

Transformations of Existential Subqueries
using Early-out Joins

1.0 Requirements

​ 1.1 Problem Statement

Existential subqueries are constructs that are commonly used to filter rows

from a table. They typically take the form

SELECT <cols/expressions>
FROM T
WHERE <expression> IN (SOME subquery SQ)

This query includes an <expression> that involves columns from table T
(called the Source) and SQ is any query that returns a result set of rows that can
be matched/compared to <expression>. SQ is called the “Filtering Source”. The
semantics of this SQL-construct is that the query above produces
<cols/expressions> for each row in the Source table where the corresponding
<expression> for that row exists in the result set produced by the filtering source.
Presto processes these queries by simply converting this operation into a
semi-join. A semi-join in Presto is realized during query execution as a special
operator and has certain advantages in performance over regular joins. In this
document we propose a technique to improve the performance and scalability of
existential subqueries by rewriting them to other logically identical formats.

1.2 A Note on Semi-Joins

Semi-joins are a special kind of join algorithm. A semi-join’s purpose is to

filter a rowset based on its inclusion in another rowset. A semi-join of the form “A
semi-join B” where A is the source and B is the filtering source, must satisfy the
following conditions.

a.​ The join operator must include each row from A that has a match
with B on the join condition prescribed in the query

b.​ Each row from A can appear at most once in the output of the join
At execution time, semi-joins are typically processed ignoring duplicate

values in B. I.e most database engines search for each value in A, a
corresponding match in B, but halt the search of the Filtering Source’s input

1 of 14

stream when it encounters a match. In Presto execution this is realized by a
special operator called the HashSemiJoinOperator which constructs a hash table
out of the filtering source input set, ignoring the hash collisions (it drops
duplicates from the build side). Presto then probes this hash set with the input
from the Source (A). Rows from the Source that match are produced as output.
Typically, in a hash join operation we would prefer that the hash table is
constructed out of the join input that is smaller. This is beneficial for two reasons -
a) it imposes less pressure on memory, since the hash table has to be
maintained in memory, and b) it improves performance since the construction of
the hash table can be time-consuming when the input is large. In the version of
the semi-join algorithm that is implemented in Presto, it is not possible to choose
which join input to build the hash set on since the duplicates may only be ignored
on the Filtering Source’s values, and therefore the Filtering Source, regardless of
size, will always be the build input to the semi-join.

A semi-join is one instance of what we will call an “Early-Out Join” where

the search for a matching tuple may be halted as soon as one match is found. A
semi-join is therefore a left early-out join where the probe from the left input to
the join may exit early if successful.

1.3 Join Reordering in Presto

The most commonly used join, Inner-Join “A join B on (condition)”, is an

operation that is required to produce all rows from A and B that match each other
on (condition). While this is also processed as a hash join in Presto, the choice of
which join input to construct a hash table from, and which input to probe with, is
deliberately made in an informed manner by the Cost-Based Optimizer (CBO).
Reordering of inputs is possible since this operation is symmetric. The CBO
therefore makes a statistics-based decision and judiciously chooses the smaller
input of the join as the build side (i.e. to construct the hash table from).

1.4 Proposed Solution

Join reordering is available only for inner joins in Presto. Therefore we

want to devise a framework that allows conversion of existential queries to
Inner-joins in order to avail of the flexibility to reorder join inputs where beneficial.
In some cases, it is entirely possible that the original plan, realized as the
semi-join, is the most optimal (i.e. the result set from the filtering source is small),

2 of 14

https://github.com/prestodb/presto/blob/master/presto-main/src/main/java/com/facebook/presto/operator/HashSemiJoinOperator.java

and we want to be able to retain that option. In this document we will lay out a set
of query rewrites that we believe will allow us the best of both worlds.

2.0 Externals

This feature utilizes two other features that are already controlled by flags in
Presto - Cost-Based join reordering, and the constraint-based optimization framework.
Therefore in order for this feature to be effective, the end-user would have to enable
three distinct flags

1.​ join_reordering_strategy='AUTOMATIC’
[optimizer.join-reordering-strategy]

2.​ exploit_constraints=true [optimizer.exploit-constraints]
3.​ early_out_join_transformations_enabled=true (NEW)

[optimizer.early-out-join-transformations-enabled]

​ We will also introduce another parameter to govern whether aggregations should
be pushed below the join. More details on this in section 4
​ ​ early_out_join_byte_reduction_threshold = 1 (default) (NEW)
[optimizer.early-out-join-transformation-byte-reduction-threshold]

3.0 High Level Design

As previously mentioned Presto directly converts an existential query into
a semi-join, and no other optimizer rule apply for this case to further
transform/optimize this query pattern1. The obvious drawback to implicitly treating
an existential query as a semi-join is the poor performance that stems from the
filtering source being large. Consider the following simple query on tpch data and
its corresponding query plan.

SELECT *
FROM customer
WHERE custkey IN (SELECT custkey
 FROM orders)

1 correlated IN predicates are converted to Left Outer Joins - but that is not relevant to this
discussion

3 of 14

https://github.com/prestodb/presto/blob/master/presto-main/src/main/java/com/facebook/presto/sql/planner/iterative/rule/TransformUncorrelatedInPredicateSubqueryToSemiJoin.java
https://github.com/prestodb/presto/blob/master/presto-main/src/main/java/com/facebook/presto/sql/planner/iterative/rule/TransformUncorrelatedInPredicateSubqueryToSemiJoin.java
https://github.com/prestodb/presto/blob/master/presto-main/src/main/java/com/facebook/presto/sql/planner/iterative/rule/TransformCorrelatedInPredicateToJoin.java

 AND NAME = 'Customer#000156251'

The semijoin attempts to always use “orders” on the build side and this
query can run poorly or even fail due to resource constraints. For e.g. this query
would fail on Presto if you limit the memory to the process to 2G on a 10G
tpch-schema

-- STRAIGHT UP SEMI JOIN FAILS
presto:tpch10g> select * from customer where custkey in (select custkey from
orders) and name = 'Customer#000156251';

Query 20220624_184452_00002_h3qwz, FAILED, 4 nodes
Splits: 64 total, 31 done (48.44%)
0:04 [9.62M rows, 62.7MB] [2.54M rows/s, 16.6MB/s]

Query 20220624_184452_00002_h3qwz failed: Java heap space

​ The corresponding query plan is
presto:tpch10g> explain select * from customer where custkey in (select custkey from orders) and name =
'Customer#000156251';

Query Plan
--
--
--
--
 - Output[custkey, name, address, nationkey, phone, acctbal, mktsegment, comment] => [custkey:bigint,
name:varchar(25), address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117)]

4 of 14

 Estimates: {rows: 1 (195B), cpu: 1519452955.84, memory: 270000000.00, network: 270000400.89}
 - RemoteStreamingExchange[GATHER] => [custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint,
phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117)]
 Estimates: {rows: 1 (195B), cpu: 1519452955.84, memory: 270000000.00, network: 270000400.89}
 - FilterProject[filterPredicate = expr_10, projectLocality = LOCAL] => [custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117)]
 Estimates: {rows: 1 (195B), cpu: 1519452760.00, memory: 270000000.00, network: 270000205.05}/{rows: 1
(195B), cpu: 1519452955.84, memory: 270000000.00, network: 270000205.05}
 - Project[projectLocality = LOCAL] => [custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint,
phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117), expr_10:boolean]
 Estimates: {rows: 1 (197B), cpu: 1519452562.11, memory: 270000000.00, network: 270000205.05}
 - SemiJoin[custkey = custkey_1][$hashvalue, $hashvalue_44] => [custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117), $hashvalue:bigint, expr_10:boolean]
 Estimates: {rows: 1 (207B), cpu: 1519452364.23, memory: 270000000.00, network: 270000205.05}
 Distribution: PARTITIONED
 - RemoteStreamingExchange[REPARTITION][$hashvalue] => [custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117), $hashvalue:bigint]
 Estimates: {rows: 1 (205B), cpu: 574451952.09, memory: 0.00, network: 205.05}
 - ScanFilterProject[table = TableHandle {connectorId='hive',
connectorHandle='HiveTableHandle{schemaName=tpch10g, tableName=customer,
analyzePartitionValues=Optional.empty}', layout='Optional[tpch10g.customer{domains={name=[
[["Customer#000156251"]]]}}]'}, filterPredicate = (name) = (VARCHAR'Customer#000156251'), projectLocality = LOCAL]
=> [custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double,
mktsegment:varchar(10), comment:varchar(117), $hashvalue_43:bigint]
 Estimates: {rows: 1500000 (286.79MB), cpu: 287225771.00, memory: 0.00, network: 0.00}/{rows: 1
(205B), cpu: 574451542.00, memory: 0.00, network: 0.00}/{rows: 1 (205B), cpu: 574451747.05, memory: 0.00, network:
0.00}
 $hashvalue_43 := combine_hash(BIGINT'0', COALESCE($operator$hash_code(custkey),
BIGINT'0')) (1:23)
 LAYOUT: tpch10g.customer{domains={name=[[["Customer#000156251"]]]}}
 comment := comment:varchar(117):7:REGULAR (1:23)
 acctbal := acctbal:double:5:REGULAR (1:23)
 nationkey := nationkey:bigint:3:REGULAR (1:23)
 name := name:varchar(25):1:REGULAR (1:23)
 custkey := custkey:bigint:0:REGULAR (1:23)
 phone := phone:varchar(15):4:REGULAR (1:23)
 mktsegment := mktsegment:varchar(10):6:REGULAR (1:23)
 address := address:varchar(40):2:REGULAR (1:23)
 - LocalExchange[SINGLE] () => [custkey_1:bigint, $hashvalue_44:bigint]
 Estimates: {rows: 15000000 (257.49MB), cpu: 675000000.00, memory: 0.00, network: 270000000.00}
 - RemoteStreamingExchange[REPARTITION - REPLICATE NULLS AND ANY][$hashvalue_45] =>
[custkey_1:bigint, $hashvalue_45:bigint]
 Estimates: {rows: 15000000 (257.49MB), cpu: 675000000.00, memory: 0.00, network:
270000000.00}
 - ScanProject[table = TableHandle {connectorId='hive',
connectorHandle='HiveTableHandle{schemaName=tpch10g, tableName=orders,
analyzePartitionValues=Optional.empty}', layout='Optional[tpch10g.orders{}]'}, projectLocality = LOCAL] =>
[custkey_1:bigint, $hashvalue_46:bigint]
 Estimates: {rows: 15000000 (257.49MB), cpu: 135000000.00, memory: 0.00, network: 0.00}/{rows:
15000000 (257.49MB), cpu: 405000000.00, memory: 0.00, network: 0.00}
 $hashvalue_46 := combine_hash(BIGINT'0', COALESCE($operator$hash_code(custkey_1),
BIGINT'0')) (1:70)
 LAYOUT: tpch10g.orders{}
 custkey_1 := custkey:bigint:1:REGULAR (1:70)

(1 row)

5 of 14

​ In comparison we can see that a logically equivalent query on the same
setup succeeds2.

SELECT DISTINCT c.*
FROM (SELECT uuid(),
 *
 FROM customer
 WHERE NAME = 'Customer#000156251') c,
 orders o
WHERE c.custkey = o.custkey;

presto:tpch10g> explain SELECT DISTINCT c.*
 -> FROM (SELECT Random(),
 -> *
 -> FROM customer
 -> WHERE NAME = 'Customer#000156251') c,
 -> orders o
 -> WHERE c.custkey = o.custkey;

Query Plan
--
--
--

 - Output[_col0, custkey, name, address, nationkey, phone, acctbal, mktsegment, comment] => [random:double, custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117)]
 _col0 := random (1:9)
 - RemoteStreamingExchange[GATHER] => [random:double, custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint,
phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117)]
 - Project[projectLocality = LOCAL] => [random:double, custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint,
phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117)]
 - Aggregate(FINAL)[random, custkey, name, address, nationkey, phone, acctbal, mktsegment, comment][$hashvalue] => [random:double,
custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117), $hashvalue:bigint]
 - LocalExchange[HASH][$hashvalue] (random, custkey, name, address, nationkey, phone, acctbal, mktsegment, comment) =>
[random:double, custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117), $hashvalue:bigint]
 - Aggregate(PARTIAL)[random, custkey, name, address, nationkey, phone, acctbal, mktsegment, comment][$hashvalue_80] =>
[random:double, custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10),
comment:varchar(117), $hashvalue_80:bigint]
 - Project[projectLocality = LOCAL] => [random:double, custkey:bigint, name:varchar(25), address:varchar(40), nationkey:bigint,
phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117), $hashvalue_80:bigint]
 Estimates: {rows: 15 (3.09kB), cpu: 1519458600.45, memory: 214.25, network: 270000214.25}
 $hashvalue_80 :=
combine_hash(combine_hash(combine_hash(combine_hash(combine_hash(combine_hash(combine_hash(combine_hash(combine_hash(BIGINT'0',
COALESCE($operator$hash_code(random), BIGINT'0')), COALESCE($operator$hash_code(custkey), BIGINT'0')),
COALESCE($operator$hash_code(name), BIGINT'0')), COALESCE($operator$hash_code(address), BIGINT'0')),
COALESCE($operator$hash_code(nationkey), BIGINT'0')), COALESCE($operator$hash_code(phone), BIGINT'0')),
COALESCE($operator$hash_code(acctbal), BIGINT'0')), COALESCE($operator$hash_code(mktsegment), BIGINT'0')),
COALESCE($operator$hash_code(comment), BIGINT'0')) (2:16)
 - InnerJoin[("custkey_34" = "custkey")][$hashvalue_75, $hashvalue_77] => [random:double, custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117)]
 Estimates: {rows: 15 (2.96kB), cpu: 1519455431.65, memory: 214.25, network: 270000214.25}
 Distribution: PARTITIONED

2 We use random() instead of uuid() in the examples since distinct is not supported on uuid yet. But this
illustrates the efficacy of the approach

6 of 14

 - RemoteStreamingExchange[REPARTITION][$hashvalue_75] => [custkey_34:bigint, $hashvalue_75:bigint]
 Estimates: {rows: 15000000 (257.49MB), cpu: 675000000.00, memory: 0.00, network: 270000000.00}
 - ScanProject[table = TableHandle {connectorId='hive', connectorHandle='HiveTableHandle{schemaName=tpch10g,
tableName=orders, analyzePartitionValues=Optional.empty}', layout='Optional[tpch10g.orders{}]'}, projectLocality = LOCAL] => [custkey_34:bigint,
$hashvalue_76:bigint]
 Estimates: {rows: 15000000 (257.49MB), cpu: 135000000.00, memory: 0.00, network: 0.00}/{rows: 15000000 (257.49MB),
cpu: 405000000.00, memory: 0.00, network: 0.00}
 $hashvalue_76 := combine_hash(BIGINT'0', COALESCE($operator$hash_code(custkey_34), BIGINT'0')) (6:8)
 LAYOUT: tpch10g.orders{}
 custkey_34 := custkey:bigint:1:REGULAR (6:8)
 - LocalExchange[HASH][$hashvalue_77] (custkey) => [random:double, custkey:bigint, name:varchar(25), address:varchar(40),
nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117), $hashvalue_77:bigint]
 Estimates: {rows: 1 (214B), cpu: 574452184.75, memory: 0.00, network: 214.25}
 - RemoteStreamingExchange[REPARTITION][$hashvalue_78] => [random:double, custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117), $hashvalue_78:bigint]
 Estimates: {rows: 1 (214B), cpu: 574451970.50, memory: 0.00, network: 214.25}
 - ScanFilterProject[table = TableHandle {connectorId='hive', connectorHandle='HiveTableHandle{schemaName=tpch10g,
tableName=customer, analyzePartitionValues=Optional.empty}', layout='Optional[tpch10g.customer{domains={name=[[["Customer#000156251"]]]}}]'},
filterPredicate = (name) = (VARCHAR'Customer#000156251'), projectLocality = LOCAL] => [random:double, custkey:bigint, name:varchar(25),
address:varchar(40), nationkey:bigint, phone:varchar(15), acctbal:double, mktsegment:varchar(10), comment:varchar(117), $hashvalue_79:bigint]
 Estimates: {rows: 1500000 (299.67MB), cpu: 287225771.00, memory: 0.00, network: 0.00}/{rows: 1 (214B), cpu:
574451542.00, memory: 0.00, network: 0.00}/{rows: 1 (214B), cpu: 574451756.25, memory: 0.00, network: 0.00}
 random := random()
 $hashvalue_79 := combine_hash(BIGINT'0', COALESCE($operator$hash_code(custkey), BIGINT'0')) (4:17)
 LAYOUT: tpch10g.customer{domains={name=[[["Customer#000156251"]]]}}
 comment := comment:varchar(117):7:REGULAR (4:16)
 acctbal := acctbal:double:5:REGULAR (4:16)
 nationkey := nationkey:bigint:3:REGULAR (4:16)
 name := name:varchar(25):1:REGULAR (4:16)
 custkey := custkey:bigint:0:REGULAR (4:16)
 phone := phone:varchar(15):4:REGULAR (4:16)
 mktsegment := mktsegment:varchar(10):6:REGULAR (4:16)
 address := address:varchar(40):2:REGULAR (4:16)

(1 row)

presto:tpch10g> select distinct c.* from (select random(), * from customer where
name = 'Customer#000156251') c, orders o where c.custkey = o.custkey;
 _col0 | custkey | name | address | nationkey |
phone | acctbal | mktsegment | comment
-------------------+---------+--------------------+-------------------------+-----------+---------------
--+---------+------------+--
 0.285896288805213 | 156251 | Customer#000156251 |
urz1DOJ,ZKWJni8FlxmgRBX | 7 | 17-321-701-8875 | -185.91 |
HOUSEHOLD | , ironic packages are never about the ironic pinto beans. pint
(1 row)

7 of 14

Query 20220624_184514_00006_h3qwz, FINISHED, 4 nodes
Splits: 92 total, 92 done (100.00%)
0:01 [16.5M rows, 62.7MB] [12.5M rows/s, 47.5MB/s]

​ This is due to the fact that the CBO reorders the inputs to the inner join,
and chooses the smaller table to be the build input to the join. Furthermore this is
a cardinality-reducing join that produces a small result set (a very common case),
which makes the aggregation lightweight. This query rewrite enables the CBO to
participate in planning the query and determining the appropriate join order. In
the rest of this section we will focus on proving the logical equivalence of this
transformation and some further tweaks to ensure that we always pick the best
plan based on the available information.

​ 3.1 Logical Equivalence (A)

​ Let us consider the following query to be the canonical version of the
existential query

SELECT <cols/expressions>
FROM a
WHERE <expression1> IN
 (
 SELECT <expression2>
 FROM b)

It is obvious that this is equivalent to performing a semi-join with A as the
data source to the join and B as the filtering source where the matching condition
is <expression1> = <expression2>. This is what Presto does today.

We posit that this is equivalent to the following rewrite to an inner join

SELECT DISTINCT id,
 sq1.<cols/expressions>

8 of 14

FROM (
 SELECT uuid() AS id,
 <cols/expressions>,

 <expression1>
 FROM a) sq1,
 (
 SELECT <expression2>
 FROM b) sq2

WHERE sq1.<expression1> = sq2.<expression2;

We previously discussed that the semi-join ignores duplicates from the

filtering source (B) and just performs a check for existence for each element in A
in the result set of B. In the above rewrite the join is transformed to an inner join
where all matching rows in A and B are produced from the join (1:N join).
However, notice the following conditions

1.​ A unique id is appended to each row of A3
2.​ The output contains only elements from A (uncorrelated subquery)
3.​ We perform a final distinct aggregation on the result of the join

From these conditions, the following conclusions may be inferred

a.​ Rows in A that do not match any row in B on the expressions will
not appear in the output - from the definition of inner join.

b.​ For every row of A that has more than one match in B, the output
will have the same value for the “id” column.

c.​ Since the output columns are a strict subset of the columns in A,
the distinct aggregation is guaranteed to remove all rows in A that
have the same value for id, but also retains rows from A that are
duplicates otherwise.

d.​ An additional nuance here is that nulls are never considered
equivalent (i.e. NULL != NULL) and nulls never match any other
value. Therefore rows for which <expression1> in A or
<expression2> in B evaluate to NULL will never appear in the join
output for either join.

​ Conclusions (a-d) show that the rewritten query satisfies the semantics of
the existential query and is therefore logically equivalent.

3.2 Logical Equivalence (B)

3 This intermediate “id” column will be removed/suppressed after the aggregation

9 of 14

There is another rewrite that is also equivalent to the canonical version of

the existential query

SELECT sq1.<cols/expressions>
FROM (

SELECT <cols/expressions>
<expression1>

 FROM a) sq1,
 (
 SELECT DISTINCT <expression2>
 FROM b) sq2
WHERE sq1.<expression1> = sq2.<expression2;

​ This rewrite filters out duplicate values of b.<expression2> before the join.
Therefore the inner join can only match each row in A with one value from B.
This is trivially equivalent to the definition of the existential subquery.

​ 3.3 Logical Equivalence (C)

​ For completeness we will also include the third equivalent rewrite of the
existential subquery - as a semi-join. This is what Presto does today. (Not quite
sql syntax)

SELECT sq1.<cols/expressions>
FROM ​ ​ a SEMIJOIN b
WHERE a.<expression1> = b.<expression2;

3.4 The Whole Picture

The previous tpch-example illustrated one instance in which a rewrite of

the form 3.1 may be beneficial to query performance. In this section we will

10 of 14

describe various cases where each of the logically equivalent rewrites may be
beneficial. We will also contrast our proposal with an alternate approach from
Trino that attempts to mitigate the same problem and show how our proposal is
better.

Queries involving semi-joins may exhibit variable performance metrics

depending on the size of the join inputs and/or the data distribution of the join
inputs. Let us enumerate the possible cases that could impact performance here.
These mostly have to do with the size of the filtering source join input B, and
whether the join significantly reduces cardinality of the output result set.

Case 1: B is smaller than A (Left Early Out Join)

​ If the input from the filtering source is smaller, we would like to pick

that as the build side of the join. In this case it is always better to use a semi-join
(rewrite 3.3). Choosing a semi-join here avoids the overhead of additional
aggregations and there is no need to reorder the join inputs.

Case 2: B is larger than A (Right Early Out Join)

​ In this case it is desirable to use A as the build input to the join.

Therefore we would like to rewrite this query as an inner join (either 3.1 or 3.2).
The difference between these rewrites is that in 3.1 we eliminate duplicate
matches on the filtering source (B) after the inner join by performing a distinct
aggregation, while in 3.2 we prevent duplicate matches by eliminating duplicates
in the filtering source (B) before the join.

​

Case 2.1: The join is cardinality reducing

​ If the join reduces cardinality, then the size of the

intermediate result set from the inner join is small and the overhead of
performing the final aggregation in 3.1 is low. It may be expensive to
perform a final distinct on B before the join, especially since the join will
also have to build a hash set similar to the aggregation below it. In this
case rewrite 3.1 is preferred.

Case 2.2: The join does not reduce cardinality

11 of 14

​ If the join does not reduce cardinality, then the size of the

intermediate result set from the inner join could be large. This could lead
to a bigger memory footprint and may incur significant overhead from the
final aggregation in 3.1. Therefore a better option may be to use rewrite
3.2 to eliminate duplicates from the filtering source. This may cause a
reduction in the intermediate result set (since duplicates in B are removed)
but leads to a trade off between performing a distinct aggregation on B vs
a distinct aggregation on the inner join output. In this case rewrite 3.2 may
be preferred.

4.0 Design Details

This feature will be implemented as a set of optimizer rules that parse the

existing query tree/plan and mutate the plan according to one of the three rewrite
strategies described above. As previously mentioned three configuration flags or
their corresponding session properties will have to be enabled in order for these
rules to kick in.

4.1 TransformUncorrelatedInPredicateSubqueryToDistinctInnerJoin

​ The first rewrite that transforms the IN predicate into the inner join will be
an iterative optimizer rule called
TransformUncorrelatedInPredicateSubqueryToDistinctInnerJoin. When enabled,
this rule will supersede the existing rule
TransformUncorrelatedInPredicateSubqueryToSemiJoin and always rewrite an
uncorrelated IN predicate to an inner join followed by a distinct aggregation. This
rule now opens up the search space and enables the cost-based optimizer to
reorder the join inputs as needed.

12 of 14

​ Rewrite 3.1 adds an “id” to each row in the data source (A) in order to
uniquely identify the row and to prevent the distinct aggregation from eliminating
duplicate rows in A. This unique id will be added to the plan only if the existing
set of inputs from A to the join do not already form a unique key. The constraint
optimization framework allows us to easily infer whether this is the case from the
LogicalProperties that are computed for each node in the plan.

​ Thus far in this document we have been referring to the unique id in each
row as a uuid(). While this is logically correct, we will implement this using the
AssignUniqueId plan node that encapsulates the input and annotates each row
with a unique id.

4.2 TransformDistinctInnerJoinToLeftEarlyOutJoin

​ In this rewrite the optimizer identifies an inner-join immediately below a
distinct aggregation. If the two conditions are met, a new distinct aggregation is
added to the left input of the join. It is logically correct to add this additional
distinct aggregation to the left input of the join if and only if all the
columns/expressions from the left input are a part of the grouping keys in the
distinct aggregation. We will build upon the equivalence class properties
introduced in the constraint-optimization work to perform this check. Additionally
we will use the plan node statistics to evaluate whether the join is cardinality
reducing. If the size of the output result set is greater than some threshold of the
sum of the sizes of the inputs, then we will interpret this join to not be cardinality
reducing and push down the distinct aggregation. The threshold here is governed
by a configurable parameter called
optimizer.early-out-join-transformation-byte-reduction-threshold, whose default is
set to 100%. The distinct aggregation above the join may get removed as a result
of this pushdown since it may no longer be doing any useful work.

While this is a good rule in and of itself, it can be used to realize the
rewrite described in 3.2. In our early-out join world, we expect this rule to kick in
when TransformUncorrelatedInPredicateSubqueryToDistinctInnerJoin has
converted the IN predicate to an inner-join and the CBO has flipped the join
inputs such that the left input to the join is now the filtering source B. Therefore
pushing the distinct aggregation below the join (and removing the one above the
join) effectively gives us the rewrite in 3.2. Note that if the join is deemed to
reduce cardinality effectively we will not push down the aggregation.

13 of 14

https://github.com/prestodb/presto/blob/master/presto-main/src/main/java/com/facebook/presto/sql/planner/plan/AssignUniqueId.java

4.3 TransformDistinctInnerJoinToRightEarlyOutJoin

This is the final rule that determines whether the distinct aggregation gets

pushed down the right input of the inner join. Similar to 4.2, this rule looks for an
inner-join immediately below a distinct aggregation and attempts to add an
additional distinct aggregation to the right input of the join if and only if all the
columns/expressions from the right input are a part of the grouping keys in the
distinct aggregation and the outputs of the inner join are the columns/expressions
from the left input. In this case, adding a distinct aggregation to the right input,
and effectively filtering out duplicates is also what a semi-join does. Therefore in
this rule, instead of adding the additional distinct, we can simply convert the
inner-join into a semi-join, thereby realizing rewrite 3.3.

In the ​early-out join world, this rule will kick in when
TransformUncorrelatedInPredicateSubqueryToDistinctInnerJoin converts the IN
predicate to an inner-join but the CBO determines that the filtering source (B) is
the smaller input and leaves the join order unchanged. Now since B is the
smaller input it is desirable to use a semi-join operator to dedupe B and perform
the join.

14 of 14

