
The Halting problem 

Turing machine – 

A Turing machine is a mathematical model of computation.  

A Turing machine is a general example of a CPU that controls all data 

manipulation done by a computer.  

Turing machine can be halting as well as non halting and it depends on 

algorithm and input associated with the algorithm. 

The Halting problem – Given a program/algorithm will ever halt or not?​

Halting means that the program on certain input will accept it and halt or reject 

it and halt and it would never go into an infinite loop.  

Basically halting means terminating. So can we have an algorithm that will tell 

that the given program will halt or not.  

In terms of Turing machine, will it terminate when run on some machine with 

some particular given input string. 

The answer is no  

we cannot design a generalized algorithm which can appropriately say that 

given a program will ever halt or not? 

The only way is to run the program and check whether it halts or not.​

We can refrain the halting problem question in such a way also: Given a program 

written in some programming language(c/c++/java) will it ever get into an 

infinite loop(loop never stops) or will it always terminate(halt)? 

This is an undecidable problem because we cannot have an algorithm which will 

tell us whether a given program will halt or not in a generalized way i.e by 

having specific program/algorithm 

.In general we can’t always know that’s why we can’t have a general algorithm. 

The best possible way is to run the program and see whether it halts or not. 



In this way for many programs we can see that it will sometimes loop and 

always halt. 

The Halting Problem tells that it is not easy to write a computer program that 

executes in the limited time that is capable of deciding whether a program halts 

for an input. 

 

An example of writing the Halting Problem is as follows − 

INPUT − Program P and a string S. 

OUTPUT − if P stops on S, it returns 1. 

Otherwise, if P enters into an endless loop on S, it returns 0. 

Let us consider the Halting Problem called H having the solution. 

Now H takes the following two inputs − 

●​ Program P 

●​ Input S. 

If P stops on S, then H results in “halt”, otherwise H gives the result “loop”. 

The diagrammatic representation of H is as follows − 

 

 

 

 



Example 

ATM = {(M,w) | M is a TM and M halts at input w }. 

We can build a universal Turing machine which can simulate any Turing 

machine on any input. 

Let’s consider TM which recognizing the Altering Turing Machine (ATM) − 

Recognize-ATM (<M,w>) 

   Simulate M using UTM till it halts 

   If M halts and accept then 

      Accept 

   Else 

      Reject 

 

Suppose, if M goes into an infinite loop on input w, then the TM Recognize-ATM 

is going to run forever which means TM is only a recognizer, not a decider. 

A decider for this problem would call a halt to simulations that loop forever. 

Now the question is whether an ATM is TM decidable is equivalent to asking the 

question whether we can tell if a TM M will halt on input w. 

Because of this, both versions of this question are generally called the halting 

problem. 

 

 



​​Halting problem for Turing machine 

Halting problem of Turing machines over ∑ = {a, b} is i.e. the problem of determining 

whether or not an arbitrary Turing machine M over alphabet ∑ = {a, b} Halts for any arbitrary string 

w over ∑ is unsolvable. 

Theorem: The halting problem is undecidable. 

Proof: This is going to be proven by "proof by contradiction". 

Suppose that the halting problem is decidable. Then there is a Turing machine T solves the 

halting problem. That is, given a description of a Turing machine M (over the alphabet ) and a string 

w, T writes "yes" if M halts on w and "no" if M does not halt on w, and then T halts. 

M halts on w 
 

M does not halt on w 
 

Accept and Halt Reject and Halt 

 

Turing Machine T 
 

We are now going to construct the following new Turing machine Tc. First we construct a 

Turing machine Tm by modifying T so that if T accepts a string and halts, then Tm goes into an 

infinite loop (Tm halts if the original T rejects a string and halts). 



 
 

M halts on w 
 

M does not halt on w 
 

Loop 

 
Halt 

 
 

Turing Machine Tm 

 

Next using Tm we  are  going  to  construct  another  Turing  machine  Tc as follows: Tc takes 

as input a description of a Turing machine M, denoted by d(M), copies it to obtain the string 

d(M)*d(M), where * is a symbol that separates the two copies of d(M) and then supplies d(M)*d(M) 

to the Turing machine Tm. 

 

p 
 

t 
 

Turing Machine Tc 

 
Let us now see what Tc does when a string describing Tc itself is given to it. When Tc gets the 

input d(Tc) , it makes a copy, constructs the string d(Tc)*d(Tc) and gives it to the modified T. Thus 

the modified T is given a description of Turing machine Tc and the string d(Tc). 

Tc halts on d(Tc) 

 
Tc 

does 
not 
halt 
on 
d(Tc) 

 

Loop 

 
Halt 



 

 

Turing Machine Tc on input d(Tc) 

 
The way T was modified the modified T is going to go into an infinite loop if Tc halts on d(Tc) 

and halts if Tc does not halt on d(Tc). 

Thus Tc goes into an infinite loop if Tc halts on d(Tc) and it halts if Tc does not halt on d(Tc). 

This is a contradiction. This contradiction has been deduced from our assumption that 

 
 

there is a Turing machine that solves the halting problem. Hence that assumption must be wrong. 

Hence there is no Turing machine that solves the halting problem. 
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