AFM 207 Final Exam Study Package

Class 1: Introduction to Performance Analytics

What is Performance Analytics?

- Use of data analytics capabilities to answer questions about business performance and communicate findings to answer those questions.

Who uses performance analytics?

- "Measure how the company is doing in different ways, deliver information to senior management and decide how to process as a company" - Wincy Sin
- "Helps understand drivers of a business and tailor your communications to who you are talking to" Myuran Raventhiran
- "Triangulate social media data with actual sales and analyze what people are buying at the register, what they are buying, what categories are going up/down, brand share so who's capturing the market" - Nilofer Ahmed

Key Concepts

Business Performance

- Business Model: Segments and hierarchies
- Key Performance Indicators (KPIs)
- Root cause analysis performance driver trees and 5 Whys

Data Analytics

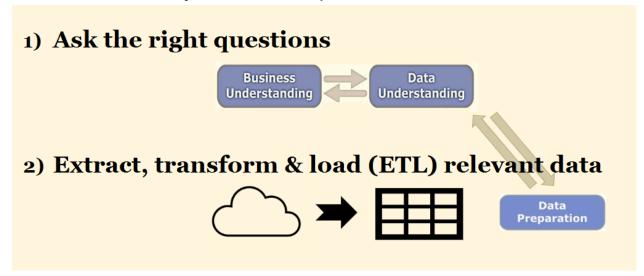
- Process: CRISP-DM steps
- Exploratory + explanatory analysis
- Tableau dimensions + measures
- Tableau functions + charts

Communication skills

- Effective visual display of data
- Storyboards + build a Tableau story

Class 2: Data viz for analysis - build scatter plots and maps to use in your story

Trailhead Module Unit: Data Analysis in Tableau Desktop, Compare Measures Using a Scatter Plot


Business Canvas Model

- 1. Customer segments different groups business aims to serve
- 2. Value proposition -
- 3. Revenue streams how business
- 4. Channels how they communicate and deliver value
- 5. Customer relationships how to establish and maintain relationships
- 6. Key activities how they operate successfully
- 7. Key resources important resources that make business work

- 8. Key partners
- 9. Cost structure

Class 3

Remember that data analytics is an iterative process

EY Academic Resource Center (ARC). Introduction to Data Visualization, page 13.

Class 4 - Data viz for analysis - build tables, bar charts, and line charts

Choosing an Effective Visual

- Simple text
 - Just because you have numbers does not mean you need a graph
- Table
 - Avoid using in presentations as the audience will read and not listen
 - THERE ARE MORE EFFICIENT VISUALS
- Heat map
 - Useful the beginning to explore data and deciding where to analyze further
- Scatter Plot
 - Useful for encoding data simultaneously on 2 different axes to identify what relationship they have
- <u>Line</u>
 - Lines that connect the dots have to make sense
 - Most effective with: continuous data
- Slope graph
 - Line graph with 2 points

- Useful to focus on change between 2 points in time or difference between groups

- Bar Graphs

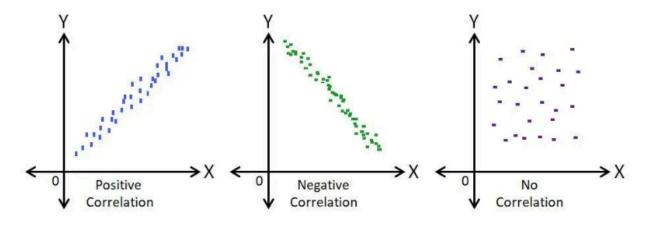
- Vertical
 - Good for categorical data
 - Easy for our eyes can compare heights to a consistent baseline
 - Rule: Must have a 0 baseline
- Horizontal
 - Good for long category names
- Stacked
 - Often misused
 - Easier to compare total & first series
 - Segments up the stack do not line up

Storytelling with Data: Let's Practice, Chapter 2 extract, Cole Nussbaumer Knaflic, (pp. 51-53).

Class 5

When Do You Use a Scatter Plot?

- When you want to compare 2 different measures (ex. Sales and revenue)


Scatter plots help:

- Easily spot trends and outliers in your data
- Identify other pattern by groups
- Identify unexpected gaps in the data

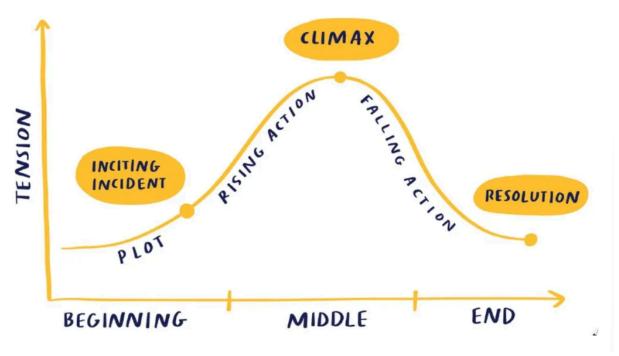
Know the Relationships Between Scatter Plot Variables

- Positive correlation
- Negative correlation
- No correlation

Scatter Plots & Correlation Examples

Source: Trailhead Module, "Compare Measures Using a Scatter Plot" Unit

Class 6

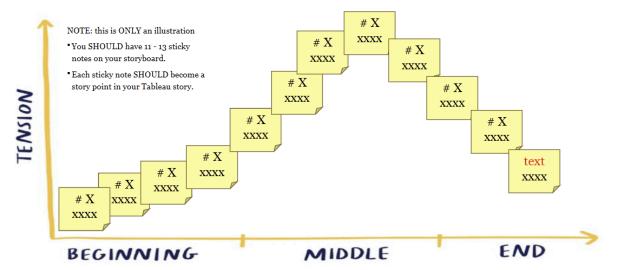

Exploratory vs. explanatory

<u>Exploratory</u>: analyzing and understanding <u>Explanatory</u>: Focus of Storytelling with Data

"Shape your story," Amy Esselman

Structure(s) of story

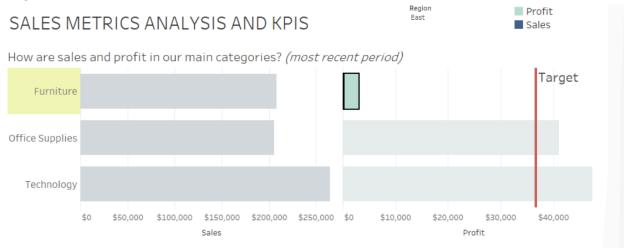
- Narrative arc is the format we use the most frequently as it is the shape that can best describe many different business scenarios

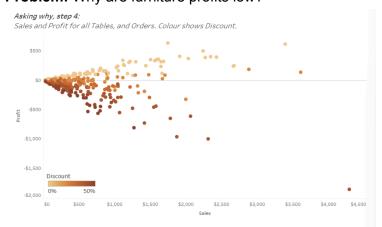


"Shape your story," Amy Esselman, Aug 22

- **Beginning** is the plot (inciting incident)
 - Share relevant background context
- **Middle** introduces the twists in found during the analysis (rising action)
 - Tension builds up until we hit the climax
- End
 - Brings story to a close by resolving the tension
 - Done by offering conclusions, recommendations and next steps
- Arcs do not always have to be symmetrical
 - sometimes you may want to provide more context upfront to provide the audience with more information, or more tension to create a sense of urgency

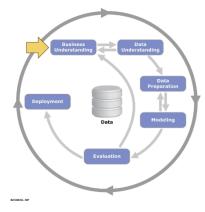
Class 7 - Build a basic Tableau story to explain what happened and why

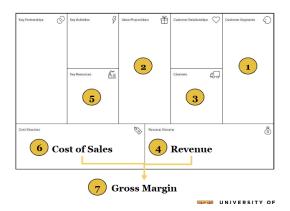

- A Story is a sequence of visualizations that work together to convey information
 - Stories can be used to tell a data narrative, provide context, demonstrate how decisions relate to outcomes, or to simply make a compelling business case.
- Each individual sheet in a story is called a story point
- Purpose of a conclusion: to reinforce the key message(s) you want the audience to remember.
 - A summary sentence that explains what you learned through the analysis
 - One or two impactful, memorable statements or visuals about the most important takeaway.


Class 8 - Service Business Model: Segments, KPIs, Performance Drivers, and Data

- Identifying the problem is the easy part, the hard but crucial part is getting to the root of the problem so you can take action.
- When finding hidden insights within your data you must ask why and ask why again
- The "5 whys" technique created by the founder of Toyota asks "why" of a problem, then
 continues to ask "why" for each answer or explanation given to determine the root cause
 of a defect.

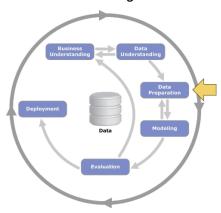
Blog example




Problem: Why are furniture profits low?

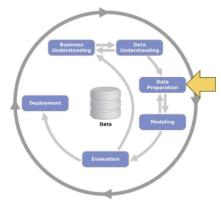
Root cause: After asking why multiple times we see that by providing a discount on tables, we make a loss rather than a profit.

What do we know about Gourmet Grilled Cheese (GGC)?


Sales Transaction data – Attachment B

- Available categorical variables
- Available numerical variables
- What variables are not readily available?
- Could we access missing variables? How?

Class 9 - Prepare Data + Build Charts for Exploratory Analysis

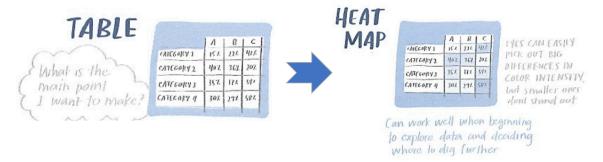

Checklist for effective exploratory analysis

- 1. Load and prepare relevant, accurate data
- 2. Select appropriate charts to explore answers to planned questions
- 3. Add clear, descriptive chart titles
 - e.g., rename sheets
- 4. Build simple charts that are easy-to-read AND easy-to-understand
 - Consider axis titles, axis labels, other text to make it easy-to-read
 - Consider colours, data labels, and/or data sorts if needed easy-to-understand
- 5. Make select charts interactive so users can explore "why"
 - Using filters and sorts

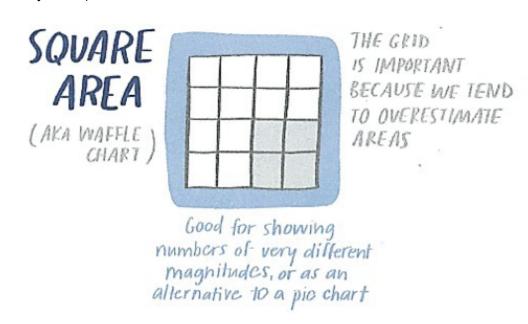
- Build a hierarchy for menu groups and menu items
- 2. Add menu groups to the table you build for quantity sold for each menu item in each fiscal year
- 3. Play with drill down functionality

Link to help page if needed

Note: CRISP-DM image sourced from Wikipedia


Numerical variables available: quantity, price & cost

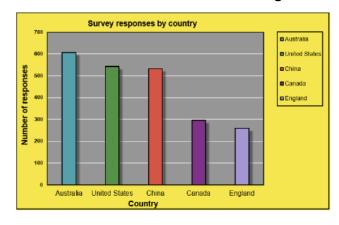
Calculate variables for:

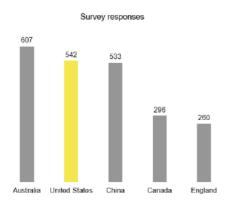

- 1. Revenue
- 2. Cost of Sales
- 3. Gross Margin (\$)
- 4. Gross Margin %
- 5. Number of Orders
- 6. Average Order Value (AOV)

Class 10 - Make Data Visualization Interactive - Use Tableau Hierarchies, Filters and Sorting

 Heat maps can be useful for exploratory analysis as it uses coloured cells to help visualize data in a table in addition to the numbers.

 Area Chart (Treemaps in Tableau) are also useful for exploratory analysis as it allows you to visualize numbers of vastly different magnitudes (i.e. when a pie chart would have too many slices).

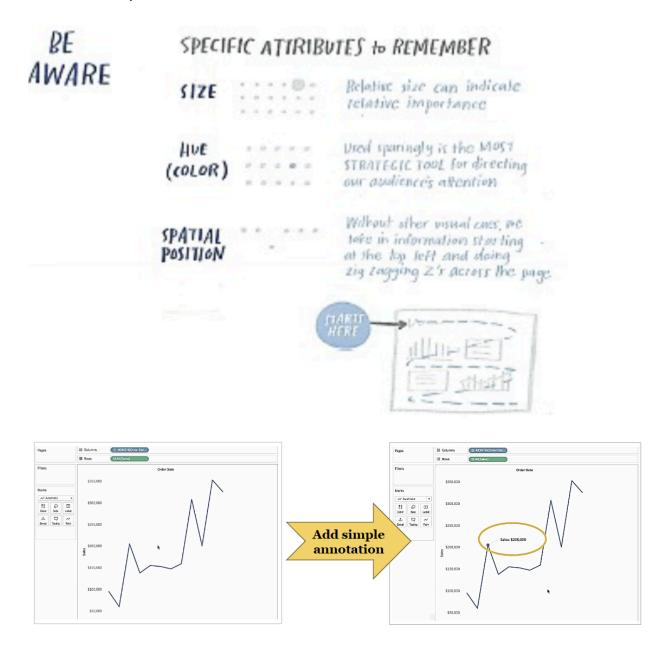



Class 11 - Build a Tableau Story to Communicate the GGC Performance Diagnostic

The analytical mindset

- Asks the right questions, using your understanding of the business, available data, and stakeholder needs to plan a performance diagnostic
- Load relevant data and apply appropriate data analysis techniques, using exploratory analysis to:
 - describe performance outcomes, and
 - diagnose the root cause.
- Interpret and share results, applying explanatory analysis to communicate answers to three key questions:
 - 1) What happened?
 - 2) Why did it happen?
 - 3) Now what?

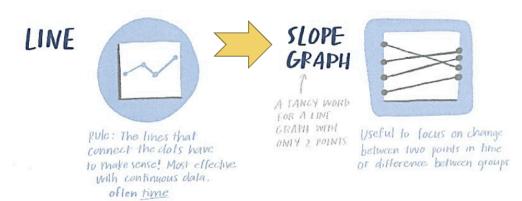
Eliminate clutter to focus on the message in the data



Removed:

- Background(s)
- Redundant labels
- Redundant legend
- Borders
- Multiple colours
- Special effects (shadow on bars)
- Grid lines (lighten or remove)
- Y-axis (add data labels on bars)

Tufte's principles highlight that "excellence in statistical graphics consists of complex ideas communicated with:


- Clarity
- Precision
- Efficiency.

- **Slope graphs** used for **explanatory analysis**, filtered to focus attention and eliminate clutter.

for exploratory analysis

for explanatory analysis

Tableau story creation

- 1. Tailor the story title and story points to audience needs, knowledge level, and desired action.
- 2. Outline the beginning, middle, and end of story on a storyboard
- 3. Choose a simple chart for each story point AND add a key observation/ insight for each story point [caption]
- 4. Eliminate unnecessary clutter from each chart/story point
- 5. Focus audience attention on key data (e.g., add annotations or use size and colour sparingly).

Exploratory vs Explanatory Analysis

- Exploratory Analysis

- What you do to understand the data and figure out what might be noteworthy or interesting to highlight to others.

- Explanatory Analysis

- What you do to communicate what's noteworthy or interesting from your exploratory analysis to the target audience.

- Pearl analogy

- **Exploratory** is like hunting for pearls in oysters. You might have to open 100 oysters just to find two pearls.
- **Explanatory** is where you have a specific thing you want to explain, in this case the two pearls.