

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Plan de Estudios 2026 de la Licenciatura en Matemáticas

ÁLGEBRA GEOMÉTRICA Clave Área de Semestre Créditos Matemáticas conocimiento A partir del 10 Campo Álgebra Etapa Curso (X) Taller () Lab () Sem () Modalidad Tipo T (X) P () T/P() Obligatorio () Optativo (X) Carácter **Horas** Obligatorio E () Optativo E() Semestre Semana Teóricas Teóricas 80 **Prácticas** 0 **Prácticas** 0 Total 5 Total 80

Seriación				
Ninguna ()				
Obligatoria ()				
Asignatura antecedente				
Asignatura subsecuente				
	Indicativa (X)			
Asignatura antecedente	Álgebra Lineal I, Cálculo Diferencial e Integral II, Geometría Analítica I.			
Asignatura subsecuente	Seminario de Álgebra A, Seminario de Álgebra B, Seminario de Álgebra C.			

Objetivos generales:

Comprender, demostrar y analizar una generalización de la geometría euclidiana mediante las propiedades de figuras geométricas que son invariantes bajo cierto tipo de transformaciones como rotaciones y traslaciones.

Objetivos específicos:

- Reconocer distintos tipos de estructuras algebraicas mediante su axiomática.
- Distinguir cuando una geometría es plana afín a través de su axiomática.
- Construir el plano proyectivo de un plano afín usando las propiedades de geometrías planas.
- Detallar geometrías simpléctica y ortogonal a través de sus propiedades.
- Determinar la estructura de ciertos grupos (simpléctico y ortogonal) para la creación de estructuras más complejas (álgebra de Clifford).

	Índice temático			
	Tema		Horas semestre	
			Teóricas	Prácticas
1	Estructuras algebraicas		15	0
2	Geometrías planas afines		20	0
3	Geometrías proyectivas planas		15	0
4	Geometría simpléctica y geometría ortogonal		20	0
5	Los grupos simpléctico y ortogonal		10	0
	Ţ	otal		80

		Contenido Temático	
		Tema y subtemas	
1	Estructuras algebraicas		
	1.1	Operaciones binarias internas y externas.	
	1.2	Magmas, semigrupos, monoides y grupos. Ejemplos finitos y no finitos, conmutativos y no conmutativos.	
	1.3	Anillos, anillos con uno, anillos con división y campos.	
2	Geometrías planas afines		
	2.1	Geometrías planas.	
	$\begin{vmatrix} 2.1 \\ 2.2 \end{vmatrix}$	Axiomas de geometrías planas afines.	
	2.2	El grupo de transformaciones afines.	
	2.3		
	2.4	Coordinatización de geometrías afines por medio de anillos con división.	
	$\begin{vmatrix} 2.5 \\ 2.6 \end{vmatrix}$	Teorema de Desargues.	
	$\frac{2.0}{2.7}$	El teorema de Pappus y la conmutatividad. Geometrías ordenadas.	
	2.8	Comentarios sobre las pruebas de no existencia de planos afines de orden 6 (opcional)	
	2.9	Comentarios sobre existencia de más de un plano afín de orden 9 (opcional)	
	2.10	Semejanzas e isometrías de \mathbb{R}^2 . Clasificación y propiedades (opcional)	

3	Geometrías proyectivas planas		
	3.1 3.2 3.3 3.4	Los axiomas de geometrías proyectivas planas. Planos proyectivos finitos. Proyectivización de planos afines. El teorema fundamental de la geometría proyectiva.	
4	Geon	netría simpléctica y Geometría ortogonal	
	4.1 4.2 4.3 4.4	Estructuras métricas sobre espacios vectoriales. Definiciones de las geometrías simpléctica y ortogonal. Propiedades comunes y características distintivas. Geometría de un campo finito. Geometría de un campo ordenado.	
	4.5	Teorema de Sylvester.	
5	Los grupos simpléctico y ortogonal		
	5.1 5.2	Estructura del grupo simpléctico. El grupo ortogonal de orden 3.	
	5.3	Espacios elípticos.	
	5.4	El álgebra de Clifford.	
	5.5	La norma espinorial.	

Estrategias didácticas		Evaluación del aprendiza	aje
	00		0.0
Exposición	(X)	Exámenes parciales	(X)
Trabajo en equipo	()	Examen final	(X)
Lecturas	()	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	()
Prácticas (taller o laboratorio)	()	Participación en clase	(X)
Prácticas de campo	()	Asistencia	()
Aprendizaje por proyectos	()	Rúbricas	()
Aprendizaje basado en problemas	()	Portafolios	()
Casos de enseñanza	()	Listas de cotejo	()
Otras (especificar)		Otras (especificar)	

Perfil profesiográfico		
Título o grado	Licenciatura en Matemáticas, Matemáticas Aplicadas, Física, Actuaría, Ciencias de la Computación o equivalente.	
Experiencia docente	Con experiencia docente en el área o en áreas circundantes.	
Otra característica	Especialista en el área de la asignatura a juicio del comité de asignación de cursos	

Bibliografía básica:

- 1. Artin, E., Geometric Algebra, 4th Ed., Interscience Publishers, Inc., New York, 1965.
- 2. Chevalley, C., *The Algebraic Theory of Spinors*, New York: Columbia University Press, 1954.

Bibliografía complementaria:

1. Baez, C. J., *The Octonions*, Bulletin (New Series) of the American Mathematical Society, Vol. 39, Núm. 2, Págs. 145, 2002.

 $\frac{https://www.ams.org/journals/bull/2002-39-02/S0273-0979-01-00934-X/S0273-0979-01-00979-00979-01-00979-01-000979-01-00979-01-00979-01-00979-01-00979-01-00979-01-00979-01-00979-01-0$

2. Beutelspacher, A., y Rosenbaum, U., *Projective Geometry: From Foundations to Applications*, Cambridge: Cambridge University Press, 1998.

https://webhomes.maths.ed.ac.uk/~v1ranick/papers/beutel.pdf

3. Dougherty, S. T., *Combinatorics and Finite Geometry*, Springer, Undergraduate Mathematics Series book, 2020.

https://link-springer-com.pbidi.unam.mx:2443/book/10.1007/978-3-030-56395-0

- 4. Mihalek, R. J., *Projective Geometry and Algebraic Structures*, Academic Press, New York, 1972.
- 5. Pontriagin, L., *Topological Groups*, New York: Gordon and Breach, 1966.

Recursos digitales y software:

 GeoGebra Aunque es más conocida por su uso en geometría, GeoGebra tiene herramientas que pueden ayudarte a visualizar operaciones de grupos, especialmente en el caso de simetrías y grupos cíclicos.