

CSC466 Bi-Weekly Update 2
March 7, 2025

Ryan Dreher, Ben Howland, Parris Mook-Sang-Forbes

I. ​ Progress Summary
​ Since our previous bi-weekly update, we have focused on collecting data for future analysis using
the Mininet model. Final test-environment configuration items that were unfinished before the previous
update were completed, including the adjustment of the Mininet architecture to follow the proposed
network model more precisely. Data on key FTP performance metrics was collected using many of the
tools we outlined in the previous update. These metrics were obtained for our three chosen FTPs (SFTP,
FTPS, SCP) across varying network conditions, for both singular large-file and numerous small-file
transfers, and with varying key encryption standards. Lastly, this data was recorded to spreadsheets for
our project’s upcoming data analysis phase.

II. ​ Data Collection: Method and Challenges
As outlined two weeks ago, the test environment is established on a virtual machine (VM) with a

fresh Ubuntu 24.04.2 LTS Server, outfitted with a standalone installation of Mininet and an array of
benchmarking packages (iperf3, curl, iftop, nload, tcpdump, iotop, htop, and Wireshark). Mininet’s
Python API enables us to build our desired architecture (see figure below) in a Python environment,
where we can automate our tests via scripting.

Figure 1: Mininet Topology

Our custom topography is described in a class, which is defined by the network’s endpoints (hosts), routers
(switches), and the connections (links) between them. The figure above is slightly simplified as each router needs
to be connected to a switch, which then connects all devices within a domain. The level of jitter and delay
assigned to each link can be adjusted. However, our Mininet is only masquerading as a network of servers; in
reality, it is just one server. Therefore, we must rely on Open vSwitch (OVS) – Mininet’s pre-installed default
switch implementation – to create virtual network interfaces and simulate traffic routing.

In the initial attempts to acquire our data, we encountered an issue which took some time to overcome. The client
reported no route to the destination server despite the server receiving at least some of the data from the client.

1

The cause for this was determined to be the configuration of IP addresses. Initially, the link between the two
networks (between the routers) was not correctly configured using known public and private IPs, so there was no
route to exit from a given domain. This was eventually corrected to add a proper route utilizing the commands
shown below in Figure 2.

​

Figure 2: IP configuration required to connect two simulated network domains.

Another challenge we faced in trying to collect the required data was related to using the FTPS protocol. In the
existing script, we must destroy the network structure and change the configuration/parameters each time we run a
test. With SFTP and SCP, which use SSH, which works by the client providing the private key in the command
and only requires opening a port for OpenSSH, this does not cause any problems. FTPS, however, utilizes SSL
certificates for authentication in implicit mode, with the server doing the authentication. Because the server is the
one serving the SSL certificate, this causes problems with reachability and transfer completion each time a new
test is run.

​ In addition to the previously discussed tests of each protocol in varying network conditions with either
small or large files, we have added a new test to determine the performance effect three cryptographic hash
functions on the same SSH key have on overall transfer time. This was added to increase thoroughness in our
testing and better determine what kinds of security and performance tradeoffs we can expect in different
conditions and what we can tolerate based on the application. The key types/standards used are listed below:

SFTP, SCP: ED25519, RSA-2048, and RSA-4096

FTPS: ECDSA P256, RSA-2048, and RSA-4096

These were selected because RSA-2048 is the most commonly used key type currently and provides moderate
security, RSA-4096 provides enhanced security with a noticeable increase in time to generate, and the last key
type represents an older, depreciated, but third-most popular option for each protocol type. From testing, these
algorithm types make a significant difference for transfers, where the older algorithms are noticeably slower.

To measure encryption performance on FTPS, which is not based on SSH, we have created a self-signed SSL
certificate for each standard using OpenSSL. Because we ultimately control the network, we do not need to worry
about the real-world security risks associated with self-signed certificates. By changing the vsftpd (Very Secure
FTP Daemon) config, we can select which of these certificates to use.

Key parts of the Python script used for Mininet configuration and data collection are provided below, which,
while still subject to potential revisions, has provided us with our initial data for analysis. Data will be stored in
CSV format. The project report will give the complete code (in the interest of maintaining the readability of this
update).

2

Defines specific parameters for differing network types:

Building Mininet topology:

Metric gathering:

Modifying network conditions:

3

Figure 3 shows a sample of the terminal output, which indicates the type of transfer occurring, source and
destination network nodes, encryption key in use, current simulated network architecture (i.e., which type of
network are we attempting to emulate), file size, and overall throughput rate and time it took to complete the
transfer.

Figure 3: A sample of terminal output from the data collection.

Finally, Figures 4 and 5 below show an example of some of the data obtained through the testing, which we will
use to conclude the following stages.

Figure 4: Sample of some collected data for a single file transfer.

4

Figure 5: Sample of collected data showcasing collection before, during, and after transfer.

III.​ Next Steps
​ As outlined by the project proposal, the project's next phase will mainly consist of data analysis.
The first step in this analysis will be aggregating and partitioning data for all three protocols that
correspond to a given network test condition, which will allow us to generate data visualizations more
easily.
Once complete, an initial check of the data across test runs will be made to ensure no extreme outliers or
inconsistent values are found. This can be done through standard deviation or variance calculations.
Additional test runs may be performed if outliers exist to ensure sufficiently accurate data. After this, we
will be able to compare the values numerically and graphically for each performance metric collected in
each network condition category. From this, we can determine the tradeoffs for each file transfer protocol
and whether these differences changed or are magnified under different network conditions. Testing each
protocol with different key encryption standards will shed further light on performance vs security
tradeoffs that may impact scalability. Based on our findings, we can suggest each protocol’s strengths,
weaknesses, and optimal use cases.

IV: References
[1] Mininet Project Contributors. (2022). Mininet walkthrough. Mininet. https://mininet.org/walkthrough/

[2] SpaceX. (2025). Starlink specifications. Starlink.
https://www.starlink.com/legal/documents/DOC-1400-28829-70

5

https://mininet.org/walkthrough/
https://www.starlink.com/legal/documents/DOC-1400-28829-70

	CSC466 Bi-Weekly Update 2
	I. ​Progress Summary
	II. ​Data Collection: Method and Challenges
	III.​Next Steps
	
	IV: References

