
​

Overview​ 1

Schema Details​ 2
The global schema​ 2

required, additionalProperties:false​ 3
properties​ 3
options​ 4

Individual schemas​ 4
/definitions/form​ 5

/definitions/form/options​ 5
/definitions/prerequisites​ 5
/allOf​ 6

Extending schemas with additional information​ 6

Implementation notes​ 7
Using Alpaca​ 7
Merging and validation.​ 7
Dereferencing​ 8

Strategies​ 8

Demo​ 9

Overview
This is a concrete proof of concept for the use of a global schema + schema service as the
basis for our metadata workflows.

To recap, the major parts to this proposal are:

●​ A global schema. This defines the list of properties that can be present in the metadata
blob. The metadata blob itself is a single JSON object that contains properties defined in
that global schema. It is not divided into sections such as "common", "crossref", etc.
The advantage of this approach is its simplicity - anything contributing to the metadata
blob simply merges its output with the blob, and consumers of the blob simply look for
the fields they need.

●​ Individual schemas reference properties defined in the global schema, and are used for
the dual purpose of display (to define the fields present in Alpaca forms displayed in the
UI), and for validation.

●​ A schema service that produces the N individual schemas drive Ember's UI and
validation. These N schemas are based on the circumstances of a particular submission
(who submitted it, what repositories it's going into, etc)

Schema Details
Alpaca js renders forms based upon the contents of a JSON schema. That being said, a key
insight to keep in mind is that form display and validation may be treated as separate concerns.
This means that it is possible to write a schema that will render only a couple fields in Alpaca,
but can be used to validate the required presence of many more in the metadata blob.

The global schema
The global schema defines all properties allowed to be present in the metadata blob (e.g. their
names and types), as well as Alpaca options for each field. The property definitions are used
for validation, and the alpaca options for influencing display and custom validation
characteristics in Alpaca. An example cut down global schema (defining only two fields) is as
follows. The colors represent sections of different significance:

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "$id": "http://localhost:8080/schemas/global.json",

 "title": "JHU global schema",

 "type": "object",

 "required": ["title", "journal-title"],

 "additionalProperties": false,

 "properties": {

 "title": {

 "title": "Article / Manuscript Title",

 "description": "The title of the individual article or manuscript being submitted",

 "type": "string"

 },

 "journal-title": {

 "title": "Journal title",

 "description": "Title of the journal being submitted to",

 "type": "string"

 }

 },

 "options": {

 "fields": {

 "title": {

 "type": "textarea",

 "rows": 2,

 "cols": 100,

 "label": "Article / Manuscript Title",

 "placeholder": "Enter the manuscript title",

 "hidden": false

 },

 "journal-title": {

 "type": "text",

 "label": "Journal Title",

 "placeholder": "Enter the journal title",

 "hidden": false

 },

 }

}

Note: a global schema isn't strictly required for this proposal to work. That is to say, Ember
forms, validation, and the general pattern of merging to a single metadata blob would still work
without a global schema. The global schema just adds discipline and uniformity to the process
of creating and validating individual schemas, and serves as a convenient single point of
documentation for known-valid fields.

required, additionalProperties:false
These properties are used for the purpose of schema validation.

If the metadata blob is validated against the global schema, the required field enumerates the
fields that MUST be present in the blob under all circumstances for it to be valid with respect to
the global schema. If this is not present, then no fields are globally required.

The additionalProperties: false field means that if the metadata blob is validated against the
global schema, all properties in the blob must correspond to properties defined in the properties
section of the global schema. Any unknown properties in the metadata blob (say, "foo" :
"bar") will result in a schema validation error.

properties
The properties section defines the global set of properties allowable in the metadata blob. It is
straightforward JSON schema.

options
The options section of the global schema defines Alpaca options for each field. These values
influence the display characteristics of each form field. Individual schemas that reference the
global options will display form fields in a consistent manner.

Individual schemas
Individual schemas list the properties to be displayed in Alpaca forms, and possibly define
additional schema validation constraints.

An example hypothetical individual schema is as follows. It defines a form containing ONE field,
`journal-NLMTA-ID`, but defines additional prerequisites - fields on the metadata blob that,
while not input by this particular form, nevertheless must be present in order to successfully
validate. In particular, this schema requires that `authors` be present. One reason for doing
this is if we wanted an NIHMS form to follow a "common" form, in which several fields have
already been defined and filled out, and we (for whatever reason) don't wish to repeat the fields
on the NIH-specific form. For now, though, just focus on the parts of the schema and how they
work

{

 "title": "NIHMS schema",

 "type": "object",

 "$schema": "http://json-schema.org/draft-07/schema#",

 "definitions": {

 "form": {

 "title": "This is the title Alpaca displays in the UI",

 "type": "object",

 "required": ["journal-NLMTA-ID"],

 "properties": {

 "journal-NLMTA-ID": {"$ref":

"http://localhost:8080/schemas/global.json#/properties/journal-NLMTA-ID"}

 },

​ "options": {"$ref": "http://localhost:8080/schemas/global.json#/options"}

 },

 "prerequisites": {

 "title": "prerequisites",

 "type": "object",

 "required": ["authors"],

 "properties": {

 "authors": {"$ref": "http://localhost:8080/schemas/global.json#/properties/authors"}

 }

 }

 },

 "allOf": [

 {"$ref": "http://localhost:8080/schemas/global.json#"},

 {"$ref": "#/definitions/prerequisites"},

 {"$ref": "#/definitions/form"}

]

}

The schema is divided into three sections, colored red, green, and blue. These designate
different parts of the schema that have different functions

/definitions/form
The "form" field of "definitions" contains the schema that will be displayed by Alpaca. It MAY
designate certain fields as required (in this example, journal-NLMTA-ID is required), and MUST
contain property names that correspond to properties defined in the global schema. Each
property SHOULD reference the global schema property via a JSON reference ($ref). All fields
defined here MUST be displayed by Alpaca in the Ember UI.

This is a convention defined by PASS for the purpose of explicitly demarcating which forms are
intended to be displayed. The contents of /definition/form is a valid JSON schema as defined by
the JSON schema spec.

/definitions/form/options

Individual schemas SHOULD define a /definitions/form/options property containing
Alpaca-specific field definitions. These contain labels for display, formatting information (e.g.
text area height), and custom validation and/or behavior not specifically defined by JSON
schema. In general, for the sake of consistency, the global schema defines a global set of
options, and individual schemas SHOULD reference i with a JSON reference. That being said,
it is fine for an individual form to customize the appearance of firm fields by defining their own
set of options

The location of the "options" property is a convention defined by PASS. The contents and
semantics of the "options" object are defined by Alpaca

/definitions/prerequisites
The "prerequisites" field of "definitions" defines a schema that is NOT displayed in screen. Its
sole purpose is for introducing validation constraints for metadata that is present in the blob, but
not populated by the forms being displayed by this schema. In the example, the "authors" field
is required to be populated. Schemas MAY have a prerequisites section if they have this
additional validation need, but may omit if if not. If validation with respect to this prerequisites is
desired, the schema author should reference this section in the allOf section of the schema

The naming of this section is a convention for schema writers. Ember will not specifically look at
this section, and it is possible to name this section something else. Only by referencing this

section in the allOf section of the schema will this section be used for validation, as part of the
normal JSON schema validation spec

/allOf
allOf is defined by JSON schema as a list of schemas (or references to schemas) that MUST be
satisfied in order for the data to be considered valid with respect to this schema. In the example
shown, data must be valid with respect to three schemas, included by reference:

●​ The global schema
●​ The form schema
●​ The prerequisites schema

It is up to the author to decide the set of schemas to validate against. Alpaca only validates
against the form schema. Individual schemas SHOULD validate against the global schema as
well. In any case, Ember SHOULD display a warning and MUST prevent submission (but
possibly allow saving, in the case of proxy submission if incomplete metadata) of the metadata
blob. The validation MUST be against the contents of the metadata blob after all form data from
a given form has been merged into it.

Extending schemas with additional information
Additional properties may easily be added to /definitions in a schema without affecting this
proposal. For example, suppose one wishes to include mapping information from JSON fields
to metadata fields in a particular format, for a particular repository. This could be as easy as
placing it in /definitions/mappings

{

 "definitions": {

 "form": {

 // form stuff

 },

 "options" : {$ref: whatever},

 "mappings": {

 "repository": "JScholarship",

 "fields": {

​ "title": "dc.title",

 // etc

 }

 }

 }

}

Concrete proposals for specific extensions is out of scope for this document

Implementation notes

Using Alpaca
As mentioned earlier, forms intended to be displayed in individual schemas are present in
/definitions/form. This location is a convention defined by the PASS specification. Therefore,
Ember must retrieve the contents of this section of the schema, and send it to Alpaca for
rendering. Likewise, the same must be done with Alpaca's options. Furthermore, Alpaca must
be provided the metadata blob in order to pre-populate fields according to pre-existing content
This may be done as follows:

var blob = getMetadataBlob() // Get the pre-existing metadata blob somehow
var schema = getSchemaFromSchemaService() // get the schema somehow

var form = {
 "data": data,
 "schema": schema.definitions.form,
 "options: schema.definitions.options
}

// Have Alpaca render the form
$("#whateverTheFormIs').alpaca(form)

Merging and validation.
Any operation that updates the contents of the metadata blob (including Alpaca forms) MUST
merge the new contents with the existing contents of the blob. For example, using JQuery:

$.extend(true, metadataBlob, alpacaFormData)

validationResults = validator.validate(metadataBlob, alpacaSchema)

This takes the content of the javascript object alpacaFormData, and merges it into
metadataBlob.

Schema validation should occur after relevant content has been merged in to the blob. It can
occur immediately after entering in the form data, or as a final step prior to submission. In the
example above, alpacaSchema was the individual schema used to generate the form that
produced alpacaFormData, and validation compared the resulting merged contents of
metadataBlob with the individual schema.

Furthermore, please note that Alpaca mutates the schemas it is given, in ways that are
incompatible with the JSON schema specification. Therefore, if you are validating a schema
immediately after having displayed that schema in Alpaca, it is important to make a defensive
copy - either of the schema given to Alpaca, or the validator. For example:

var safeSchemaCopy = JSON.parse(JSON.stringify(schema))
var form = {
 "data": data,
 "schema": schema.definitions.form,
 "options: schema.definitions.options
}

// This will taint the contents of 'schema'
$("#whateverTheFormIs').alpaca(form)

// This will validate OK
validationResults = validator.validate(metadataBlob, safeSchemaCopy)

Dereferencing
Alpaca has some ability to dereference any $ref that appears in the schema, but this ability is
limited. Most notably, Alpaca cannot include parts of external documents (for example "$ref":
"http://localhost:8080/schemas/global.json#/properties/authors"). To work around this either the
schema service needs to serve already dereferenced schemas (where the contents of $ref are
replaced with their dereferenced content), or Ember will need to include a dependency such as
json-schema-deref which will dereference all $refs before handing the schema to Alpaca for
rendering.

Strategies
For each individual schema that defines forms in /definitions/form, Ember shall display a form.
This means that the number and ordering of schemas produced by the schema service
significantly affects the user experience. Some approaches for producing a list of schemas
include:

●​ One single form. The schema service produces a single individual schema, based on
merging the required and optional fields from the list of repositories applicable to a given
deposit

●​ One form per repository. This is perhaps the simplest approach implementation-wise,
where each repository has a single schema associated with it, which enumerates the
optional or required fields for the repository.

●​ A common form, with additional forms to capture repository-specific metadata. This
resembles the current approach. It would involve designing a "common" schema, and
individual schemas for each repository. Care and coordination is necessary in this case
for maintaining the common schemas and individual schemas in lock-step.

Advocating for a particular strategy, and designing a schema service to implement that strategy,
is out of scope for this document.

Demo
There is a demo on github at https://github.com/birkland/schema-demo
This shows a simple alpaca form based on schemas using the pattern described in the doc.
You are encouraged to clone it, and play with the schemas or data!

https://github.com/birkland/schema-demo

	​
	
	Overview
	Schema Details
	The global schema
	required, additionalProperties:false
	properties
	options

	Individual schemas
	/definitions/form
	/definitions/form/options

	/definitions/prerequisites
	/allOf

	Extending schemas with additional information

	Implementation notes
	Using Alpaca
	Merging and validation.
	Dereferencing

	Strategies
	Demo

