Spir-fuzz is a C++-based tool that automatically finds bugs in Vulkan drivers. It works by
transforming the original shader into a new one that is semantically the same. Differences in the
output of the new shader and the original one can be caused by bugs in the driver. Thus, my
earlier on tasks include expanding the set of transformations by building more transformation
classes and writing their corresponding tests and fuzzer passes and provide additional support

to the SPIRV-tools repository:

SPIRV-Tools support
Transformations and fuzzer passes:

e #4326: Swap positions of two functions in a module
e #4376: Wrap Scalar operation into vector operation

Improvements and additional tests:
e #4253: Fix underflow problems in fuzzer pass
e #4304: Add tests for full coverage of access chain transformation
e #4284: Add tests for MaybeGet* functions in fuzzer utils

Our main task involves the WebGPU Shading Language, a new shading language
featured by WebGPU. Since web browsers will have WebGPU, a secure implementation is
crucial. To achieve a high test coverage, we use coverage-guided fuzzing. It uses program
instrumentation to trace the code coverage reached by each input fed to a fuzz target. The
information is then used to make informed decisions that maximize coverage, and thus increase
the effectiveness of finding software bugs and security vulnerabilities. This project involves
automatic fuzzing using LibFuzzer. Since LibFuzzer-based custom mutators mutate test cases
in a domain-specific way, effective designing and implementing Tint-specific custom mutators
are essential for this project to succeed, where Tint is a compiler for WGSL. My role specifically
is to contribute to Tint AST (stands for abstract syntax tree) by providing different mutation
classes and mutators (which are similar to the transformation classes and fuzzer passes for
SPIRV-Tools) that introduce either semantic preserving or non-semantic preserving mutations of
input. By expanding the set of mutations of the program, it is expected to increase the chance
for us to find vulnerabilities and bugs in webGPU:

Tint AST

Issues:
e #1108: Wrap statement in if conditional

e #1110: Delete a statement

e #1111: Wrap unary operator


https://github.com/KhronosGroup/SPIRV-Tools/pull/4236
https://github.com/KhronosGroup/SPIRV-Tools/pull/4376
https://github.com/KhronosGroup/SPIRV-Tools/pull/4253
https://github.com/KhronosGroup/SPIRV-Tools/pull/4304
https://github.com/KhronosGroup/SPIRV-Tools/pull/4284
https://bugs.chromium.org/p/tint/issues/detail?id=1108
https://bugs.chromium.org/p/tint/issues/detail?id=1110
https://bugs.chromium.org/p/tint/issues/detail?id=1111

#1119: Shuffle function parameters

#1120: Transform if statement to for loops

#1126: Duplicate statement

#1127: Extend/contract the number of iterations for for loop statement.

[o)]

N

Mutation classes:
e #60820: Change unary expression operator
#61620: Change binary expression operator
#61900: Delete statement
#62001: Change if conditional wrapper to for loop statement
#61200: Wrap statement in if statement
: Wrap unary operators

H+
O
N
o
o
o

WIP:
o Extend/ Contract loops (might not be possible currently)
o Duplicate Statement
o Shuffle function parameters

Improvements:
e #61100: Improved node id map and find mutators structure
e #61381: Removed const constraint from GetNode return type

Additional tasks also include provide examples for ShaderTrap, an OpenGL shader runner
that runs self-contained .shadertrap files. Different variants of atomic reduction examples are
attained by adjusting the number of work groups and number of invocations.

ShaderTrap

Provide code examples:
e #66: Reduction operation by addition
e #71: Reduction operation by min and max
e #72: Reduction operation by bitwise and, or and xor


https://bugs.chromium.org/p/tint/issues/detail?id=1119
https://bugs.chromium.org/p/tint/issues/detail?id=1120
https://bugs.chromium.org/p/tint/issues/detail?id=1126
https://bugs.chromium.org/p/tint/issues/detail?id=1127
https://dawn-review.googlesource.com/c/tint/+/60820
https://dawn-review.googlesource.com/c/tint/+/61620
https://dawn-review.googlesource.com/c/tint/+/61900
https://dawn-review.googlesource.com/c/tint/+/62001
https://dawn-review.googlesource.com/c/tint/+/61200
https://dawn-review.googlesource.com/c/tint/+/62000
https://dawn-review.googlesource.com/c/tint/+/61100
https://dawn-review.googlesource.com/c/tint/+/61381
https://github.com/google/shadertrap/pull/66
https://github.com/google/shadertrap/pull/71
https://github.com/google/shadertrap/pull/72

