
Scripting Walkthrough - Part 3
With 2D Game Kit

For the purpose of this tutorial, it is presumed that you have the 2D Game Kit set up and you
have some basic knowledge of working with Unity from the previous tutorials.

Unit 3: Power-up
What if we wanted to place an item into the game world, which would make a superhero out
of our player? How could we do that?

Object representing a power-up item

⭐Task: Create an object representing a power-up item at a suitable place in the scene.

Proceed similarly to creating a bullet in Part 1.
For now, you can use sprite from Assets/2DGamekit/Art/Sprites/AnimatedSprites/Key/.
Hint: An empty game object, SpriteRenderer component.

Component for picking the item up
The player should pick the item up if they move over it.
First we would like to detect when the player overlaps with the item.

Trigger collider (collider with IsTrigger checked) functions as a trigger.

Player can go through the object and it will not block the movement.
OnTriggerEnter2D(Collider2D collision)- Called on the start of overlap.
OnTriggerExit2D(Collider2D collision)- Called on the end of overlap.

Unity - Scripting API: Collider2D.isTrigger (unity3d.com)
Unity - Scripting API: Collider2D.OnTriggerEnter2D(Collider2D) (unity3d.com)

⭐Task: Setup the object as a trigger so that it is able to detect overlaps.

Hint: Add a collider component, make it a trigger, create a script with OnTriggerEnter2D.
Then we need to make sure it is the player what overlaps.

We can use Tags to label objects and then find them according to it.
Creating a tag: Select an object in the Hierarchy → drop down menu Tag in the Inspector
(on top) → Add Tag… → click on the symbol + → name the tag.

Assigning a tag: Select an object → drop down menu Tag in the Inspector → select.
GameObject.CompareTag(string tag) - Method to find out if the object has the given tag.

Unity - Manual: Tags (unity3d.com)
Unity - Manual: Tags and Layers (unity3d.com)

https://docs.unity3d.com/ScriptReference/Collider2D-isTrigger.html
https://docs.unity3d.com/ScriptReference/Collider2D.OnTriggerEnter2D.html
https://docs.unity3d.com/Manual/Tags.html
https://docs.unity3d.com/Manual/class-TagManager.html

Unity - Scripting API: GameObject.CompareTag (unity3d.com)

⭐Task: Assign the player a Player tag and then recognize him in the code based on that.

Hint: add tag “Player” to the player object, compare the tag of the overlapping object
Solution: if (collision.gameObject.CompareTag(“Player”)) // it is the player

Now that we know what tags are, we can summarize different ways to get reference to an
object:

-​ through public fields
-​ by type/component - FindObjectOfType<T>() - first active object with the

given component, very slow (performs search)
-​ by name - GameObject.Find(string name) - first active object of the given

name, very slow (performs search)
-​ by tag - GameObject.FindGameObjectWithTag(string tag)

Finally we would like to apply some effect on the player (it may be very simple, e.g. scaling
the player up) and make the item disappear.

⭐Task: Affect the player somehow and destroy the item.

Hint: transform.localScale = 1.5f * Vector3.one
Solution: collision.transform.localScale = 1.5f * Vector3.one; Destroy(this.gameObject);
Make sure everything works as intended.

Effect as a UnityEvent
We can make everything more general by taking the specific effect of the power-up item out
of the code and assigning it in the editor.

UnityEvent is a very similar concept to C# delegate but it allows for better manipulation
through the Inspector.
To use it in the code we need to add using UnityEngine.Events;, then we can
declare a public data field of type UnityEvent and invoke the assigned event/s with
UnityEvent.Invoke().
Assigning the event: Click on the + symbol in the Inspector, drag-and-drop some object or
component to the field on the left and select which method of the object/component will be
called in the field on the right (if necessary, set a parameter below it).

Unity - Manual: UnityEvents (unity3d.com)
Unity - Scripting API: UnityEvent (unity3d.com)
We will start by declaring a UnityEvent which will be called to apply the effect of the item.

⭐Task: Generalize the effect of the power-up item by making it a UnityEvent.

Hint: public field of type UnityEvent, call it in OnTriggerEnter2D
Solution:
using UnityEngine.Events;

https://docs.unity3d.com/ScriptReference/GameObject.CompareTag.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html

public UnityEvent itemEffect; // field of the power-up component
itemEffect.Invoke(); // in OnTriggerEnter2D
Now we need to prepare the actual effects the power-up may have.

⭐Task: Create a component for various effects, attach it to the Ellen object and
implement one specific effect.

Hint: In the new component, add a public method which handles the desired effect (e.g.
scale up).
Solution:
public class PLayerEffects : MonoBehaviour {
 public void GetSuperpowers() {
 transform.localScale = 1.5f * Vector3.one;
 }
}
Finally we can connect it together and assign a specific effect as the event.

⭐Task: Assign the event in the Inspector.

Solution: Select the power-up item in the Hierarchy, add a new event in the Inspector using
the Plus icon, drag-and-drop the Ellen object from the Hierarchy into the bottom-left field,
then in the dropdown on the right select the method with the effect (e.g. PlayerEffects →
GetSuperpowers).

Temporary effect
Now we would like to apply the effect only for some predetermined amount of time and after
that remove the effect.

Coroutine - A function which is executed in intervals. It works with special yield
statements which suspend the code execution for a specific time. Then when the function
continues, execution begins again right from where it left off.
Return type must be IEnumerator and the function must return anything implementing
it.
yield return null - The code will resume in the next frame
yield return new WaitForSeconds(3f) - The code will resume after 3 seconds.
StartCoroutine - A function for starting the coroutine, takes a parameter of coroutine
call or string of its name.

Unity - Manual: Coroutines (unity3d.com)
Unity - Scripting API: Coroutine (unity3d.com)
Unity - Scripting API: MonoBehaviour.StartCoroutine (unity3d.com)
Coroutines - Unity Learn
Unity - Scripting API: WaitForSeconds (unity3d.com)

⭐Task: Use a coroutine to revert the effect after a fixed amount of time.

Hint: Instead of simply applying the effect, make it in a coroutine (apply the effect, wait for
some time, revert the effect) and start the coroutine.
Solution:
public void GetSuperpowers() {

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/ScriptReference/Coroutine.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html
https://learn.unity.com/tutorial/coroutines#5c894522edbc2a14103553c5
https://docs.unity3d.com/ScriptReference/WaitForSeconds.html

 StartCoroutine(ScaleUpAndDown());
}
private IEnumerator ScaleUpAndDown() {
 transform.localScale = 1.5f * Vector3.one; // apply the effect
 yield return new WaitForSeconds(5);
 transform.localScale = Vector3.one; // remove the effect
}

⭐Task: Add a parameter which will determine duration of the effect.

Solution: Do not forget to set the parameter of the event in the Inspector.
public void GetSuperpowers(float duration) {
 StartCoroutine(ScaleUpAndDown(duration));
}
private IEnumerator ScaleUpAndDown(float duration) {
 transform.localScale = 1.5f * Vector3.one; // apply the effect
 yield return new WaitForSeconds(duration);
 transform.localScale = Vector3.one; // remove the effect
}

Repeated use
Right now the item is usable just once. Instead of destroying it completely after picking it up,
we can disable it only for a while so that it may be used repeatedly.

Enabling and disabling individual scripts/components during runtime:
enabled {get; set;} - Enable/disable component, true if local state is enabled
isActiveAndEnabled {get;} - True if local state is enabled and GameObject is
activeInHierarchy.
OnEnable() - Called when the script becomes enabled (also during initialization of the
object, after Awake, if the object is active).
OnDisable() - Called when the script becomes disabled.
Disabling a script means only disabling Update and FixedUpdate - other methods, e.g.
OnTriggerEnter2D, will be called and will activate the script.

Unity - Scripting API: Behaviour.enabled (unity3d.com)
Unity - Scripting API: Behaviour.isActiveAndEnabled (unity3d.com)
Unity - Scripting API: MonoBehaviour.OnEnable() (unity3d.com)
Unity - Scripting API: MonoBehaviour.OnDisable() (unity3d.com)
Enabling and Disabling Components - Unity Learn

https://docs.unity3d.com/ScriptReference/Behaviour-enabled.html
https://docs.unity3d.com/ScriptReference/Behaviour-isActiveAndEnabled.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnEnable.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnDisable.html
https://learn.unity.com/tutorial/enabling-and-disabling-components#

For our scenario, it is better to disable only components and not deactivate the item as a
whole. This way the object will stay in the scene and we can later add some visual
indications (e.g. make it partly transparent when disabled).

⭐Task: Instead of destroying the object, disable the collider component so that the item
cannot be triggered again (overlaps are not detected, OnTriggerEnter2D is not invoked).

Hint: Get reference to the item’s collider and disable it after picking the item up.
Solution:
private CapsuleCollider2D trigger; // field of the power-up component
trigger = GetComponent<CapsuleCollider2D>(); // in Awake/Start
trigger.enabled = false; // in OnTriggerEnter2D
We can now disable the item in such a way that it stays in the scene but does not detect
overlaps. Next step would be to enable the item again after some time.

Invoke(string methodName, float time) - A function allowing us to schedule
method calls to occur at a later time (after some specific time delay).

-​ or instead of string: Invoke(nameof(method), …);
InvokeRepeating(string methodName, float time, float repeatRate) -
Invokes the method methodName in time seconds, then repeatedly every repeatRate
seconds.
CancelInvoke() - Cancels all Invoke calls on this MonoBehaviour.

Unity - Scripting API: MonoBehaviour.Invoke (unity3d.com)
Unity - Scripting API: MonoBehaviour.InvokeRepeating (unity3d.com)
Unity - Scripting API: MonoBehaviour.CancelInvoke (unity3d.com)
Invoke - Unity Learn

⭐Task: Schedule enabling the collider component again after a while.

Hint: Use Invoke to postpone a call of some method enabling the collider.
Solution: Invoke(nameof(EnableItem), 10f); // in OnTriggerEnter2D
private void EnableItem() {
 trigger.enabled = true;
}
The OnTriggerEnter2D method now does three steps:

-​ applies the item’s effect,
-​ disables the item (collider),
-​ starts the timer to enable the item again.

Instead of Invoke we could use coroutines again (disable the item, wait for a while,
enable the item). Invoke is used just for the sake of completeness.

Invoke is useful for simple cases - delayed call of method without parameters.

Coroutines allow us to pass parameters, to create more complex sequences very easily
and are more efficient.

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Invoke.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.InvokeRepeating.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.CancelInvoke.html
https://learn.unity.com/tutorial/invoke-2d#

Conclusion
What you should know after finishing all the tutorials up until now:

-​ Basic terms: GameObject, Component, Prefab, ScriptableObjects
-​ Important types and their fields/methods: Transform, UnityEvent, SpriteRenderer
-​ Common methods of MonoBehaviour: Awake, Start, Update, FixedUpdate,

OnCollisionEnter, OnTriggerEnter
-​ Basic constructs: iterating over children, getting components, finding objects,

coroutines, enabling and disabling components, activating and deactivating objects,
destroying objects, instantiation of prefabs, layers and tags, creating game objects
and adding components

-​ RigidBody2D and applying forces, Colliders and triggers
-​ Usage of Time.deltaTime
-​ Handling input

Sources used
-​ https://learn.unity.com/tutorial/2d-game-kit-reference-guide#
-​ https://learn.unity.com/project/beginner-gameplay-scripting?uv=2019.3
-​ https://learn.unity.com/project/intermediate-gameplay-scripting?uv=2019.3
-​ Unity - Manual: Unity User Manual 2020.3 (LTS) (unity3d.com)
-​ slides from Introduction to Computer Game Development
-​ slides from Practical Course on Managed Game Development

Authors
★​ Michaela Štolová
★​ Karel Vlachovský

https://learn.unity.com/tutorial/2d-game-kit-reference-guide#
https://learn.unity.com/project/beginner-gameplay-scripting?uv=2019.3
https://learn.unity.com/project/intermediate-gameplay-scripting?uv=2019.3
https://docs.unity3d.com/Manual/index.html

	Scripting Walkthrough - Part 3
	Unit 3: Power-up
	Object representing a power-up item
	Component for picking the item up
	Effect as a UnityEvent
	Temporary effect
	Repeated use

	
	Conclusion
	
	Sources used
	Authors

