
CSC 226: Software Design & Implementation​
A09: Error Detection​

 A09: Error Detection
●​ Assignment A09 should be completed individually or with one partner.

○​ If you work with a partner, be sure to follow good pair programming practices.
●​ Be sure to read the entire prompt and understand the problem before beginning coding.
●​ You should seek help completing this assignment from the #csc226 Slack channel.

Learning Objectives
●​ More practice breaking a larger problem down into smaller pieces using functions
●​ Gain practice using strings
●​ Introduce concepts about binary and parity

How to Start
●​ To begin, make a copy of this document by going to File >> Make a Copy...
●​ Share the copied document with all members of your team, if you are working with

someone. You can share this document by hitting the blue button in the top right of the
document, then entering the email address of all members in the bottom input field.

●​ Change the file name of this document to username1, username2 - A09: Error
Detection (for example, pearcej, shepherdp - A09: Error Detection). To do this, click
the label in the top left corner of your browser.

●​ Next, go to the Github classroom for A09: Error Detection.
●​ You will be asked to create a team:

○​ One of you will create the team.
○​ Then, the other will join the team created by the first partner.
○​ If you are working alone, create a team anyways, with just you in it.

●​ Paste the link to your Github repo here:

Github Repo Link:

●​ After you’ve opened the repository in PyCharm, start by creating a new branch.

Binary and Error Detection
Most modern human cultures use the decimal, or base 10, number system. Computers use a
different system called binary for more than just processing numbers. Binary is a base 2
number system in which values are represented by different combinations of 0 and 1, also
known as OFF or ON. It is the primary "alphabet" of all digital information (text, music, photos,
videos, etc).

Copyright © 2017 Scott Heggen

https://bereacs.slack.com/archives/C3QACGH8R
https://classroom.github.com/a/EkPYmjQw

CSC 226: Software Design & Implementation​
A09: Error Detection​

Binary may seem weird to us, but it is not new to humans. Morse code also uses two digits (long
and short) to represent the entire alphabet. In addition, Australia's aboriginal peoples counted by
two, and numerous tribes of the African bush sent complex messages using drum signals at
high and low pitches. Even smoke signals are a form of binary communication.

When data is transmitted, it is subject to noise which may introduce errors into the data. Error
detection techniques such as the parity bit allow detecting such errors with the addition of a
single bit. There are two types of parity (even and odd), but we only need one of the them, so
we will choose to use even parity.

An even parity bit can be added to the end of a string of binary code as a simple form of error
detection. The number of 1 bits in the bit string are counted. If that total is odd, the parity bit
value is set to 1, making the total count of 1's in the set an even number. If the count of 1's in the
bit string is already even, the parity bit's value is 0.

Here is a video which explains this notion in a fun way. Think of the dark sides of the cards as 1
and the light sides as 0.

What the magician did was to add a parity row and column which allowed him not only to detect,
but to correct the "error." Correction was possible because he added along both axes. Cool,
huh? (Don’t tell I told the secret)

In serial data transmission, a common format utilizes chunks which consist of 7 data bits and an
even parity bit. This was chosen because the American Standard Code for Information
Interchange (ASCII), a character-encoding scheme based on the English alphabet, encodes
128 of the most important alphabetic, numeric, and other characters into 7-bit binary integers.

Copyright © 2017 Scott Heggen

https://www.youtube.com/watch?v=OXz64qCjZ6k

CSC 226: Software Design & Implementation​
A09: Error Detection​

7-Bit ASCII Character Codes

For example: Using the chart, one can see that the character 'J' is 1001010 (100+1010) in
ASCII, and the character 'S' is 1010011 (101+0011).

In modem-type communications, a parity bit is added to the beginning of the 7-bit ASCII
character, making it 8 bits, or 1 byte, long.

So, when even parity is used and a parity bit is added to the front, the letter 'J' would be
encoded as 11001010 (1+100+1010) because without the extra one, the sum of the bits is odd
(3).

When even parity is used, 'S' becomes 01010011 (0+101+0011) because summing the bits
gives 1+0+1+0+0+1+1 is already even, so 0 is used for the parity bit.

Test Driven Development (TDD)
Test-driven development (TDD) (also called test-driven design) is a method of software
development in which unit tests are written prior to the actual code. Functions are written as
"stubs." The main idea is to get something working and keep making it better until all the unit
tests are satisfied. The process is iterated as many times as necessary until each function (or
unit) is functioning according to the desired specifications.

You should use test-driven development in this assignment.

Copyright © 2017 Scott Heggen

CSC 226: Software Design & Implementation​
A09: Error Detection​

Your Task
In this assignment, we will take a string of 0's and 1's and do the following:

●​ Ensure the string consists entirely of 0's and 1's (i.e., binary only).
●​ Check the string to see if its length is divisible by 7. (It should be because it should

consist of 7-bit ASCII characters.)
●​ If the string passes both of the above tests, break it into chunks of 7. (These should each

be an ASCII character.)
●​ For each chunk, prepend (i.e. concatenate at the front end) an even parity bit (Prepend a

1 if the sum of the 7 bits is odd, and prepend a 0 otherwise). This will make each chunk
an 8-bit chunk, typically called a byte.

Hint: Included in your repository is some example code, peel_digits.py, that illustrates
appending to a list which you will find very useful in this assignment.

Geek note: Because we are using strings to represent bits, and each character in a string uses
7 bits, we are actually using 7 times more space than we need to. In other words, these same
ideas can be done with bits rather than bytes. The ideas are all the same.

Requirements:
●​ Create each of the following functions:

○​ unittest() - use the same function from previous assignments. No
modifications are needed to this function; it’s only used to make the test suite
more usable.

○​ parity_test_suite() - tests each fruitful function below. Be thorough in your
testing; test expected behavior, as well as unexpected behavior (e.g., a
non-binary string as input). I highly suggest you write the test suite before you
write all of the function’s functionality. Instead, use the stubs provided in the
code, write the test suite, then write each function.

○​ main() - the main function, which either calls the test suite (which tests each
function individually) or the code that solves the problem above (i.e., normal
mode).

○​ is_binary() - takes a bit string as input, returning True if it is at least 7-bits
and consists solely of 0s and 1s, and returning False otherwise.

○​ is_div_by_sevens()- takes a bit string as input, returning True if the length
of the string is evenly divisible by 7, and returning False otherwise.

○​ split_into_sevens()- takes a bit string whose length is evenly divisible by
7 as input, and returns the resultant list of 7-bit long strings as output.

●​ Be sure to include good documentation, including good comments, docstring for each
function, and the standard header at the top of your program.

Copyright © 2017 Scott Heggen

CSC 226: Software Design & Implementation​
A09: Error Detection​

For the curious (not for credit): Instead of using strings, use lists to achieve the same results.

Submission Instructions
1.​ Review the requirements above to ensure you have completed everything that was

required of you.
2.​ Edit the README.md file in your repository. Replace the lines with the correct

information for your name(s), the link the repository, and the link to this document, which

you can get via the blue Share button in the top right of this window.
3.​ Check the Share settings for this document (top right). Set them to “Anyone with the

link can view”. That is how we will be able to access this document to grade you: ​

​ ​ ​
4.​ Merge all branches to the master branch:

a.​ On your branch, Add and Commit
i.​ Right click any new files (they’ll be green) in the Project pane of PyCharm

(far left), and click Git >> Add.
ii.​ Right click the project directory in the Project pane of PyCharm, and click

Commit Directory...:
iii.​ Add a meaningful commit message, and click “Commit”:

b.​ Pull and Merge master into your branch:
i.​ Go to Git >> Pull
ii.​ Check the box to pull origin/master (which will also merge it into your

branch)
iii.​ Resolve any merge conflicts using the "Merge..." button, if there are any.

c.​ Push your branch to GitHub.
d.​ Issue a pull request in GitHub. If you worked with a partner, review each other’s

code to ensure no conflicts were created.
5.​ Accept the pull request. If you worked with a partner, be sure to do the above steps for

each partner, and not at the same time (one partner does all steps before the other
starts).

6.​ Check your repository in GitHub to ensure everything was submitted to the
master branch. You can view the updated repository at the link you pasted in the “How
to Start” section.

Copyright © 2017 Scott Heggen

https://docs.google.com/document/d/1odd76KsJtK7yIdgGv6K748C87Ee1x524XJpQ_HQb3QU/edit#bookmark=id.87w5a6b1kt75

	 A09: Error Detection
	Learning Objectives
	How to Start
	Binary and Error Detection
	7-Bit ASCII Character Codes
	Test Driven Development (TDD)
	Your Task
	Requirements:
	Submission Instructions

