GPT Wrapper Docs

Description
This is a python library to interact with OpenAl's ChatGPT model through our interface.

Setup

The minimum required python version for this package is 3.8.

This library can be installed from the wheel provided under the artifacts folder of your GitHub
classroom team repository as shown below:

pip install artifacts/gpt wrapper-0.2.0-py3-none-any.whl

To use the package, you need to be authenticated using an API key assigned to you. You will
receive this API key alongside the data with your 100 questions. Then pass your key as shown here:
import gpt wrapper

gpt wrapper.api base =

"http://mnlp-backend-1b-1062233132.eu-central-1.elb.amazonaws.com"
gpt wrapper.api key = "<API key>"

This url and the key can also be set using the bash environment variables PARROT API BASE,
PARROT API KEY.

Creating a Chat Instance

A chat session can be considered as a multi-turn conversation with the OpenAl ChatGPT model.
Each chat session is independent of another.

You can create a new chat session using the Chat interface:

from gpt wrapper.chat import Chat

chatl = Chat.create ("Test Chat")

Chat object can be converted to a dictionary as below, if you want to inspect chat attributes such as
chat id, name, or created at. You can ignore the rest of the attributes.

>>> chatl.to _dict()

{'chat id': 12668, 'name': 'Test Chat', 'created at': '2023-04-18
18:44:25", 'model type': 'chat completion', 'instruction prefix': 'My
request: ', 'user prefix': 'My request: ', 'assistant prefix': 'Your
response: '}

You can also list all chat instances related to your API key as such:

chats = Chat.list ()

This can be useful if you like to resume past conversations.

If you would like to retrieve chats by name, you can pass it as a parameter. Note that this is not an
exact match, it will return all chats whose names contain "test".

chats = Chat.list (name="test")

Chat Usage

To start a conversation with ChatGPT, you can use the ask method of the Chat object. This
method's first parameter is called content.

>>> message = chatl.ask(content="Who won the FIFA championship in 20182?")
>>> print (message)
"France won the FIFA World Cup championship in 2018."

To continue the dialogue with ChatGPT in the same chat session, re-use the chat instance chat1.

You do not need to prepend your previous dialogue messages to continue the chat, the history is
automatically recorded.

>>> message = chatl.ask("Who was the best goalie in that match?")

>>> print (message)

"The FIFA World Cup is a tournament that takes place over a period of
several weeks, involving many teams and players. Therefore, it would be
difficult to identify one single goalkeeper as the \"best\" of the
tournament. However, Hugo Lloris, who played as the goalkeeper for France,
was an important player for the team and made some crucial saves
throughout the tournament, including in the final game against Croatia."

We highly recommend you to create different chat sessions for individual course questions!
So if you want a chat session about a new topic, make sure you create a new instance and ask with
that one:

>>> chat?2 = Chat.create("Test Chat 2")

>>> message = chat2.ask("Is earth a perfect sphere?")

>>> print (message)

"No, Earth is not a perfect sphere. It is slightly flattened at the poles
and bulges at the equator, making it an oblate spheroid. The equatorial
diameter of the Earth is about 12,742 km, while the polar diameter is
about 12,714 km. This shape is due to the Earth's rotation and the
centrifugal force it generates."

You can also provide "system-level" instructions to guide the model’s behavior for the whole
conversation. In contrast to requesting the behavior through the ask function's content parameter,
this will make your instruction persist throughout the whole chat session.

>>> message = chat2.ask("Is earth a perfect sphere?", instruction="You are
an assistant that speaks like Shakespeare.")

>>> print (message)

"Nay, fair maiden! The Earth is not a perfect sphere, it doth possess a
shape known as an oblate spheroid. It is somewhat flattened at the poles
and bulges at the equator, owing to the rotation and centrifugal force of
this great orb. The equatorial diameter of the Earth is about 12,742
kilometers, whilst the polar diameter is approximately 12,714 kilometers."

>>> message = chat2.ask("What about Mars? Is it a cube?") # NOTE: Despite
not passing an instruction the behavior persists! You can change this at
any point in the conversation.

>>> print (message)

"Oh, my sweet lord! Pray tell, wherefore didst thou hear such a fanciful
notion? Mars is not a cube, nor dost it possess any such shape. It is a
planet much like our own Earth, albeit smaller and with a thinner
atmosphere, and it also has an oblate spheroid shape similar to Earth. It
is not a perfect sphere, but rather a shape that is somewhat flattened at
the poles and bulges at the equator, as a result of its rotation and
centrifugal force."

Optionally, generation arguments can be configured with the model args parameter that expects

the shown dictionary. By default, these parameters have been set to reasonably good values but
may need to be modified according to the answer length and quality you desire.

>>> message = chatl.ask(
"Who was the best goalie in that match?",
model args={
"temperature": 0.7, # default is 0.7
"max tokens": 60, # default is 100
"top p": 0.8, # default is 0.9
"presence penalty": 0.1, # default is 0.1
"frequency penalty": 0.1 # default is 0.1
})
>>> print (message)
"In the final match of the 2018 FIFA World Cup between France and Croatia,
Hugo Lloris was the goalkeeper for France and he played a crucial role in
helping France to win the match. While both goalkeepers made some
important saves, Lloris had a clean sheet in the final and"

Message Usage

The ask function returns a Message object that contains ChatGPT's response and other metadata.
You can inspect it with the to dict () function.

>>> message.to _dict ()

{'message_id': 25597, 'chat id': 12668, 'content': 'France won the FIFA
World Cup championship in 2018.', 'role': 'assistant', 'created at':
'2023-04-18 18:49:08', 'usage': {'completion tokens': 12, 'prompt tokens':

51, 'total tokens': 63}, 'model args': {'best of': 1, 'frequency penalty':

0, 'max tokens': None, 'presence penalty': 0, 'temperature': 0.7, 'top p':
1.0}}

Message object has the following fields available:

message id: this message's unique ID
chat id:the chat session ID the message belongs to
content: the message content
role: there are three options for role,
o user: the user role belongs to you
o assistant: the assistant role belongs to the ChatGPT
o system: the system role belongs to the system-level instruction that you can pass
with the instruction parameterin ask
e created at:the time the message was created
e usage number of tokens used to generate this message, only set for "assistant" messages
o total tokens: total input and output tokens the message has used
o prompt tokens:how many tokens your input has used
o completion tokens:how many tokens the ChatGPT model has generated
e model args:arguments passed to GPT API to produce this message, only set for
"assistant" message

Consult OpenAl APl Documentation for more details on these parameters.

You can also retrieve all messages sent to a chat as below:

messages = chat2.messages|()

print ([str (message) for message in messages])

or

print ([message.to dict () for message in messages])

Tracking your Budget
To track your API key's overall token usage and budget, you can do the following command:

>>> Chat.budget ()
{'"limit': 100000000, 'usage': 4062003}
In this output:

e 1imit shows that you have a total limit of 10 million tokens.
e usage shows that across all chats you have spent ~4 million tokens.

Please use your budget wisely, as the limit is set for each individual for the entirety of the project.

https://platform.openai.com/docs/api-reference/chat/create

	GPT Wrapper Docs
	Description
	Setup
	Creating a Chat Instance
	Chat Usage
	Message Usage
	Tracking your Budget

