functions
	Hello World
	Proper Name

	
	Deterministic vs Non Deterministic Functions

	Stored Procedures
	Benefits of Stored Procedures

	String Functions:
	Wildcards (LIKE operator):

	MISCELLANEOUS RESOURCES:

