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Disclaimer

This roadmap has been jointly developed in trustful cooperation among scientists of the
European Union, the United States of America and a few other countries. Scientists with
different scientific backgrounds working in the field of nanotechnology have cooperated
with the main objective to provide as broad an overview as possible about the young and
rapidly evolving field of “nanoinformatics”. By no means was the intention to provide all
possible details. Instead, interested readers will find plenty of additional references
mentioned in each of the chapters that will provide more detailed information.

The opinions expressed in this document are those of the authors and do not necessarily
represent the opinions of their respective organizations or the US Government. Mention
of product names does not constitute endorsement.

The statements and opinions contained in the individual chapters are solely those of the
individual authors and are not legally binding with respect to different regulatory
frameworks. In particular it should be noted that some of the terms might be defined
and used differently in the US versus the EU, also within different scientific disciplines
and within different regulatory frameworks. Therefore, within the definitions sections
we attempted to provide an overview, to explain the most important terms, and to
highlight some that may have different meanings.
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1. Executive Summary

The Nanoinformatics 2030 Roadmap is a compilation of state-of-the-art commentaries
from multiple interconnecting scientific fields combined with issues involving
nanomaterial risk assessment and governance. As illustrated in Figure 1, the scientific
fields represented include: materials science/physico-chemical characterization;
ecotoxicity & human toxicity (including —omics); computational modeling; and
informatics. Each has its own history, precepts, test methods, analytical tools, metadata
forms, ontologies and criteria for interpreting experimental results. Additionally, each
has its own research community. The Nanoinformatics Roadmap adds a separate
consideration, namely, capturing the formal environment, health and safety (EHS) data
requirements, e.g. good laboratory practice, related to regulatory assessments and
governance. Coordination of future research effort and a shared vision, rather than
programmatic direction, is the Roadmap’s role.

These fields are in different stages of development and have contrasting levels of
complexity in terms of information requirements, testing methods, terminology and
protocols. Even the more established fields are re-examining testing protocols and
accepted data formats to include factors affecting nanomaterials’ transformations and
the consequent dynamic nature of exposure and dose. Nevertheless, a shared informatics
infrastructure can be identified. The technical data storage, data retrieval and theory
development capacities required to support modeling functionalities for regulatory
guidance can be pursued through a modular growth of the datasets, ontology and
structure to meet goals such as a lessened reliance on the vagaries of whole animal
testing. With this approach, the nanoEHS community can lay the foundation for an
incremental growth building on the structure and ontology developed in earlier projects.
Methods can be developed and applied to systematically engineer ontology development
and the communication processes that can shepherd the interrelated fields to increasing
maturity in terms of protocols, language, testing requirements and integrated data
formats.

Figure 1: The Roadmap: from disparate fields to an integrated nanoinformatics infrastructure
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While each scientific field has its own direction, (eco)toxicity with its important role in
ensuring the responsible development of nanomaterials focuses the Roadmap on
aligning progress among these fields with the criteria used by regulators for registering
chemicals, pesticides and drugs. We recognize that not every adverse outcome pathway
(AOP) pursued in the toxicological sciences will be one initiated by a nanomaterial, nor
will every physico-chemical property that can be predicted through computer modelling
influence toxicity. However, when they do align, there is an imperative that the results be
useful to the regulator.

The Nanoinformatics 2030 Roadmap envisages a flow of data from several empirical
fields into structured databases for eventual use by computational modelers in
predicting property, exposure and hazard values that will support regulatory actions for
a target nanomaterial. A very simplified data flow is illustrated in the figure below.

Figure 2: Simplified Data Flow proposed in the NanoInformatics 2030 Roadmap
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[t is our expectation that current interest in Integrated Approaches to Testing and
Assessment (IATA) & Alternative Test Strategies that minimize whole animal testing and
the simple desire to have a mechanistic understanding of nanomaterial (eco)toxicity will
lead to greater reliance on computational modeling to predict properties for new
materials or their toxicities. A growing knowledge commons supporting robust modeling
capabilities, which predict properties, exposures and hazards of nanomaterials, would
permit fuller implementation of the EU’s strategy surrounding safe-by-design. Properties
driving either desirable nanomaterial properties or undesirable EHS profiles could be
explored as predicltions during early stage research, with later confirmation as a
nanomaterial approaches commercialization.

Considering the range of likely readers, probably experts in one field interested in
understanding developments in nanoinformatics, the authors have written the Sections
to be read by a general audience. The reader can either start with their own field or with
the milestones or with the Sections outlining the several nanoinformatics communities.
In general, the Roadmap has three categories: an administrative grouping (Executive
Summary; Definitions and Context; Objectives); a technically oriented informatics
grouping (informatics, materials modeling, statistical computation, omics
bioinformatics) and a community of research oriented grouping (stakeholders, database



projects, initiatives and milestones & pilot projects). Each Section is self-standing and,
where appropriate, cross-cutting issues are identified.

The Roadmap’s Sections do not follow either the complexity in Figure 1 or the simplified
data flow in Figure 2. As a guide for the reader, we offer the following commentary
connecting the several Sections relying primarily on Figure 2.

Empirical Fields:

e Toxicity (and ecotoxicity) is the subject of a separate Regulatory Research
Roadmap. There is a short overview of biological testing from an informatics
perspective in the Milestones (Section 12.2).

e The burgeoning field of omics is discussed in Section 8 with emphasis on
transcriptomics, the most advanced facet from an informatics standpoint.

e Physico-chemical characterization is interspersed as property representation
(Section 5.2) and descriptors (Sections 6.2 and 7.2). As with toxicity, there is a
short overview from an informatics perspective in the Milestones (Section 12.3).

Database:

e Informatics involves structured datasets, where the structure is found in the
vocabulary used, i.e., a controlled vocabulary, and in the relationships among
terms, which is the ontology (Section 5.9). Essentially, the database curator
annotates experimental data to maximize its utility beyond that of the original
field. In effect, the curator deconstructs the original experiment into components
that reflect a physico-chemical understanding of nanomaterials to supplement
the biological understanding found in bioinformatics ontologies.

e From a strict data flow standpoint: data collection (Section 5.6) leads to material
representation (Section 5.1) and property representation (Section 5.2) that are
curated (Section 5.5) using metadata (Section 5.8) so that data can be retrieved
(Section 5.7) and exchanged (Section 5.10).

e [tis unlikely that there will be one authoritative database, which has led to the
development of data transfer formats such as ISA-TAB-nano (or upgrades to
ISA-JSON) for exchanging data with other databases or modeling programs
(Section 5.10.1). The reasons for multiple databases are many including issues of
unpublished data, different foci, proprietary data or even the mundane issue of
resources for database maintenance (Section 5.3 and 5.13). In the Roadmap,
there is a preference for using extensions compatible with the publicly available
ISA standard used in bioinformatics.

Computational Modeling:

e Where informatics deconstructs the nanomaterial and properties, computational
modeling re-constructs using those parameters (descriptors, Sections 6.2 and
7.2) viewed as most applicable to the property being predicted. The descriptors
may be properties measured for related materials (grouping), or may be concepts
found in theories or may be a hypothesis underlying a database query.



e (ollecting curated data (Section 5.10) of sufficient extent (size of dataset;
replicates; dose-response) has led to several data-filling approaches (Section 6.4)
that in turn rely on nanomaterial grouping (Section 6.3).

e Inherent to computational modeling is relating the material description and base
physico-chemical properties to the biological outcomes, especially if some
descriptors are not readily measurable. This challenge leads to several
approaches to deciding on descriptors: in material representation (Section 5.2),
in selecting among primarily measured properties (Section 6.2) and use in
statistical models to predict properties, QSPR, or biological activity, QSAR,
(Section 6.4); in calculating descriptors otherwise difficult to measure from
theory and models (Section 7.2) before coupling to biological events (Section 7.5).

e There is of course a need to validate model predictions, which can be done by
splitting datasets into training and validation sub-sets for internal consistency or
by measuring properties of material libraries known to modify a target property.
A modeling overview is given in the Milestones (Section 12.3).

Validation:

e Validation is a critical step if computational model predictions are to find use with
regulators, especially for data-filling, the step in pursuing a regulatory action
where it is proposed that a prediction is sufficiently valid that making a
measurement is not considered necessary.

e The validation requirements are presently unclear, but we can expect that they
will be more rigorous for predicting biological outcomes than for nanomaterial
properties that have little relevance to toxicity. In toxicity, the mechanism can be
termed a mode of action or an adverse outcome pathway (AOP), which is the
subject of the Regulatory Research Roadmap and given an overview from an
informatics perspective in the Milestones (Section 12.2)

e [n all cases, regulators will require that there be a proven relationship among the
computational model’s algorithm, its domain of applicability (grouping, Section
6.3) and the mechanism underlying the effect induced by the specific property.
However, the nature of regulatory requirements will emerge and be
communicated through feedback from data-filling exercises (Section 6.4).

NanolInformatics Community

While there has been funding for data management on an individual project basis, the
use of this information in a regulatory context has been a challenge. In general,
nanoinformatics has relied on communities of research, such as those outlined in Section
10. The Roadmap itself is an example of one such community of research. Though
initiated in Europe, the Roadmap expands on an earlier U.S. document. The milestones
are based on the results of several international workshops whose lead authors were
approached during the review process (Section 4). Throughout the process, issues and
draft Sections were discussed at European (WG4) and U.S. (nanoWG) teleconferences
whose participants have met regularly for several years on nanoinformatics. Colleagues
from Canada and Australia participated, as well as those active in ASTM International’s
E56 and ISO’s TC-229. In addition, the EU-US nanoEHS 2016 and 2017 meetings were
used for face-to-face discussions.



There are also broader issues that cannot be covered fully in this document. The
differing perspectives among stakeholders (Section 9) require a separate examination.

2. Definitions in an Operational Context

Nanotechnology covers a broad array of scientific disciplines, each with a specialized
language and at times utilizing different definitions of terms like nanoscale,
nanomaterial, etc. Informatics, on the other hand, involves the application of external
organizing principles onto the data generated within a scientific discipline. In such
situations of countervailing interests, it becomes difficult to offer a coherent glossary of
terms and definitions. For the purposes of this Roadmap, and recognizing that readers
might appreciate some explanation for those themes beyond their expertise, we instead
offer a descriptive overview illustrating their use, i.e. operational definitions.

Nanotechnology is most generally described as the application of scientific knowledge to
manipulate and control matter predominantly at the nanoscale, which explains the
broad array of stakeholders involved (see Stakeholders in Section 9) when one considers
the issues raised when commercializing the resulting products.

Informatics is the application of information and computer science methods for
collecting, analyzing, and applying data in a scientific field, e.g. bioinformatics. Thus,
nanoinformatics is a systematic methodology to collect, organize, validate, store, share,
model, analyze, and apply data involving nanotechnology processes, materials,
properties and commercial product implications; to confirm that appropriate decisions
were made and that desired outcomes were achieved from the application of the data;
and finally to convey experience to the broader community, contribute to generalized
knowledge, and update standards and training. The inclusion of the latter point of
product commercialization expands the stakeholders to include regulators and the
general public interested in nanomaterial environmental, health and safety (nanoEHS),
as well as in responsible research and innovation.

The Roadmap combines several aspects of nanoinformatics in a manner that provides
operational definitions for a number of concepts (underlined):

1) Data from credible sources are being compiled into structured, electronic datasets,
where the data may be publicly available (published) or not (unpublished laboratory
data), may be from formal regulatory submissions on specific materials (confidential
business information) and may be numerical or pictorial. We anticipate that there will be
multiple databases (structured, electronic datasets) administered independently, but
with some level of interoperability established.

2) A ‘structured, electronic dataset’ means that the database can be used to retrieve the
original data. The term ‘structured’ refers to the use of controlled vocabularies,
metadata, and ontologies during data entry in order to ensure reasonable recall and
precision in collocating findings from related studies. We anticipate that there is a role
for data curation in annotating metadata and commenting on data completeness (see
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Section 5), and some standardization within the nanoinformatics field will be necessary
if data are to be exchanged between databases.

3) Computational techniques for analysis, modelling and theory development also
impose issues of standardization in terms of data quantity, robustness, completeness
and validity. These issues may differ across stakeholder interests, where the metadata
for theory development may be less restrictive, when remaining within a single scientific
discipline. Metadata requirements for regulatory purposes may cross disciplines and
emphasize following proper test protocols, even where these are not yet validated for
use with nanomaterials. We view cross-disciplinary awareness and coordination of these
issues as a central impetus to the Roadmap as they will continue to undergo
development and refinement throughout the 2030 time frame (Milestones, Section 12).

4) The size of currently available datasets is a particular challenge for computational
modelling, raising as it does, issues of database access, data completeness among
independent studies, and even model validation. Relative to ‘big data’ topics, the number
of independent studies, the range of nanomaterials studied and the robustness of test
protocols are more limited (see Sections 6, 7 & 8)). We anticipate that these fields will
advance independently with regulatory validation & acceptance first occurring during
data-filling and grouping exercises, the preparation of registration dossiers, and the
testing programs under the appropriate regulatory frameworks (e.g. REACH, BPR,
Regulation EC 1107 /2009, US-EPA etc.) (see Sections 6, 7 and 9).

5) Computational techniques for modeling and theory development eventually lead to
predictive capabilities based on descriptive elements (descriptors, Sections 6 & 7) that
are the data already present in the ‘structured’ dataset or are the application of
innovative concepts (theory, metadata, mathematical expressions) that are validated by
the data already present in the ‘structured’ dataset. We have provided one physical
model of a nanomaterial (Milestones, Section 12.3) to serve as a shared basis for data
models incorporated into database ontologies or found as boundary conditions in
simulations or computational models.

Provided below are a number of terms with ‘operational’ definitions that should aid the
reader when navigating this Roadmap. It should be emphasized that there are many
sources for terms (e.g. ISO, ASTM, published literature) and particular care should be
taken when using these terms in a legal or regulatory context. One example of a legal
difference between the European Union and the United States is provided for ‘chemical
substance’ in Section 5.

Term Operational Definition Roadmap
Section

Controlled Standardized list of unique terms and their definitions used to index, 5

vocabulary annotate, enter and retrieve information.

Data Curation the active and on-going management of data through its lifecycle of 5

interest and usefulness to scholarship, science, and education;
curation activities enable data discovery and retrieval, maintain
quality, add value, and provide for re-use over time

Data Filling In a regulatory setting, computational methods for estimating a 6,7,12
parameter’s value for a test material using a base set of known (and
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related) materials and values; implementation requires clear definition
of the applicable domain.

Database Structured electronic dataset 2,5
Descriptor Parameters with measured, theoretically or computationally derived 6&7
values representing the intrinsic (independent of external conditions) or
extrinsic (dependent on external conditions) properties of a defined,
targeted system and that are also sufficient, mechanistically plausible,
relevant and non-redundant for use in a computational model.
Informatics The application of information and computer science methods for All
collecting, analyzing, and applying data in a scientific field Sections
Metadata .data describing the content (including indexing terms for retrieval), 5.8
context and structure of electronic document-based information and
their management over time (ISO/TR 18492:2005, term 3.8)
Nanotechnology The application of scientific knowledge to manipulate and control All
matter predominantly at the nanoscale Sections
Ontology Controlled vocabulary extended to include the relationships among 5
terms for the purpose of analysis, computational modeling and theory
development
Physical Model Representation of the physical entity that is the basis for a data model, 12
controlled vocabulary and ontology
Recall and Precision | The ability to collocate related database entries (recall) that are specific 2
to a query (precision).
Structure source of spatially resolved properties reflecting the relationships 2,56 &7

among and the manner of arrangement of a complex entity’s
components
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3. Objectives

Nanotechnology is one of the key technologies of the 21st century. The global
nanotechnology market already had a value of $39.2 billion in 2016 and is expected to
reach $90.5 billion by 2021 (McWilliams 2016). In addition, public funding sources
invested more than $67.5 billion globally during the last decade for research and
development (Scientifica Global Funding Report 2015). Nanotechnology is already used
for many different applications and the global market is increasing steadily each year.
Due to significant funding from both public and private sources, knowledge has
increased significantly during the last decades. Several large collaborative projects
investigating the environmental and health safety aspects of nanomaterials (nanoEHS)
have been finished already, with several more ongoing or starting in early 2018. In
addition, there are general toxicology advancements including high throughput and high
content methods, which may provide plenty of data within a short term period.
Therefore, as also observed in many other scientific disciplines, the amount of recorded
data has increased drastically in the last years. Nanotechnology requires integration of
knowledge from quite different disciplines such as material science, biology, chemistry,
toxicology, medicine, and computational & decision sciences. In parallel, computational
approaches are gaining increasing importance and popularity. Therefore, the
advancement of nanoinformatics will be crucial for the development and application of
sustainable nanotechnology. Within this roadmap the term nanoinformatics will be used
for the acquisition, storage and analysis of any data relevant to nanotechnology including
the development and the use of specific computational models and decision support
systems. The main focus of this roadmap is on environmental and health safety aspects
of nanomaterials (nanoEHS).

This roadmap aims to address the following objectives:

Objective 1: Foster community interactions and provide support for different
stakeholders

NanoEHS integrates knowledge from many different disciplines (e.g. material scientists,
biologists, chemists, toxicologists, risk assessors, computational experts etc.). Different
stakeholders (i.e. industry, academia, regulatory agencies, the standardisation
community and the civil society) are involved. Each is generating different types of data
and each has its own objectives and needs with respect to storage and use of the data.

This roadmap should foster the “self-assembly” of this very heterogeneous community
such that different stakeholders get to know each other and become aware of the specific
needs and objectives of other stakeholders. In addition, this document provides an
overview of the nanoinformatics processes and tools available support different
stakeholders in achieving their specific objectives. Therefore, the roadmap will clearly
describe the benefits of nanoinformatics at different phases of work within the context
of nanoEHS for different stakeholder needs.
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Objective 2: Promote capture, preservation and dissemination of all publically-
available NM measurement data

A considerable investment has already been made from public as well as industrial
sources into nanotechnology development in general but also into nanoEHS specifically.
Future resources are limited. Thus, there is a need to make the maximum possible use of
existing data, to avoid duplication of work and re-measurements but also to plan new
research accordingly to plug gaps in the existing datasets. This both requires and
promotes consistency in reporting results. It also ensures that results are secured and
data can be assessed later by others. Therefore, knowledge can be increased simply by
more detailed data analyses or by meta-analyses, which will be facilitated by an
increasing number of in silico methods or other methods not yet developed.

This roadmap supports the creation and linkage of repositories to ensure that all
publically- funded nanomaterial measurement and modeling results are deposited in
accessible repositories, so that they can feed with data the evolving infrastructure of risk
assessment and management decision support tools (e.g. SUNDS, caLIBRAte System of
Systems). Specifically, it aims to raise public awareness of the benefits of this and embed
data-sharing principles and mindsets into all levels of the research community. It
describes a step-by-step process to achieve this overarching goal and it explains what
kind of infrastructure is needed for this purpose.

Objective 3: Facilitate the (re-)use of existing data

This objective will advance nanotechnology and expedite its commercialization. To
pursue optimal data usage, a system should consider FAIR data principles and
guidelines, based on Findability, Accessibility, Interoperability and Reusability of data
and the algorithms, tools and workflows that operate on it [3].

Encouraging the scientific community and stakeholders to make use of existing data will
facilitate:

e a (better) understanding of experimental results through integration of currently
disparate datasets;

e the development of different kinds and complexities of models and their
validation using existing datasets;

e the prediction of properties and performance/ functionality of nanomaterials;

e the correlation of specific effects with nanomaterial physico-chemical
characteristics; and,

e grouping and read-across among nanoforms and bulk analogues and the
implementation of Intelligent Testing Strategies for more cost-efficient risk
assessment and Safe(r)-by-Design practices.

e the direct use of existing data to fulfill data gaps for risk assessment and
regulatory obligations

e encourage consortium and nanomaterial information exchange between
interested industry partners reducing cost and animal testing

e capture the breadth and extent of nanomaterial use

e development of appropriate EHS controls.
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This enhanced knowledge will support:

the design of new nanomaterials;

the establishment of Safe(r)-by-Design Principles;

decision making regarding the risks of nano-enabled products and processes;
regulation.

Objective 4: Identify specific milestones and pilot projects in relation to objectives
1-3

This roadmap will identify and describe the key challenges for nanoinformatics covering
data storage, data use, dissemination and exploitation for safety assessments and risk
management decision making.

It will also identify and describe specific pilot projects covering short (i.e. within the next
3-5 years), medium (i.e. within the next 5-10 years) and long-term (> 10 years period)
needs as key stepping stones / demonstrators to reach the three described objectives.

4. Introduction

This roadmap is a timely continuation of several previous efforts, namely of three
workshops, a few workshop reports, and the US Nanoinformatics 2020 Roadmap. As this
roadmap builds and extends those, they should be briefly mentioned here.

The Nanoinformatics 2020 Roadmap (4) was based on a 2010 workshop involving ~
73 participants, mainly from USA with some representatives of the EU’s Action Grid
effort (5). The following topics were discussed during this workshop and accordingly
described in the roadmap. Many of them remain pertinent:
1. Data collection and curation needs:
e Minimal information standards for nano-data sets (completeness & quality);
e Inter-laboratory studies (ILS) for test protocol and data completeness
validation;
» Standardized characterization is needed community-wide; and
e How much information is needed to trigger a “recognized hazard”?
2. Tools and methods for data innovation, analysis and simulation needs:
e A complete map of data collection and curation workflows to guide the
development of nanoinformatics;
* A mechanism for federated searches to utilize existing nanotech databases;
* Getting the science right; and
e Getting the right data.
3. Tools, training, and education perspectives:
 Data Accessibility and information sharing;
 Context is critical for effective information sharing; and
» Competing socio-cultural incentives impact data sharing.

The Nanoinformatics 2020 Roadmap listed available resources at that time and also
proposed several pilot projects.
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In 2011, COST (European Cooperation in Science and Technology) sponsored a
workshop in Maastricht with ~90 attendees on the use of QSAR methods to model
biological effects of nanomaterials (www.cost.eu/events/gntr). The resulting paper by
Winkler et al. (6) proposed 14 milestones grouped in 2-year, 5-year and 10-year time
horizons. For the most part, the milestones reflected:

« a need to generate sufficient data for model development;

e an acceptance of ‘surrogate’ assays useful for modeling if not for regulation;

e an expectation that understanding protein corona formation would provide the

necessary mechanistic information; and

« a view of informatics as a needed infrastructure for data accessibility.
The roadmap also benefited from Prof. Winkler’s more recent commentary (7). While
progress was noted, especially the availability of benchmark test materials, there remain
insufficient data resulting in a need for surrogate or fast screens, for improved
nano-specific descriptors and for an exploration of chemical grouping. The update gave
greater stress to data curation, informatics, data consolidation and standardized testing.

In 2014, the U.S. National Science Foundation (US NSF) funded a workshop held prior
to the Sustainable Nanotechnology Organization meeting in Boston on the general theme
of defining the fundamental science needed to support nanoEHS. The resulting paper by
Grassian et al. (8) identified mechanistic data gaps that when resolved would enable a
predictive biological response capability.

In 2015, the first European Modelling Conference, CompNanoTox, took place in
Benahavis, Spain. This conference was jointly organized by all European modelling and
database projects funded at that time (i.e. NanoPUZZLES, ModENPTox, PreNanoTox,
MembraneNanoPart, MODERN, eNanoMapper) together with the EU COST action
TD1204 MODENA. The resulting paper by Banares et al (9) described the most
important current challenges with respect to nanomaterials modelling. This paper
described for instance shortcomings with respect to material characterization, a lack of
suitable, validated toxicity assays and a lack of mechanistic understanding of
nanomaterial toxicity.

This roadmap builds on these documents. In chapters 5, 6, 7 and 8 the state of the art
and the current challenges with respect to data collection and data curation (Section 5),
nanochemoinformatics modelling (Section 6), materials modelling (Section 7) and
nanobioinformatics (Section 8) are described. This is followed by a description of the
“nanoinformatics community and stakeholders”, the currently ongoing nanoinformatics
activities, available databases, interesting projects and integrating activities etc.
(Sections 9 to 11). This leads into Section 12 describing suggested milestones and
several useful pilot projects grouped according to their time-horizon as short-term,
mid-term or long-term projects, which are listed and described from several
perspectives, i.e. the perspective of material characterization, the perspective of
toxicologists, of modellers and regulators.

5. Data collection and curation
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A major challenge for the nanoEHS community is the establishment of common
languages, standards and harmonized infrastructures with applicability to the needs of
the different stakeholders. The complexity of nanomaterials, and their physicochemical
properties and interactions with biological and environmental systems, leads to
increased uncertainty in the applicability of experimental data for regulatory purposes.
Thus, recent community efforts have focused on building databases that support
computational modeling and decision frameworks for nanomaterial environmental
health and safety (nanoEHS) assessment and risk management. Those based on open
standards, open source, common languages, and that have an interoperable design are
desirable.

Another major challenge for the nanoEHS community is linked to data quality and data
curation. The nanomaterial data curation topic has been the focus of multiple
collaborative efforts and publications [cite d0i:10.3762/bjnano.6.179 and follow-ups, ].
Specific recommendations regarding terminology, (meta)data requirements,
computational tools, and recommendations regarding the role of organizations and
scientific communities have been published [10.1039/c5nr08944a]. The terminology
recommendation includes defining community agreed data completeness and quality
criteria . One of the key findings is that the data completeness and quality will depend on
specific user or stakeholder needs. Hence it is critical to identify the relevant scientific,
regulatory, societal and industrial use cases. Building and adopting common
vocabularies or ontologies address the provenance metadata requirements to represent
materials and studies, manufacturer supplied identifiers, composition, impurities, as
well as experimental protocols, experimental errors, etc. As investigators will vary in
their knowledge of informatics, it is desirable to have standardized templates for data
entry based on minimum information checklists and ISA-TAB [ref] and ISA-TAB-Nano
specifications [ref]. However, user-friendly templates for data logging captures only one
data source, a specific laboratory, when there are also other data sources such as journal
articles, proprietary studies, or independently maintained databases. While challenges
for nanomaterial data curation workflows are extensively described in
[10.3762/bjnano.6.189], the broader experience of extracting and compiling literature
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data, leads to another recognized task of integration of, and exchange between, existing
structured databases.

Nanomaterial entries (information) are found not only in dedicated nanomaterial
databases, but also generic chemical, toxicology and toxicogenomics databases as well as
regulatory, databases like those supporting REACH dossiers, molecular modelling and
image processing tools [10.5281/zenodo.375637].

To summarize, unstructured nano-related data are relatively abundant, and rapidly
generated, but also quite dispersed across many different sources. Combining data from
various sources is hampered by the lack of programmatic access and the absence (or
infrequent use) of a common representation of nanomaterials and related experimental
data. It has to be noted that while common vocabularies are being developed, the
nanoinformatics community has not yet arrived at a commonly agreed “conceptual
schema”, or agreed on how to represent the common concepts of the domain and their
relationships.

5.1 Challenges: Material representation

The representation, processing, and communication of information about objects are at
the core of any information system and informatics in general. The representation of
chemical and biological objects is fundamental for the interdisciplinary field of
bioinformatics. Chemoinformatics is a well-established field which supplies tools for
representing, processing and solving problems with chemical molecules in general. The
term nanoinformatics was introduced to delineate the activities specific to managing and
processing information about nanomaterials. An adequate computer representation of
the objects is required in order to handle biological, chemical, or nanomaterial
information, and to enable the building of information systems. There are also literally
thousands of different descriptor that can be measured or calculated, but only a subset
are likely relevant to a specific EHS aspect or application. Descriptors encompass
physical and chemical identity (size, shape, chemical composition, particle architecture)
associated with material representation, intrinsic properties and extrinsic properties
(Sections 6.2,7.2.1, 7.2.2).

For cheminformatics (Section 6), the central object is the chemical structure, following
the origin of the “chemoinformatics” in the context of drug design. There are several
levels of chemical structure representations, which reflect different chemistry models or
theories. For example, graph theoretical approaches (e.g. constitutional, topological, 3D,
conformational representation) are not easily combined with quantum chemical
approaches (Section 7) [REF]. The structure formalization is the starting point for all
other activities and is reductionistic by its nature because only particular aspects of the
chemical reality are formalized. The most popular method of representing chemical
structures is the chemical graph, which is the basis of representing structures by
connection tables, linear notations as SMILES and InChl, de-facto standard chemical
formats such as SDF. Even those chemical databases using the same chemical graph
concepts may differ in database technology and physical database schema.
Unfortunately, the graph theoretic representation of well defined chemical structures is
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ill-suited as a single representation of nanomaterials: it is not able to distinguish all
aspects of the NM structure, also partly because that structure may not always be
known. As a result, it is difficult to distinguish between properties of a nanoscale and
bulk material with the same chemical structure. The quantum chemistry formalisms are
also able to capture aspects of the nanomaterials and are used to study material
functionality and structure (cite EMMC, nano-hub, commercial tools, the modelling section
below), but may also suffer from a lack of knowledge about the structure. Relating
nanomaterial identity, characterisation and biological properties often requires less
detailed representation than the quantum chemistry level, and there are several parallel
attempts in this direction.

There is a need for an agreed conceptual representation of a (nano)material compatible
with the emerging regulatory consensus that nanomaterials are to be handled as an
extension of chemical substances.'. The REACH definition of a substance encompasses
all forms of substances and materials on the market, including nanomaterials. A
substance may have complex composition. The definitions of the terms “substance” and
“material” are discussed in %, comparing I1SO, EU REACH and general scientific definitions
of the terms. Note: The reader is reminded that terms may have different definitions in
other jurisdictions. In the United States, molecular identity defines a chemical substance for
TSCA, while for REACH in Europe, impurities and residual catalysts are included.

The Nano Particle Ontology (NPO) defines a nanomaterial (NPO_199) as equivalent to a
chemical substance (NPO 1973 or CHEBI 59999) that has as a constituent a
nano-object, nanoparticle, engineered nanomaterial, nanostructured material, or
nanoparticle formulation. The OECD Harmonized Templates represent nanomaterials as
substances, consisting of components, additive and impurities, and the recent IUCLID6
implementation extends the representation to handle nanoforms. Describing the ENM
composition requires description of many components (also termed constituents) and
the complex relations between components. For example a nanomaterial may consist of
core and one or more layers (shells, coatings) around the core.

Nanomaterial representations (descriptions or identities) may differ across databases.
For example, the NECID database defines the material by its core only for the purpose of
handling exposure scenarios, while the CEINT database introduces an additional concept
of “instance” meaning the point in time when the NM transits to the next life cycle stage
and warrants measurement of its chemical or biological properties as well as those of
the system. The “instance” is considered critical by the CEINT group in order to allow
investigation of the dynamic nature of nanomaterials including the transformations and
kinetic processes that have been proven to significantly affect their fate and effects.
NanoMILE took a similar approach, linking “aged” nanomaterial properties to the initial
pristine properties, and compared the toxicity of the both. NanoFASE is building on the
NanoMILE and CEINT approaches, such that the characteristics of nanomaterials after
“reaction” in different environmental compartments (soil, water, sediment, wastewater
treatment or uptake and excretion by organisms are all considered as different instances,

! https://euon.echa.europa.eu/nanomaterials-are-chemical-substances
2 Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. J.; Rauscher, H.; Emons, H.; Stamm, H. J.
Nanopart. Res. 2013, 15, 1455. doi:10.1007/s11051-013-1455-2
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unless experimentally (and in due course predicted) to be identical to the outcome from
the previous compartment.

The basis of many chemical databases is the direct link between the chemical structure
(as chemical composition) and properties, which is well aligned to supporting modelling.
However, the concept of assigning measured properties to chemical structures is yet
another approximation, not directly applicable to material data representation. Instead,
measured properties have to be assigned to legally-defined ‘chemical substances’ (ENM
as a subclass of substances), in line with the IUPAC definition. This approach is also
applicable where information on chemical substances as produced by industry is
required. Flexibility with respect to cases where the measured property is a property
not of the entire material, but only one of its components (e.g. surface layer composition)
is also relevant.

5.2 Challenges: Property representation

Besides the materials themselves, a nanoinformatics data curation framework must
capture the physical and chemical attributes of NMs, including the notions of mixtures,
particle size distribution, differences in amount of surface modification, manufacturing
conditions, and batch effects. It must also capture the potential for evolution of many of
these properties, such as changes in surface speciation, loss of coating, acquisition of an
environmental or biological corona, and so forth, once the nanomaterial is embedded
into a product, is released into the environment or comes into contact with biological
organisms. Finally, the biological attributes (e.g. toxicity pathways, effects of ENM
coronas, modes-of-action), interactions (cell lines, assays), and a wide variety of
measurement approaches. A number of analytic techniques have been adopted and
developed to characterize nanomaterials physicochemical properties. The selected pilot
project on dissolution illustrates the complexity of just one type of measurement. With
expanding insight into the factors determining toxicity, this list of properties is growing.
In vitro characterization includes many endpoints for hazard identification. High
throughput cellular assays and omics data & kinetics are becoming increasingly
important in nanomaterial assessment. A common requirement for all types of users is
to link the nanomaterial entries to those studies in which toxicology or biological
interference of the nanomaterial has been studied, in addition to an accurate
physicochemical characterisation. Thus, the properties and their representation should
remain consistent with the descriptors used by ECHA (2017) and EPA (2017) for
“nanoforms” and “nanoscale forms”, respectively, but with more detail.

Supporting such heterogeneous datasets is a significant challenge; however, it is not
unique to nanoinformatics. The potential solution is to organize the experimental data
around the fundamental concepts of “test” and “measurement” *. There is evidence of
database developers adopting this approach, although the very terms of “test”, “assay”,

» o«

“experiment”, “endpoint” are often used inconsistently across different players. The

3 Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. ].; Rauscher, H.; Emons, H.; Stamm, H. ]. Nanopart.
Res. 2013, 15, 1455. d0i:10.1007/s11051-013-1455-2
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OECD guideline defines the “test” or “test method” as the experimental system used to
obtain the information about a substance. The term “assay” is considered a synonym.
The term “testing” is defined as applying the test method. The endpoints recommended
for testing of nanomaterials by the OECD Working Party on Manufactured Nanomaterials
(OECD WPMN) use the terms and categories from the OECD Harmonized Templates. The
NPO distinguishes between the endpoint of measurement (e.g., particle size, NPO _1694)
and the assay used to measure the endpoint (e.g., size assay, NPO_1912), where the
details of the assay can be further specified (e.g., uses technique electron microscopy,
NPO 1428). This structure is generally the same as the one supported by the OHT (e.g.,
in the OHT granulometry type of experiment several size-related endpoints can be
defined, as well as the equipment used, the protocol and specific conditions). The
CODATA UDS requires specification of how each particular property is measured.
[SA-Tab-Nano also allows for defining the qualities measured and detailed protocol
conditions and instruments. The level of detail in the OHT, CODATA UDS, ISA-Tab-Nano
and available ontologies differ, which is due to their different focus.

Examples

e zeta potential - entries for zeta p. property (NPO 1302), measured property
(ENM _0000092), calculated property (ENM 8000111).

e materials - is material with the old NM-100 (ENM 9000201) and new JRC code
JRCNMO01000a (ENM_9000074) the same entity or not (not in the eNanoMapper
ontology, per JRC advise)

e same term used in two (or more) ontologies in different context (example:
biological process)

e how to describe COMET assay (OBI 0302736) and COMET FPG assay - same
protocol, or different protocol with FPG= yes/no ? Or with a protocol parameter
“enzyme=FPG” or enzyme="None”

e is TEM a protocol, experiment, or measurement instrument ?

e Ontology annotation of specifically treated cells (e.g. THP-1 cells with
macrophage properties). If the cell is annotated with THP-1 and the induced
cellular change is only described in the protocol, the subsequent data analysis
should take into account the protocol details as well.

e how to define “dispersion agent”

e how is “toxicological endpoint” defined and how is it linked or not linked with
specific assays

e Are new classes/definitions required for chemical composition (or about
discrepancies between ontology concepts)

[TBD] exposure databases specifics
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Product databases have been reviewed* in a study identifying three databases with
nano-specific products® and two general products databases. This review presents a
methodology for identifying consumer products that contain nanomaterials, proposes a
data model, and has developed and populated a database, containing 200 products.
Assigning products to categories, as well as identifying where and what amount of
nanomaterials are used in particular product is a genuine challenge: for instance, the
sample preparation may change the particle size distribution, and therefore most
product databases include products based on labels “nano” used by the manufacturer,
rather than any analytical evidence.

[TBD] product databases - may need an update the sources cited below are not very recent.

5.3 Challenges: Data management plans

Research Data Management Plans (RDM and DMPs) are common act, but vary greatly in
content. There is an increasing level of guidance, e.g. the ELIXIR-NL overview:
https://www.dtls.nl/research-data-management/data-management-knowledge-tools/.
Having a project-level DMP matters as too frequently issues of data sharing come late in
the project, slowing down project completion and limiting knowledge sharing. Data
management is a cornerstone of collaboration: how, when, with what frequency, in what
format are data archived and exchanged, and how, when, with what frequency data
curation is done. The growing interest in DMPs has resulted in many suggested tools (see
the aforementioned list) and literature, such as several articles in the “Ten Simple Rules”
series about cultivating collaboration [REEREF], creating DMPs [REF], and care of data
[REF]. The above initiatives should serve to strengthen the efficiency with which data is
archived and retrieved for research purposes and ensure that everyone that uses well
annotated and coordinated archived data can collaborate efficiently.

Besides interactive access and archiving, data curation has received considerable
attention [REEREF]. A group of scientists from the US and the EU wrote a series of
articles on the topic [REF], for example, dealing with how data completeness and quality
could be estimated [REF], and the interoperability of the data (manuscript in
preparation).

Given the importance of DMP for collaboration within a project consortium and after the
project, it is surprising that these plans are not consistently peer-reviewed. Second,
wider acceptance would be achieved if the DMP were an activity and not a deliverable:
not just is the DMP an active document, it also needs auditing during the project and not

*S. Wijnhoven and M. Bakker, “Development of an inventory for consumer products containing

nanomaterials,” Centre for Substances and Integrated Risk Assessment, Tech. Rep., equally 2010.
[Online]. Available: http: //ec.europa.eu/environment/chemicals/nanotech/pdf/study inventory.pdf

> Woodrow Wilson database, “Consumer Products An inventory of nanotechnology-based consumer
products currently on the market.”2011. [Online]. Available:

http://www.nanotechproject.org/inventories/ consumer
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left to the project end. Peer review could focus on ensuring these features, in addition to
the proposed methods for data management.

5.4 Data Curation

Data curation, as defined in Section 2 (ref#), encompasses all of the activities that are
necessary throughout the process of extracting, organizing, and entering data and
knowledge into discretized formats within digital resources, and is central to the process
of enabling data integration regardless of the size, scope or purpose of a given
project/tool. Various aspects of curation, including its centrality to nanoinformatics,
workflow, and data completeness and quality, have been addressed in a series of papers
called the Nanomaterial Data Curation Initiative (NDCI), developed through the US
National Cancer Informatics Program’s Nanotechnology Working Group (NCIP
NanoWG)- (Hendren et al. 2015
http://www.beilstein-journals.org/bjnano/articles/6/179, Powers et al. 2015 (DOI
10.3762/bjnano.6.189), Marchese-Robinson et al. 2016 (DOI 10.1039/C5NR08944A4)).

5.4.1 Data Quality and Completeness

Based on a survey of 24 nanoinformatics resource representatives and the subsequent
development of broad and flexible definitions for both data quality and completeness,
Marchese-Robinson et al. report that these concepts are best understood in terms of
their fit for a given purpose (DOI 10.1039/C5NR08944A).

Data quality may be considered of the potential correctness and trustworthiness of
datasets, though there are a wide variety of metrics by which these attributes may be
measured, including reproducibility, precision, uncertainty. Of critical importance is that
due to the pivotal role curation plays in integrating data, “data quality” can be affected by
compliance anywhere across the knowledge life cycle from initial experimental design
and execution through transcription from a publication or database into the target
resource.

The completeness of data and associated metadata may be considered to include the
extent of nanomaterial characterization along with surrounding media and experimental
conditions to support specific post-analyses, or relative to conforming to a minimal
information checklist. Data driven modelling methods function best with large, diverse
data sets with good property coverage, chemical diversity. There is a strong need for a
systematic approach to generating data for nano-bio interactions as advocated by Bai et
al. recently (cite Bai, X.; Liu, F; Liu, Y;; Li, C.; Wang, S.; Zhou, H.; Wang, W.; Zhu, H.; Winkler,
D.A; Yan, B. Toward A Systematic Exploration of Nano-Bio Interactions, Toxicol. Appl.
Pharmacol, 2017; 323, 66-73.)
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Because these concepts continue to evolve and will inherently vary by the purpose and
scope of a given resource, data completeness and quality aspects of pilot projects are
best conveyed by explanations of the processes, both technological and workflow
related, that are in place to address these issues and to ensure consistency.

5.4.2 Data Curation Process

The process of curating data is currently highly resource intensive in terms of
management, workflow, sourcing and ontology. As standards for ontology and minimal
information requirements may be developed over time, curation processes and tools
may accordingly converge. However, in the meantime this process should be defined for
each resource to understand the implications on data sourcing, extraction, quality,
completeness, and utility for purpose. (doi:10.3762/bjnano.6.189)

5.5.1.1. OECD Harmonized Templates

The OECD Harmonized Templates (OHTs) are structured (XML) data formats for
reporting summary data on safety-related studies on chemical substances. The OHTs and
the supporting IT tool (IUCLIDS, iuclid.eu) are used for preparing substance dossiers for
REACH and for other regulatory frameworks operating in Europe; The substance
identification section is compliant to “ECHA guidance for i

5.5 Getting data in - data sources and data entry

It is important to understand the variety of data sources (e.g. literature, intermediate
laboratory formats, or raw data), the criteria for inclusion in the resource, and how they
are parsed. In addition to the human decision-making aspects, the technological
components of curation should be characterized; it is key to understand both manual
and automated data exchange formats and web- or desktop-enabled data entry tools.

5.5.1 File Formats and Templates

The following section describes several existing approaches to support data entry for
regulatory purposes (OECD HT ), research data in bioinformatics (ISA-TAB, ISA-JSON)
and its extensions for NM (ISA-TAB-Nano), as well NANoREG data logging templates

[ref].

dentification and naming of substances under REACH and CLP” and requires
specification of detailed chemical composition (including impurities and additives),
concentrations of each constituent (typical concentration and range concentration), and
links to chemical structures and identifiers. Each substance is assigned a unique
identifier (UUID), which is specific to the company, submitting the dossiers. The common
list of reference substances (also assigned UUID) are used to link company-specific
substance entries to the same reference substance and chemical structures. Details on
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manufacturing can be submitted in the relevant section. The experimental data is
arranged hierarchically, within four endpoint groups (physicochemical, ecotox,
environmental fate and toxicology) at the top. Each endpoint group contains several tens
of templates for reporting specific endpoints (e.g. melting point under physchem group,
aquatic toxicity under toxicology group), and the experimental data are reported
separately for each substance in substance dossiers. Specifying the testing protocols
with all associated details is mandatory. The protocols used in the regulatory context are
established, e.g. OECD guidelines. The OHTs contain vocabularies in the form of pick-lists
for some of the specified fields. A substance can be marked as nanomaterial, but there is
no support for describing ENM specifics at the composition level. However, the surface
composition (coating, core, functionalisation, along with the method of measurement),
as well as ENM characterization can be specified as additional physicochemical endpoint
study records (thirteen templates), which include granulometry (particle size
distribution), agglomeration/aggregation, crystalline phase, crystallite and grain size;
specific surface area; zeta potential; aspect ratio/shape, dustiness, porosity, pour density,
catalytic and photocatalytic activity and radical formation potential vector quiral. The
full list of OHTs is available at www.oecd.org/ehs/templates/templates.htm.
Nanomaterials are covered by the substance definition of REACH, and the REACH
provisions apply to them. NMs can be registered as nanoform(s) in the dossier of the
corresponding non-nanoform of a substance or as distinct substance.

5.5.1.2 ISA-TAB, ISA-TAB-nano and ISA-JSON

ISA® is a metadata framework to manage an increasingly diverse set of life science,
environmental and biomedical experiments that employ one or a combination of
technologies. The framework provides means to describe complex experiments in a form
of directed acyclic graph and is built around the concepts of Investigation (the project
context), Study (a unit of research) and Assay (analytical measurements), arranged in as
three hierarchical layers. The actual experimental readouts are stored in an additional
data layer. It developed by S. Sansone’s group at the University of Oxford e-Research
Centre. ISA-Tab is the legacy format, relying on tab delimited files. The latest
specification (Feb 2017) defines an Abstract Model , implemented in two format
specifications ISA-Tab and ISA-JSON (JavaScript Object Notation). The new ISA-JSON
specification includes a JSON schema and an ecosystem of tools used for creating,
validating and visualizing documents and is designed around the concept of “core” ISA
schema and “extensions”. It is expected that different communities will develop
extensions specific to their interests. The eNanoMapper project developed a
(nano)material extension for ISA-JSONv1 [cite D3.4, github]. A separate helper JSON
schema is implemented for definition of all components of the nanomaterial. The
composition of a nanomaterial may contain one or several components. Each component
has a role (core, coating, etc.) and linkages to other constituents. The linkage describes
the relation between two components. For example, two components may be covalently
bonded, one being embedded or encapsulated within another constituent etc.

® https://media.readthedocs.org/pdf/isa-specs/latest
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The default approach for representation of chemical compounds in ISA-Tab’ is an
ontology entry, which typically points to a single chemical structure. This is insufficient
for describing substances of complex composition such as nanomaterials; hence, a
material file was introduced to address this need in ISA-Tab-Nano® The latest
ISA-Tab-Nano 1.2 specification recommends using the material file only for material
composition and nominal characteristics, and to describe the experimentally determined
characteristics in regular ISA-Tab assay files.

The ISA-Tab-Nano project is an effort of the National Cancer Institute (NCI), National
Cancer Informatics Program (NCIP) and Nanotechnology Informatics Working Group (US
Nano WG) and an attempt to extend the ISA-Tab format by introducing a separate file for
describing the (nano)material components. The ISA-Tab-Nano is documented in a
publication [2] and in the US Nano WG wiki2, which included sample spreadsheets, but
no tools to parse the files and to enforce the specification. For this reason, the practical
use of ISA-Tab-Nano is not straightforward, as demonstrated by the efforts of the FP7
NanoPuzzles project [3] and the introduction of “ISA-Tab-logic” templates by the FP7
NANoOREG project.

5.5.1.3. NanoSafety cluster Excel templates

NANoOREG data logging templates for the environmental, health and safety assessment of
nanomaterials are developed under the JRC's leadership and in the frame of the
EU-funded FP7 flagship project NANoOREG. A team of experts in different fields
(physical-chemistry, in vivo and in vitro toxicology) has produced a set of easy-to-use
templates aimed at harmonising the logging of experimentally-produced data in the field
of nano- environmental, health and safety (nanoEHS). The templates are freely available
to the nanoEHS community (Common Creative Licence - Share alike) [ref] as jump start
towards the harmonisation, sharing and linking of data, with the purpose of bringing
benefits to the data management at European level and beyond. They have a common
first part to identify the sample under investigation; a second part aimed at recording
basic information on the dispersion method adopted and to record the essential
parameters used to fully describe an assay (the experimental settings); and a third one
to log the experimental results. The experimental parameters, their values, together with
the Standard Operating Procedure (SOP) linked to a given template, allow to critically
evaluate and/or to compare the results of a given assay performed in different
laboratories. This approach should also allow reproducing the assay at a later stage. The
structure adopted for the templates tries to reflect the ISA-TAB logic, already widely used
in 'omics' studies, while addressing the low user-friendliness of ISA-TAB files, which
limits its applicability in a “laboratory environment”.

7 Sansone, S.-A.; Rocca-Serra, P.; Field, D.; Maguire, E.; Taylor, C.; Hofmann, O.; Fang, H.; Neumann,
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T.; Coleman, L.-A.; Copeland, J.; Das, S.; de Daruvar, A.; de Matos, P.; Dix, |.; Edmunds, S.; Evelo, C.
T.; Forster, M. J.; Gaudet, P.; Gilbert, J.; Goble, C.; Griffin, J. L.; Jacob, D.; Kleinjans, J.; Harland, L.;
Haug, K.; Hermjakob, H.; Ho Sui, S. J.; Laederach, A,; Liang, S.; Marshall, S.; McGrath, A.; Merrill, E.;
Reilly, D.; Roux, M.; Shamu, C. E.; Shang, C. A.; Steinbeck, C.; Trefethen, A.; Williams-Jones, B.;
Wolstencroft, K.; Xenarios, |.; Hide, W. Nat. Genet. 2012, 44, 121-126. doi:10.1038/ng.1054

8 Thomas, D. G.; Gaheen, S.; Harper, S. L.; Fritts, M.; Klaessig, F.; Hahn-Dantona, E.; Paik, D.; Pan,
S.; Stafford, G. A.; Freund, E. T.; Klemm, J. D.; Baker, N. A. BMC Biotechnol. 2013, 13, 2.
doi:10.1186/1472-6750-13-2
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In the summer of 2017, the Center for the Environmental Implications of
NanoTechnology (CEINT) lead a stakeholder input process to expand the ISA-Tab-Nano
logic templates and to propose two new functional assay templates capturing data on
attachment efficiency () and dissolution rate. The expansions that the templates would
be poised to incorporate additional meta-data regarding sample preparation, instances
of characterization, and media characteristics necessary to track nanomaterial
transformations  (http://ceint.duke.edu/research/nikc/isa-tab-nano). The various
adoptions and adaptations of ISA-TAB-Nano, which was from the start intended as a flat
file sharing format, provide a spreadsheet based solution for informing and organizing
comparable datasets which is consistent, but not convenient. The templates represent an
important incremental step toward harmonization of data, but one that must be
surpassed in straightforwardness and ease of use to attract sufficient utilization for
amassing significant data.

A different type of Excel templates, developed by the Institute of Occupational Medicine
(IOM) (http://www.iom-world.org/) have been used by a number of NSC projects
(NANOMMUNE, NANOTEST, ENPRA, MARINA, NANOSOLUTIONS).

5.5.1.4 Semantic Web formats

The semantic web has been introduced as the next generation world wide web, aimed at
integrating data and knowledge from different online information sources [REF]. To
implement this idea of a semantic web, the W3 Consortium has developed the Resource
Description Framework (RDF https://wwww3.org/RDF/) and a series of
complementary standards to work with RDF, such as serialization formats like JSON-LD,
RDF/XML, and Turtle [REEREFREF]. Because ontologies can also be expressed in RDF,
for example with the Web Ontology Language (OWL) [REF], it is increasingly adopted as
implementation for the FAIR data requirements. This RDF approach is being adopted by
the eNanoMapper project and data provided by the eNanoMapper database can be
downloaded as RDF data [REF], using the eNanoMapper ontology. With the semantic
web serialization, eNanoMapper proposed an approach for data completeness testing
and for answering scientific questions [REF].

5.5.1.5. Format conversions

ISA provide documentation and tools for conversion between ISA-TAB, ISA-JSON and
ISA-RDF formats [ref]. Tools for conversion between several data formats (Excel
templates, ISA-TAB, ISA-JSONv1, OECD HT and semantic formats) have been developed
by eNanoMapper [REF]. These tools also enable automatic generation of ISA-JSON files
from supported input formats (e.g. NANoREG templates) . If needed, the ISA-JSON files
can be translated into legacy ISA-TAB via the tools provided by the ISA team. Export to
ISA-JSON is enabled for each data collection of the eNanoMapper database.

5.6 Getting data out - support for data analysis
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A number of recommendations (computational and strategic) for data curation
promoted by [doi:10.3762/bjnano.6.179] relate to the ability of a data management
solution support data analysis, data mining and seamless integration with modelling
tools. The first level of support is to be able to download a user selected subset of the
data to be further processed by a modelling package. The next level is the ability to
export data programmatically, allowing integration into third party systems and
workflow engines (e.g. KNIME). Another level of integration is providing unified access
to data and analysis tools in addition to the data querying facilities. This could be done
by either wrapping a selected set of statistical / machine learning packages into the
database application, or using remote modelling or prediction services by submitting
computational tasks and obtaining results transparently to the user. All these
approaches have pros and cons and have been reviewed several times in the context of
safety assessment of chemicals [10.1517/17425255.2012.685158,
10.1002/minf.201600082].

5.7 Metadata

Metadata are, very broadly speaking, “data about the data”. The distinction between data
and metadata can vary widely across different disciplines; for example, in some cases
metadata is conceived of only as the bibliographic information that allows tracing the
source of the information set, where in other cases, the term might apply also to
quantitative data that describe how (standard methods) or when (temporal specificity) a
measurement was taken. Without focusing on a single definition and for the purpose of
this roadmap, we consider metadata to be another lens through which to examine
whether the data being recorded include sufficient information to later sort, evaluate,
compare and analyze effectively. Moreover, it is important to note the need for
fit-for-purpose considerations with regard to data and metadata, regardless of how one
distinguishes between these. Whether there is sufficient information to support a
desired combination, comparison and analysis of a dataset depends entirely on what
research questions and relationships are being investigated [DOI: 10.1039/C5NR08944A

1.

As an example of how meta-data vary between studies or contexts, one can consider
human toxicology and ecotoxicology studies. For human tox, the metadata consists
mainly of pristine particle characterisation data, test methodology, and dosing protocols,
which are then related to the “primary” observational data on detailed sub-lethal
endpoints. In contrast, while the observed endpoints of ecotoxicology studies can often
be much more simple, e.g. survival, the relevant meta-data required to describe the
exposure will generally be significantly more extensive. For ecotoxicity the exposure
system (the environmental compartment components) may interact with the
nanomaterial resulting in transformations in the material form actually encountered by
the receptor [DOI: 10.1021/es300839e; doi.org/10.1016/j.envint.2015.01.013]. In fact,
realistically, actual exposures to materials in the environment for plants, animals and
humans alike will contend with similar transformations, both before reaching and after
entering the organism, such that the relevant form will be dependent on surrounding
media, the exposure pathway, and other external governing factors. In practice, these
transformed particles are difficult to measure in situ using routine techniques; yet, the
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true form of a material that a receptor encounters and is the exposure relevant to
understanding a resulting toxic response.

Because nanomaterial transformations are such a pivotal determinant of the outcome(s),
it is not enough to know what you put into your ecotox system, and what media it was
you put it in. There are multiple system dependencies that determine the
transformations, so the meta-data requirements are extensive for capturing enough
parameters to be able to model the fate and ultimately the exposure driving the observed
effects. The importance of this can be seen in such examples as low dose chronic
nanomaterial exposures in complex systems, where given only information on what
material was added to the system, the toxic responses could not be predicted. In this
case, an absence of detailed meta-data describing all biotic and abiotic system
constituents and temporal variations in environmental conditions such that interactions
can be interrogated would absolutely preclude interpretation of the results.

5.8 Ontologies,

Also consider recommendations in Winkler, D.A. Issues in, and examples of
computational design of 'safe-by-design’' nanomaterials, in Computational
Nanotoxicology: Challenges, pitfalls and perspectives, Gajewski, A, Puzyn, T. (Eds) Pan
Stanford Publishing 2017.

Ontologies are tools to formalize the language we use to exchange knowledge. Its need in
nanosafety community has been clearly stated and resulted in a project call within the
EU FP7 programme in 2012. This section describes a few aspects of current ontologies
useful for nanosafety research. Example applications of ontologies in nanoinformatics
includes the use of the Gene Ontology [REF] and the annotation of data in databases
[REF] (see also the eNanoMapper database).

To make it easier to reuse the common language, various tools are available to use
ontologies. Table X shows general ontology tools, but it is important to realize that many
specific tools use ontologies too. For example, a database may use the ontology to
provide faceted searching.

Table X: An overview of generic ontology tools.

Ontology Tool Description

BioPortal Searchable registry of ontologies.
http://bioportal.bioontology.org/

OBO Foundry Community project to develop and maintain

http://obofoundry.org/ ontologies in biology.

Ontology Lookup Service Searchable registry of ontologies.

Protégé Desktop software to view, search, and edit 0BO
and OWL ontologies.
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Webulous Platform of a server and a Google Spreadsheet
https://www.ebi.ac.uk/efo/webul | plugin that allows using ontologies in

ous/ spreadsheet.

Ontology Slimmer Java library that support remixing of existing
ontologies. Used to create the eNanoMappper
ontology.

5.8.1 NanoParticle Ontology (NPO)

The NPO was created out of the need to standardize data description in cancer
nanotechnology research and enable searching and integration of diverse experimental
reports. It covers various aspects of ENM description and characterisation, including
chemical components in ENM, ENM type, physicochemical properties, experimental
methods and applications in cancer diagnosis, therapy and treatment
[10.1016/].jbi.2010.03.001].

5.8.2 eNanoMapper ontology

The eNanoMapper ontology is a typical application ontology aimed at addressing needs
of the community [REF]. This is in contrast to the demanding work of defining internally
consistent ontology (see for example [REF]). Instead, by reusing (and occassionally
extending) existing ontologies we are able to reflect that various sub-domains of the
nanosafety community. The current ontology [REF] builds on several other ontologies,
including the Basic Formal Ontology, the NanoParticle Ontology, the BioAssay Ontology,
the Chemical Information ontology, the ontology of Chemical Entities of Biological
Interest. The ontology releases are build by an automated environment that selects parts
of these ontologies and integrates them into an ontology with exactly one ontology term
for each concept. Guidance documents demonstrate how other controlled vocabularies
map to this ontology, including a list of OECD nanomaterials [REF] and the JRC
representative nanomaterials [REF].

The ontologies existing at the time of the eNanoMapper project that were related to modeling
offered only fragmented coverage, with term definitions that were quite often oriented at the
specific work or needs of the ontology they were a part of. In order to better describe
nanoinformatics modelling actions and results, 162 terms were added to the eNanoMapper
ontology, describing experimental and calculated (Image Analysis and algorithm-derived)
descriptors, the processes that lead to their generation, modeling, statistics and algorithms
[eNanoMapper D2.4 Descriptor Calculation Algorithms and Methods

http://www.enanomapper.net/deliverables/d2/D2.4_Ontology_final release with Annexes.pd
f].

5.8.3 CHEMINF ontology
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The Chemical Information (CHEMINF) ontology was set up to improve the
interoperability of chemical information and data [REF]. It reuses concepts from other
ontologies, like the BFO, SIO, and CHEBI and extends this with the notion that there is
information about chemical compounds. This includes a chemical graph, names,
identifiers, etc. Importantly, it also formalizes how to capture the difference between
measured and calculated properties. The eNanoMapper ontology uses this ontology for
nanomaterial identifiers and for computed properties.

5.8.4 BioAssay ontology (BAO)

The BioAssay Ontology (BAO) aims to address the need for describing and annotating
biological assays in a standardized way. Experimental data is organized in “measure
groups”. A measure group can be annotated with an endpoint, screened entity (e.g.
chemical or nanomaterial), assay method and participants (e.g. biological
macromolecule). A bioassay may contain multiple measure groups. The measure groups
could be combined to create “derived” measure groups (e.g. ICs, is a derived measure
from dose response data) [10.1177/1087057111400191]. BAO has been used for
annotation of a large number of HTS assays in PubChem [10.1186/1471-2105-12-257]
and is used in Open Access ChEMBL database with chemical-protein affinity data. BAO is
not a nanomaterial-specific ontology, but provides a useful data model for describing
bioassays for arbitrary screened entities. The description of the screened entities is
expected to come from elsewhere.

5.9 Data exchange

5.9.1 Data sharing

There is significant momentum towards greater access to journal articles, databases and
government reports that will allow interested parties and the public in general to have a
fuller range of nanoEHS data available for examination. While impediments will certainly
lessen, it is unlikely that there will be full access to all data without some requirements
being placed on data sharing. From that standpoint, those administering a database
should establish an appropriate policy similar to steps they will take for ensuring data
security (avoiding intrusions or unauthorized changes to data entries). The data user
should, in turn, realize that the data accessed may be incomplete and use professional
judgement accordingly.

Offering some examples of limitations that might be placed on data access is appropriate.
Where academic colleagues will wait for the peer review process to be completed before
releasing data, the industrial colleagues will wait for a patent to be allowed. For both,
there may be issues of attribution, which would encompass authorship on papers that
utilize an investigator’s dataset or payment in the case of a company-sponsored study for
a REACH dossier. Competitive pressures and anti-trust laws will influence company
decisions, while project proposals, thesis requirements and intent to patent and
commercialize may be prominent for some academics. For many of these examples, the
remaining data access impediments can be resolved through setting time limits on data
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embargoes, but for others, especially those data critical to a regulatory decision, industry
will argue for confidential business information or trade secret status.

In terms of data sharing, the experiences with model organisms are illustrative of the
above considerations. As described by Leonelli and Ankeny ( ref. Studies in History and
Philosophy of Biological and Biomedical Sciences 43 (2012) 29-36), the C. elegans and
Arabidopsis thaliana communities of research have been more successful than their
Drosophila and Mus musculus counterparts in standardizing on specific strains of those
species, central stock source and sharing of information. Smaller community size and a
more pressing need to leverage limited research funding are advantages to C. elegans and
Arabidopsis thaliana progress, while the disruptions of selecting one strain for preferred
study to suppliers and investigators attached to strains not selected is a disadvantage to
the Drosophila and Mus musculus communities. As a multi-disciplinary effort, great care
has been taken that the Nanoinformatics 2030 Roadmap itself be a tool fostering
community interactions through both its description of current challenges and its
suggested milestones.

Another important step towards the advancement of knowledge through sharing of nano
datasets will be accomplished through the wide availability of online modelling
capabilities. The current picture, where users first find nanomaterial data online, must
download the datasets in order to process them offline for modelling and then possibly
reupload any results (if they ever do so), makes little sense and severely slows down the
advancement of knowledge. Online modelling (or Cloud modelling) infrastructure that
makes available both nano-specific modelling and mathematical modelling tools is
necessary to bring sophisticated tools and methodologies to a wider audience with a
more moderate learning curve, ease of use and reduced or no costs. Although of course is
dependent on appropriate and responsible data curation activities to ensure that high
quality and complete datasets are provided, and that each study is screened
appropriately. Otherwise creating validated and accurate models in a cloud based
manner becomes impossible. Augmented by advanced Nanoinformatics tools, datasets
will be enriched, allowing better decision making at a shorter cycle time. A global scope
platform that provides access to mathematical modelling and nano-specific
functionalities is Jagpot Quattro (http://jagpot.org), developed within the eNanoMapper
project. Apart from a variety of algorithms for regression and clustering, users can
perform Read Across, Optimal Experimental Design and Interlaboratory Comparison
(Chomenidis et.al.,, 2017), supporting through both knowledge extraction from existing
datasets and intelligent generation of consistent new data. There can be diverse
motivations and requirements for each group of users (i.e. academia, industry etc.) that
wishes to perform modelling work. At the same time, there can also be diverse platforms
with clearly defined features that suit each group's purpose. The first such
stakeholder-driven platform for nanomaterials risk modelling and risk management
decision making is the SUNDS system that was developed by the EU FP7 SUN project.
This online platform and the web-based System of Systems of the EU H2020 caLIBRAte
project are growing in parallel to eventually form an integrated, interoperable data and
modelling decision support infrastructure. This internet-based infrastructure will be
capable of making efficient use of the available data for predictive modelling of possible
risks from both legacy and novel nanomaterials, as well as for the assessment and
management of these risks according to regulatory requirements.
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5.9.2 Open Science

The European Commission have adopted the notion that concepts like Open Science and
FAIR data benefit the European industries (SMEs and LEs) [REF]. The FP7 and H2020
have adopted policies around Open Access and Open Data publishing, with great respect
of sustainability of existing industries. Open Science is about being able to reuse existing
knowledge and finding its origin in the American Open Source community [REF]. They
noted in the late nineties that the basic rights of being able to use and reuse
disseminated knowledge, modify knowledge (curate it, extend it), and redistribute the
outcome of that reuse. This section describes some initiatives important to the
nanoinformatics community.

5.9.2.1 European Open Science Cloud (EOSC) and research data management

[citation] The European Commission is promoting open science data, supported by
freely accessible infrastructure. OpenAire integrates institutional repositories and also
provides the Zenodo repository to upload research output (datasets and publications)
files up to 50GB. Zenodo is hosted at CERN and funded by the EU and CERN and provides
integration with DropBox & GitHub. Users can define collections and communities, and
configure the uploaded files for restricted access and embargo periods.

While Zenodo serves mainly archival purposes, the pan European collaborative data
infrastructure (EUDAT) provides generic data services, such as storage and computing
services to European researchers and research communities, and offers a joint metadata
service integrating metadata from different communities into easily searchable and open
catalogues. There is a number of services implementing cloud facilities: B2ZACCESS
(Authentication and Authorisation, identity provider, implemented by Unity IDM );
B2DROP offering cloud services using own cloud, B2SHARE providing file sharing;
B2STAGE - file transfer services, based on iRods data management system and GridFTP;
B2SAFE providing replication and data management policies; BZFIND implementing
metadata search, and finally BHOST allowing custom applications to be integrated within
the EUDAT infrastructure.

5.9.2.2 Infrastructure for open science

Repositories versus databases... Confidential information protection, etc

Federated designs with Open APIs and Open ontologies: making the end-user aware of
tools, and making the tools user friendly

Planning for federated knowledgebase/repository infrastructure (rather than one-size
most-correct omniscient repository) is challenging but rewarding: from the data-supply
side, supports interoperability among specialists, permits the flexibility of evolution in
technology, increases data persistence-robustness, distributes the FTE for curating the
repositories for completeness and by so doing improves overall quality of data available
for further research and reuse. [US-NCI Alliance data sharing?] From the data consumer
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side, API and consistent ontology facilitate casting the broadest search net, and catching
harmonized returns for clear answers.
Interoperability with FAIR data ...

Open licenses as a legal promise for collaboration....

5.10 Other challenges

...developing field, quickly growing etc.

output of the projects is increasing, and we’re not even able to (practically) keep up with
the list of research articles [ref] and capturing in databases the material they report
about.

5.11 Sustainability

Objective 2 of this roadmap addresses the overarching goal that all publically funded
research data should be deposited in a sustainable database or knowledge resource. The
sustainability of databases and knowledge resources created by different research and
development activities is a complex multifactorial goal. What does this mean in practice?
If, as part of a publicly-funded nanoEHS project, a laboratory has conducted valuable
experiments which have yielded valuable results, that laboratory and others should be
able to access those results in the future, e.g., five years after the project ends, and make
sense and use of them in a reliable way. What do we have to do to achieve this goal with
regards to nanoinformatics? The following elements are key for the success:

1) Agreement on best practices at the start of project with regards to experimental
design and data management planning, including consideration of the end use of the
data.

2) Data generated throughout the project should be well documented with regards to
protocols, templates and metadata, and data processing workflows. Provision of data
access, including review and testing, to the nanoEHS knowledge infrastructure, by the
curator should be accomplished in a timely manner during the project (even if
authorization controls are needed).

3) Education and training on data science for project team members should be
completed early in projects. Interdisciplinary interactions between younger scientists
within networks should be supported. (This will be a core task addressed by
NanoCommons, the H2020-funded research infrastructure for nanoinformatics, which
has a workpackage dedicated to training as part of its community building activities, and
will also operate a Helpdesk offering support to the community in all aspects of
nanoinformatics, starting in early 2018).

4) The FAIR principles should be followed with regards to access to scientific data
resources (refer to objective 2)
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5) Data resource completion (e.g., according to FAIR) and including a resource review
should be delivered alongside the reporting and publication of the scientific results of
projects.

6) A cluster and community wide data governance framework should be established to
facilitate data sharing and interactions around data. For example, a simplified process
and legal framework for data sharing between projects and programs would be
beneficial.

However, clearly a more comprehensive vision would be to establish longer term
knowledge infrastructure programs, which are actually required to ensure sustainability
of scientific resources beyond the end of specific, individually funded projects. Such
infrastructure programs can address issues of engineering, robustness, performance,
quality control, review, maintenance, and support of nanoinformatics projects, which are
often not addressed sufficiently during research projects, and are often not currently
addressed at all after the completion of projects. OpenRiskNet is such an example where
data services of relevance to safety assessment will be driven by the needs of the
nanoEHS community. The infrastructure project has the NSC as a customer. International
cooperation between EU and US programs should support the development of
interoperable services, common data templates and shared data curation and are an
opportunity for infrastructure programs to align, harmonize and avoid unnecessary
costs from duplication.

Longer term community infrastructure programs such as NanoCommons (starting 2018)
provide a common ground for the international community to work together on
sustainability of community resources and aid the development and incorporation of a
common language (ontology), best practices and knowledge sharing supporting
excellence and governance. Programs such as NanoCommons should also be an
opportunity to strengthen international cooperation between EU and US scientists
working on related informatics problems, and to interact and collaborate with
establishments and agencies (such as ECHA and US EPA) on the long-term provision of
access to information resources to all stakeholders.

A mechanism for fostering a good progression from development of new methods, tools,
ontology and best practices to efforts within standards groups (such as ISO, ASTM,
OECD) to develop standards and test methods used within industry and obtaining
regulatory acceptance should be developed. Although it can be said that some tests in
their current form are considered acceptable, or are acceptable with minor adaptation
(RIP-oN and ECHA guidance R7a-c appendices). [KP1] Such guidance could be included in
documents specifically for difficult to test substances, much in the same manner the
OECD have the “Guidance Document on Aquatic Toxicity Testing of Difficult Substances
and Mixtures” and others. Simply adding to existing frameworks eases cost and time, and
makes the implementation more effici.

All initiatives should involve a strong consultation with industry and societal
stakeholders so as to ensure that resources are created that satisfy needs and have
utility.
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6.1 Introduction

The term ‘nanochemoinformatics’ refers to the application and appropriate adaptation
of chemoinformatic methods for solving nanotechnology-related questions. Nowadays,
nanochemoinformatic methods are mainly developed in the regulatory context of risk
assessment, including hazard assessment and exposure assessment. This is because such
methods as Quantitative Structure-Activity Relationships (QSAR) modeling for
conventional (i.e. non-“nano”) chemicals have already found increasing acceptance,
primarily in devising an integrated testing strategy, but under some frameworks as a
basis or alternative for toxicity testing with animals. However, the application of these
methods is not limited to nanomaterial safety but also covers a broad range of questions
regarding their functionality.

The name “chemoinformatics” came from “chemical information” understood as the
information about chemical structure of chemicals. The information on different aspects
of chemical structure can be encoded by a set of quantitative characteristics (e.g. the
number of functional groups of a given type, the angle between two selected rings),
which are generally referred to as descriptors.
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Figure 1. Nanochemoinformatics data. Typically, nanochemoinformatics data sets consist of various
descriptors assembled in a descriptor matrix, which then are later on put into relation with information
regarding specific data on toxicity

Nanochemoinformatics data are usually collected in matrices (tables), where rows
represent individual NMs and columns correspond to descriptors (Figure 1). Such a
matrix (usually referred as X-matrix) can be then used for analyzing similarities between
structures of NMs (profiling), which mathematically refers to searching for similarities
between the row vectors in the matrix. NMs can be clustered (grouped) together by
analyzing the similarity of their descriptors by means of various hierarchical and
non-hierarchical unsupervised algorithms (e.g. Hierarchical Cluster Analysis, Principal
Component Analysis, Density-Based Spatial Clustering). In any case, care must be taken
on the assumptions (e.g. normality, linearity) each algorithm employs for the analysis
and the conclusions reached to be valid statistically. This is why linearity (e.g.
Durbin-Watson test) and normality (e.g. Shapiro-Wilks test, Q-Q plots) checks should be
performed prior to analysis for selecting the most appropriate algorithm.

However, the major role of nanochemoinformatics in hazard and exposure assessment is
for filling gaps in the existing data. Such techniques help reduce bias originating from
smaller datasets and increased difficulty in data handling and analysis, as long as the
assumptions they employ are not violated [Applications of multiple imputation in medical studies:
from AIDS to NHANES]. In such cases, an additional vector representing the endpoint data
to be filled (y-vector) is used. The underlying idea is to use the descriptor matrix X and
the existing elements of the endpoint vector y to estimate the absent elements of the
endpoint vector y (indicated with “?” in Figure 1). Restated, a base set of descriptors (X)
are used to estimate data-elements of an incomplete descriptor (Y). There are currently
three data filling approaches, namely:

(i) (Quantitative) Structure-Activity Relationships methods (in case of
nanomaterials often abbreviated as  Nano-QSAR, Quantitative
Nanostructure-Activity Relationships, QNAR or Quantitative

Nanostructure-Toxicity Relationships, QNTR);
(ii)  trend analysis and
(iii) read-across.
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In the next sections we discuss current state-of-the-art and further developments
necessary for making the existing nanochemoinformatic methods more useful from the
regulatory and application points of view.

6.2 Descriptors

In nanochemoinformatics, the descriptors encode the information about the
composition, structure, and properties of the NM. The descriptors of NMs refer to (Mills
etal 2014):
e physical and chemical identity of NMs (i.e. size, shape, particle architecture,
chemical composition of that architecture, e.g. core and coatings),
e intrinsic properties of NMs (e.g. crystal structure/crystallinity, purity, surface
area and rugosity, porosity, surface functionalities),
e extrinsic (system-dependent) properties of NMs (e.g. electrophoretic
mobility/zeta potential, corona, degree of aggregation/agglomeration,
dissolution, surface reconstruction, sorption, surface reactivity and persistence).

In some cases, data on NM activity such as toxicity endpoints (e.g. mutagenicity,
ECs0/1Csy) might be used as descriptors as well, as the term has broad use in the
modeling field. However, since this is not a purely chemical type of information, such
data found the application in Quantitative Activity-Activity Relationships (QAAR)
modeling. Descriptors can be experimentally measured properties, usually
physicochemical properties, and theoretical descriptors, which are derived from the
electronic, atomistic and molecular structure of the NM and its immediate environment.
In Section 6, the emphasis is on descriptors as experimentally measured properties and
in Section 7, the emphasis is on theoretical descriptors. For the purpose of predictive
modelling, any quantitative characteristic that can be consistently measured or
calculated in a controlled and reproducible way can serve as an NM descriptor.

The development of chemoinformatics (eco)toxicity models for chemicals relies heavily
on the availability of appropriate chemical structure descriptors that tie relevant aspects
of the molecular structure and physicochemical properties to the compound under
investigation. Well-defined and robust descriptors are important for correct modelling
and classification purposes. The base set of descriptors (the X-matrix) should satisfy the
following criteria:

e allow a structural interpretation

e have a good correlation with at least one property

e not be trivial correlations of other base set descriptors

e exhibit gradual changes value with gradual changes in molecular structure

e be not restricted to a too small class of substances
Descriptor quality and relevance are even more important for NMs than for their bulk
counterparts, requiring a larger number and different types of descriptors to account
for properties due to factors such as their smaller size and larger surface-to-area ratio.
Minimum data sets of NMs’ descriptors required for predictive modelling encompass
information on their chemical composition and intrinsic properties, which are specific
for the NM and independent of the system. The system influencing extrinsic properties
can be the matrix of a specific product (i.e. a specific formulation) or a specific biological
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environment. Many datasets that are currently available for NMs are incomplete and
unsystematic (Wang et al., 2014).

For chemicals, a hierarchy of descriptors can be derived already from the molecular
structure. Molecular descriptors typically relate to steric and electronic properties of the
compound and can be measured experimentally or computationally. Depending on the
information content, descriptors are usually classified according to their dimensionality
in 0D, 1D, 2D, 3D or 4D descriptors (Willighagen et al., 2006). 0D or constitutional
descriptors don’t take the molecular structure into account (e.g. molecular weight, atom
number counts,...); 1D descriptors capture bulk properties like Log Kow; 2D descriptors
are derived from molecular connectivity and 3D descriptors take the 3-dimensional
geometry of the molecule into account. The 4D descriptors are used to describe the
interaction field of the molecule or to describe different conformations of the
molecule.Creo que un descriptor importante es N cantidad de atomos.

In the case of NMs, the composition and structure often do not reflect the most relevant
properties for the activity, which may be entirely controlled by the engineered or
spontaneously modified interface. These interfacial properties can be context-dependent
and affected by the surrounding matrix. Therefore, the primary descriptors
(composition and intrinsic) may not be the best suited to predict toxicological behaviour.
Moreover, the NM properties can be interdependent and changing one property can
result in the change of several other ones (Lynch et al, 2014). To tease out these
relationships, well defined and good experimental data should be available to allow the
development of models (and descriptors) that describe the relationship and that can
subsequently be used to classify related NMs. One approach suggested by Lynch et al.
(2014) is to identify 3 overarching descriptors (based on principal components analysis
of observed variables) that describe intrinsic properties, extrinsic properties and
composition aspects of the nanoparticle and that can be related endpoints to be
modelled.

Among NMs, some of the most extensive research has been done on metal oxides. Ying et
al. (2015) discern bare and coated metal oxide NMs in a toxicity study. For coated metal
oxide nanoparticles, the structural descriptors used are those of the descriptors of the
organic surface modification as this is mainly considered to be the key-factor to influence
the toxicity and it can be referred to as a an organic chemicals QSAR study. For bare
metal oxide NMs, the experimental descriptors covered morphological structural
properties such as size distribution, shape, porosity, etc. and physicochemical properties
such as zeta potential, pKa, surface charge, etc. Several technologies are available and are
developed to measure and extract these properties (e.g. Bigdeli et al., 2014). Depending
on the type of nanoparticle, different parameters may be more relevant. Additional
descriptors can be derived from these measurements, such as surface/volume diameter,
aspect ratio or sphericity (Gajewicz et al., 2015).

As part of the ITS-NANO project a gap analysis on the available knowledge required to (i)
assess the risks of NMs and (ii) to develop an intelligent testing strategy, was conducted.
As part of the outcome of the evaluation, risk analysis of NMs can use a similar approach
as the traditional risk assessment paradigm used for chemicals, but it emphasizes the
need for thorough physicochemical characterisation of nanomaterials compared to
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practices that are currently in use, in order to take account of NM-specific or
NM-relevant factors such as size, shape and surface characteristics. The ITS-NANO vision
envisages that in the distant future (> 15 years) risk assessment will be increasingly
reliant on modelling/ in silico approaches, with focused physicochemical, exposure and
hazard testing only if additional information is required (Stone et al, 2014). These
approaches will have to take into account the whole life cycle of nanomaterials from
manufacture, use and their disposal, as well as the influence of the system on the
nanomaterials’ physicochemical properties at each stage during its life cycle and the
consequences for potential (eco)toxicity and biological effects.

In contrast to descriptors for classic chemicals:

a) a matrix of nanodescriptors for chemoinformatic analysis rarely consists of the
purely calculated (computational) descriptors only (experimentally-derived
descriptors are additionally needed);

b) the experimentally-derived descriptors should take into account not only
intrinsic, but also system-dependent (extrinsic) properties of the studied
nanoparticles;

c) computational descriptors cannot be simply calculated from a single molecular
model because of hardware limitations (separate simplified models representing
various aspects of the structure, e.g. surface, aspect ratio, are needed).

Therefore, the most important challenges for further studies include:
1. the development of new descriptor sets (preferably computational) that enable
comprehensively describe various aspects of the nano-structure;
2. the extension of currently used descriptor sets into system-dependent properties;
3. the development of simplified computational methods and/or molecular models
(e.g. coarse-grain molecular mechanics) that enable calculating descriptors in the
most efficient way.

6.3 Unsupervised chemoinformatics techniques for similarity
analysis, profiling and grouping

Unsupervised techniques involve the use of statistical techniques for similarity analysis,
profiling and grouping of chemicals in chemoinformatics. Specifically, these methods aim
at discovering underlying patterns and relations in the dataset when data is not labeled
(i.e.: there is no prior knowledge on data classification or categorization) (Bishop 2006).
These techniques rely on computing different numerical chemical related parameters
such as chemical descriptors.  Such approaches can potentially be used in
nanochemoinformatics for the identified categories of nanomaterials. A short
description of few of them is given below.

6.3.1 Principal Components Analysis (PCA)

PCA is a statistical unsupervised learning technique that transforms a set of
observations of possibly correlated variable into a set of values oflinearly
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uncorrelated variables called Principal Components (PCs) (ref). This technique help
exploring the strong patterns in a chemical related data. The application of PCA for
grouping of nanomaterials toxicity has already been suggested by Lynch I et. al. (2014)
in an opinion article. As an example, Lynch et. al. (2014) initially suggested three
principal components to be utilized to describe each nanomaterial, namely, intrinsic
properties (inherent), extrinsic properties (interaction with media, molecular coronas
etc.), and composition (proposition of a separate parameter e.g. inherent molecular
toxicity). Each of these PCs has multiple contributors (observed variables as
descriptors) and the relative contribution of these will vary for different nanomaterials.
The schematic illustration of the use of PCA as applied to determination of the primary
descriptors of NMS toxicity is shown in the following figure (Figure 2), taken from Lynch
[et.al. (2014).
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Figure 2: The schematic illustration of the use of PCA as applied to determination of the primary
descriptors of NMS toxicity taken from Lynch I et. al. (2014).

6.3.2 Clustering

Clustering is another unsupervised learning technique that is very useful to explore the
structures in a collection of data (Ref). In other words, this process consists of organizing
objects - chemicals - into different groups having some similarities. In algorithms of
clustering, the chemicals are collected which are ‘similar’ between themselves and are
‘not similar’ to the chemicals belonging to other chemical clusters. Alternative clustering
algorithms include:

i) Exclusive clustering;

ii) Overlapping clustering;

iii) Hierarchical clustering;

iv) Probabilistic clustering (ref).
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Exclusive clustering: in this class of clustering algorithms the data are grouped in an
exclusive way, so that if a certain data point belongs to a definite cluster then it cannot be
included in another cluster.

Overlapping clustering: these algorithms use fuzzy sets to cluster data, so that each
object may belong to two or more clusters with different degrees of membership. In this
case, data will be associated to an appropriate membership value.

Hierarchical clustering: this algorithm is based on the union between the two nearest
clusters. The starting condition is realized by setting every data point as a cluster. After
several iterations final clusters are realized.

Probabilistic clustering: it relies on a completely probabilistic approach.

The two most common clustering techniques are K-means (an exclusive clustering
technique) and hierarchical clustering.

Clustering techniques are useful in initial steps of exploratory data analysis, to provide
insights to modelers about similarities in both outcomes and descriptors. Moreover,
these algorithms are a powerful set of tools to assist the categorization of chemicals into
groups, and to further subgroup. Indeed, clustering methods have already been adopted
in nanochemoinformatics as an initial step in the development of QSAR models to
examine if chemicals that shown similarity in descriptors presented similar biological
activity (Fourches2010, Epa2012, Fourches 2016), and to provide grouping of
nanoparticles in different toxicity classes and then use those clusters to predict toxicity
of untested materials (Gajewicz2015).

6.3.3 Self-organizing Maps

A Kohonen Self Organizing Map (SOM) is a special type of Artificial Neural Network
(ANN) that it is used, like PCA, to reduce dimensionality of data, providing a
representation of the input space through a lattice (usually one or two dimensional). The
SOM method, likewise K-means, assigns data points (chemicals) to prototype vectors of
the same size of the total number of descriptors, corresponding to a cell of the lattice.
These vectors (called weight vectors or codes) are iteratively updated in such a way that
they “self-organize” in a smoothed way: weight vectors of neighboring nodes in the
lattice will thus be similar.

Specifically, the general algorithm to train a SOM works as follows:

1. Randomly initialize weight vectors corresponding to each node of the lattice.

2. Select at random an observation (a chemical) from the dataset.

3. Find the node in the lattice whose prototype vector in the lattice is the most
similar (in terms, e.g., of Euclidean distance) to the observation: this node is
known as the Best Matching Unit (BMU).

4. Weight vectors of nodes found within the radius of the neighborhood of the
BMU are updated to be similar to the BMU vector. The closer a node is to the
BMU, the more the weights are altered. The function used to compute the
radius ensures it diminishes that at each iteration, in such a way that it starts
covering the whole lattice and corresponds to a single node (the BMU) at the
final step. Ideally, average distance between nodes in the lattice and dataset
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sample(s) represented by that node decrease at each iteration, eventually
reaching a plateau.

5. Repeat starting from step 2 for N iterations or until no significant change in the
weight vectors is observed.

Once the SOM have been trained, it is possible to investigate the distribution of each
descriptor across the SOM by means of heatmaps, and the comparison of these heatmaps
provide insights about relationships between descriptors.

Another useful visualization is the so-called U-Matrix, which shows the distance between
each node and its neighbors: large distances indicates dissimilarity among the nodes,
and thus can be viewed as boundaries between clusters of nodes. Indeed, after training a
SOM is typical to apply clustering algorithms (described in section 6.3.2) to nodes of the
lattice, categorizing the original dataset accordingly. Ideally, the clusters derived in such
a way are contiguous when drawn with different colors on the lattice, but it may happen
that it is not the case. Contiguousness can be ensured by imposing, during clustering, the
nodes to be both similar in weight vectors and close to each other in the lattice.

Alternatively, it is possible to guarantee classes to be contiguous by using Supervised
SOMs (Melssen et al. 2006), where each node is associated, in addition to its weight
vector, to a vector representing specific properties of interest. In this way the SOM learns
at the same time relations in the descriptors (X space) and in the desired outcome (Y
space), plus the correlation between the two spaces.

SOMs analysis followed by clustering analysis have been adopted as a tool to analyze
toxicity-related cell signaling pathways for Metal and Metal Oxide Nanoparticles at
different exposure times (Rallo et al. 2010). Supervised SOMs, on the other hand, have
been used to explore experimental and simulated crystal structures via powder
diffraction patterns, highlighting structure-property relations and demonstrating in such
a scenario a more interpretability of the results with respect to their classical
counterparts (Willighagen et al. 2007).

6.4 Supervised chemoinformatics techniques for filling data
gaps

There are three groups of data filling: (Quantitative) Structure-Activity Relationship
methods, trend analysis and read-across (Table 1). They are based on different

assumptions and require different minimal number of data points (here: nanoparticles
in a group for which the endpoint value y has been measured).

Table 1: Nanochemoinformatic methods of data filling

Method Assumption Description Minimal
number of
data points

QSAR Mathematical | Mathematical model that was not developed as part of the > 15
model: category formation process. The validity of the (Q)SARs
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y = f(X) should be assessed according to 5 OECD (Q)SAR
validation principles.

Trend Trend in 'y When some chemicals in a category have measured >3
analysis values of the endpoint (y) and a consistent trend is
observed, missing values can be estimated by simple
scaling from the measured values to fill in the data gaps.

Read across | Similarity in X | Endpoint value (y) for "source chemical” is used to 1-6
predict the same endpoint for "target chemical”.

6.4.1 Quantitative Structure Activity Relationships (QSAR)

Basics for the (Quantitative) Structure-Activity Relationships ([Q]SAR) approach were
formulated for the first time in 1962 by Corwin Hansch and then implemented for
designing new chemicals, mainly drugs [Ref]. The original approach was based on
defining mathematical dependencies between the variance in molecular structures,
encoded by so-called ‘molecular descriptors’ (e.g. number of particular functional
groups, indexes that express topology and branching of a molecule), and the variance in
biological activity in a set of compounds. Thus, if one calculated molecular descriptors
for a group of similar chemicals and measured activity for a part of this group, the
person would easily predict the lacking data from the molecular descriptors and a
suitable mathematical model. Dependently on the modelled endpoint (nominal or
numerical), the modelling is classified as qualitative or quantitative and abbreviated as
SAR or QSAR [Ref].

Later on, when the problem of potential risk related to the use of new chemicals was
raised, (Q)SAR methods found many applications in hazard assessment procedures.
Examples of SAR and QSAR models developed for predicting various toxicity and
ecotoxicity endpoints can be found in the literature [Ref]. Finally, as the application of
(Q)SAR can reduce animal testing, which is particularly important in relation to the
application of 3R principles (Replacement, Reduction, Refinement of animal testing)
(Russel and Burch, 1959), those techniques have been recommended as valuable
alternative methods in Article 13 of the EU REACH regulation’. The international
co-operation among the OECD member countries on (Q)SARs started in 1990. The OECD
principles for the validation of (Q)SAR models were released in 2004, and a guidance
document was published in 2007.

In 20092 the groups of Jerzy Leszczynski (US) and Tomasz Puzyn (EU) jointly proposed
to apply the QSAR methodology for predicting toxicity of nanomaterials (Nano-QSAR).
The proof-of-the-concept - the first Nano-QSAR developed for toxicity of 17 metal oxides
nanoparticles to E. coli bacteria - was published by the authors two years later.® At the
same time, Andre Nel (US) and his collaborators from EU proposed to employ QSAR-like
methods for High Throughput Screening to assess nanomaterial safety [Refs]. In parallel,
the groups of Yoram Cohen (US) and Robert Rallo (EU) published the first classification
Nano-SAR model [Ref] and proposed using self-organizing map analysis for assessing
toxicity-related cell signaling pathways [Ref]. Those works were performed for metals
and metal oxides as well. Methodology of Nano-(Q)SAR was further developed during
next years including new descriptors, methods and models.**’
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It is widely accepted that Nano-QSAR models can significantly support current efforts in
grouping (i.e. categorization) of nanomaterials and data gap filling within the established
groups. There is a number of recently proposed grouping schemes for nanomaterials, for
example the ones worked out by the ECETOC Nano Force Group (DF4NANO) [Arts et al.
2015], by the Dutch National Institute for Public Health and the Environment (RIVM)
[Seller et al 2015] and by FP7 MARINA research project [Oomen et al. 2015].

QSARs developed for classic chemicals help identifying the direct influence of the
structure on the modelled property. As such, the model indicates, which structural
features are mainly responsible for the observed property or toxicity. In case of
nanomaterials, it might be impossible to go directly from the structure to toxicity, since
an additional level of information should be considered. In this context, Nano-QSAR
models so-called “global models” can be applied for justifying particular grouping
criteria. This means, the properties of higher levels (i.e. stability) might be expressed as a
combination of properties from lower lever (i.e. chemical identity) plus the influence of
the system (external conditions, e.g. pH). Thus, human toxicity and ecotoxicity can be
expressed as a combination of intrinsic and extrinsic properties of nanomaterials. In
such a way the hypotheses formulated a priori for particular grouping criteria can be
verified.

When the grouping criteria for engineered nanomaterials are finally accepted, the efforts
of the modelers should be put on developing so-called “local models” - the models
capable predicting properties of nanoparticles within the identified groups (categories).
In effect, the existing data gaps can be filled with using of scientifically justified
methodology. However, only the results from appropriately validated models should be
accepted. Well-known universal OECD principles on the validation of QSARs [Ref]
provide the conditions that must be fulfilled to accept the model (and the predicted
results) to be used for the regulatory purpose. These are:

1. Clearly defined endpoint;

2. Unambiguous algorithm;

3. Defined applicability domain;

4. Provided appropriate measures of goodness-of-fit, robustness and predictive
ability;

5. Mechanistic interpretation, if possible.

[t should be noted that the condition no. 4. implies that the model must be externally
validated that means the validation should be performed with using nanoparticles not
previously used for developing the model. Detailed interpretation of the five OECD
principles for newly developed Nano-QSARs was widely discussed between the
modelers and the summary was presented in Puzyn et al. [Ref]

In the previous contributions the application of Nano-QSAR models was limited rather to
simple materials and simple cases, where usually in vitro toxicity endpoint was strongly
related to one or two simple structural properties of materials that do not depend on the
external conditions (i.e. intrinsic properties). In the further perspective, additional work
is needed to obtain fully functional models.
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First, the models must include information on the structure dynamically changing
dependently on the external conditions. This may require including additional
“dimensionality” in the set of descriptors. Moreover, pure probabilistic approach that
QSAR is now, may be supported by deterministic component, i.e. QSAR equations may be
augmented by equations derived based on physical principles.

Second, majority of the existing Nano-QSAR models was developed for nanomaterials
build from the only one type of molecules (e.g. uncoated metal oxides nanoparticles)
[Ref] or from two types, but one remained unchanged in the set (e.g. nanoparticles
having the same core, but differing by coating) [Ref]. Therefore, there is a need to
develop new structural descriptors for chemical materials varying by more than one
chemical species at the same time.
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Figure 3: The number of literature references presenting experimental toxicity data vs. the number of
nanomaterials (NMs) studied in these references (unpublished data from NanoPUZZLES project)

Third, the development of QSARs requires experimental data measured for sufficient
number of materials varying by the structure and being representative for the whole
general population of materials of given type (e.g. 50 ZnO nanoparticles differing in size,
coating, crystal structure etc. representative for the whole space of possible ZnO
nanoparticles variants). Moreover, data for all of them should be obtained by using the
same experimental protocol. As it was concluded in various EU projects (refer to Figure
3), when analyzing literature, there are very rare cases, when such relatively large single
database is available. Therefore, a possibility and limitations of merging the endpoints
(data fusion) at higher ontological levels will be explored. For instance, could the
endpoints: “percent apoptotic cells” (BAO_0002006) and “percent dead cells”
(BAO_0002046) be merged into a single endpoint “percent cytotoxicity”
(BAO_0000006)? Data fusion should be possible at least in the qualitative manner
(translation of the numerical values into a nominal scale, e.g. “acceptable level of
cytotoxicity” or “unacceptable level”). In effect, the size of available data sets would be
extended. However, both (i) the development of detailed ontology and (ii) the studies of
the influence of data fusion on the predictive ability are required.

47



Finally, as described in section 6.3 of this roadmap nanobioinformatics offers a variety of
tools for better understanding Modes of Action (MoA) and deriving Adverse Outcome
Pathways (AOPs) of engineering nanomaterials. On the other hand, Nano-QSAR can
serve as a predictive tool for various endpoints. Thus, further work on the integration of
both methodologies would result in increasing efficiency of both.

Nano-QSAR model should be well explained from mechanistic point. This is important,
otherwise, it is only a mathematic statistical analysis.

In the hybrid methodology (Nano-QSAR/system biology) technique the QSAR
component may serve for predicting the molecular key initiating event. Moreover, omics
data may be considered as descriptors for QSAR studies.

Fourches et al (2010) demonstrated the use of QNAR modelling in predicting biological
activity and cellular uptake of metal nanoparticles. In a first case, a structural
characterisation of the NPs was used to define the molecular descriptors in the
modelling exercise. The used molecular descriptors included structural descriptors such
as type of metal core and experimental descriptors such as size, R1 and R2 relaxivities
representing the magnetic properties and zeta potential reflecting the magnitude of
electric charge on the NP surface. In addition, in a second case study modelling cellular
uptake, 150 chemical descriptors of the surface-modifying organic molecules were
calculated and were used as molecular descriptors in building models for cellular uptake
of nanoparticles with the same core structure. This proof-of-concept study illustrated
the feasibility of QNAR modelling, but also demonstrates that small variations in
nanomaterial properties can drastically influence the biological activity and that
modelling these effects remains challenging and will require high quality and large
experimental datasets that will allow sufficiently robust modelling approaches
(Fourches et al 2010).

6.4.2 Trend analysis

Trend analysis was first proposed by Brown for detecting nonrandom process trends.?
He computed a “tracking signal” which is defined as the sum of the forecasting errors
divided by the Mean Absolute Deviation. This approach was further improved by Trigg
and Cembrowskl et al.?* Trend analysis was firstly applied in filling the data gap for
“quantitative endpoints” of chemical toxicology studies in March 2008 with the release
of the OECD (Q)SAR Toolbox. According to the toolbox, methods based on trend analysis
are applicable for filling data gaps in groups (categories) of chemicals, where clear
systematic trend is the endpoint values is observed. That is to say Trend analysis is a
method of predicting toxicity of a chemical by analyzing toxicity trends (increase,
decrease, or constant) of tested chemicals. For example, in case of classic chemicals
category containing compounds with a common functional group and an increasing
chain length, the chain length affects the values of the octanol/water partition
coefficient, which in turn may affect bioavailability and hence toxicity, both mammalian
and aquatic.
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Figure 4: Two types of trends in phys/chem properties observed for nanoparticles when size is increasing
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Trend analysis techniques for nanomaterials have not been extensively used yet. However, it
may serve for estimating size-dependent properties. As it was demonstrated by Gajewicz et al.
[Ref] nanomaterials phys/chem properties may change either linearly within the entire range
of sizes (Figure 4a) or change up to reaching so-called “saturation point” and then remain
unchanged with the increasing size (Figure 4b). In both cases the property of interest can be
easily interpolated, which is preferred in a regulatory context or — what is more challenging —
extrapolated from the existing trend. From Puzyn et al.” research, we can conclude that the
cytotoxicity was exponentially increased with the increasing of Enthalpy of formation of a
gaseous cation (AH,,..) of metal oxide nanoparticles (Figure 5). Besides, Mu et al. ** found
that the cytotoxicity was exponential increased with the polarization force parameters (Z/r) of
metal oxide nanoparticles (Figure 5).
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Figure 5: Two types of trends in cytotoxicity observed for metal oxide nanoparticles when AH,,., and Z/r is
increasing respectively.

In a further perspective, it would be very practical to group the properties of
nanoparticles according to the presented types of trends. Moreover, trend analysis might
be tested to predict not only size-dependent, but also system-dependent properties,
when the monotonically changing conditions causes monotonical changes in the
properties of nanomaterials.
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6.4.3 Read-across

When there is no visible trend in the defined category and the number of data points is
too small for developing regular Nano-QSAR, either qualitative or quantitative
read-across technique might be applied. Read-across is based on similarities between
nanomaterials; the predicted endpoint value for "source chemical” is used to predict the
same endpoint for sufficiently similar "target chemical” (Figure 6).
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Figure 6: Schemes and currently available algorithms of read-across [Ref]

Based on the assumption that similar chemicals with structural and/or functional
similarities have similar physico-chemical, toxicological, and ecotoxicological properties,
read across can be applied to predict the unknown endpoint information (e.g. toxicity)
for the ‘target chemical(s)’ with the known toxicity from the ‘source chemical(s).*® To
identify the chemical similarities, the following two steps can be performed. Firstly,
chemicals were represented as feature vectors of chemical properties either by binary or
holographic fingerprints. Secondly, the similarity of chemicals can be quantified by
various distances, i.e. Hamming, Euclidean, Cosine, Mahalanobis, Tanimoto distance, or
linear or nonlinear relationships of the features.

In some cases, the read across approaches provide only the qualitative information and
may be used to demonstrate the presence or absence of a property/activity under
consideration. In contrast, various different approaches can be applied for quantitative
prediction of the endpoint of interest, which are made by applying selected
approximation type. For the similar source compounds in the established group, one can
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use average, most conservative, mode, and median value. When the compounds’
property related to the structural differences within the category follows a linear trend
or regular pattern, interpolation or extrapolation from the empirical data for a given
endpoint can be performed to fill in the data gaps.

Read-across can be performed in one of the four schemes: one-to-one, one-to-many,
many-to-one and many-to-many. In the first two cases, the using of the endpoint value
for source nanoparticle as the estimated value of the target nanoparticle is the only
possible “algorithm” of read across. However, when read-across is based on more source
nanoparticles, once can apply averaging, taking the most conservative value from the
source nanomaterials etc. Puzyn et al. established a quantitative read across approach
for nanomaterials (Nano-QRA) based on one-point-slope, two-point formula, or the
equation of a plane passing through three points. The predictive capacity of Nano-QRA
approach is better than other read across methods with different types of approximation
in terms of both predictive power and reliability of predictions.”® Recently, more
sophisticated algorithms of qualitative and quantitative read-across were proposed by
Gajewicz et al.*® He proposed quantitative read across approach based on distance
weight k-nearest neighbor algorithm (QRA,.y) for toxicity assessment of metal oxide
nanoparticles, which displayed predominant prediction accuracy in both training and
external validation.?® These studies provide opportunities to broaden the application of
read across method for filling empirical data gaps when adequate nanotoxicity data is
not available.

Although read across possesses several advantages, i.e. easy to interpret and implement,
applicable in modeling qualitative and quantitative toxicity endpoints, and flexible
descriptors and similarity measures for expressing similarity between chemicals, the
techniques of read-across have not been sufficiently standardized yet. In effect, very
often the results of estimations with read-across are too ‘expert-dependent’ - may vary
dependently on personal experience of expert conducting the study. This is important
from the regulatory perspective, because it does not guarantee reliability and
repeatability of the results. Moreover, statistical similarity measures cannot provide the
information of toxicity mechanisms. Therefore, within some regulatory frameworks (e.g.
REACH) bridging studies must be conducted in order to remove areas of uncertainty and
prove similarities between the source and target chemicals. For example as a bare minimum
physico-chemical measures must be known for both source and target, and the
(eco)toxicological bridging studies will then be chosen based on the strategy and the endpoint
needing to be fulfilled. In addition, complex similarity measures need complicated model
interpretation. Furthermore, in the case of inadequate analog chemicals or conflicting
toxicity profiles of analogs, the read across is inapplicable or inaccurate. Therefore, the
development of novel read across algorithms that can provide reliable predications of
the unknown data without further experiments is of great importance.

Further developments in this area should include design of novel and suitable numerical
algorithms for read-across that will be useful in the context of filling data gaps. The
feasibility and predictive ability of newly developed read-across algorithms should be
verified and validated. Therefore, it would be very practical to establish the principles
for the validation of read-across approaches by means of suitable case-studies (i.e. using
external data obtained from regulatory (eco)toxicity tests). Furthermore, the
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recommendations on existing read-across approaches, which are the most relevant for
filling data gaps for nanomaterials, should be delivered. In a further perspective, the
acceptable and sufficiently standardized algorithm(s) should be implemented into the
user-friendly software (e.g. OECD QSAR Toolbox).

It is worth mentioning that the proposed algorithms of read-across are universal that
means enable to fill the data gaps within categories defined by using of any criteria and
grouping (categorization) system to be applied.
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7.1 Introduction to Materials Modelling

In recent decades, computer simulations have become an indispensable instrument in
studies of materials. Now simulations involving hundreds of thousands of atoms on a
microsecond time scale become routine while state-of-the-art simulations correspond to
one or two order larger size- and time scale (Palmer et al.,, 2015). Molecular simulations
are also becoming an intrinsic part of the applied research, such as drug design,
nanotechnologies and nanomedicine, providing possibilities for screening of different
compounds, with a perspective of in silico construction of molecules and materials with
desired specific properties. Among areas of actual interest is investigation of bionano
interface, which is driven by applications of nanomaterials in medicine, food, and
cosmetics (Brancolini et al., 2012; Ding et al, 2013;Khan et al, 2013) as well as
prediction of toxicity. Although molecular simulations cannot imitate biological events
leading to toxicity, they can provide a framework for systematic evaluation of
interactions of NMs with biomolecules. Understanding of these interactions and bionano
interface structure is crucial for achieving a better control over the surface activity, for
developing safety regulations, and reducing the associated health risks.

More generally, physics and chemistry-based materials modelling can serve as a source
of additional information about the NMs (e.g. intrinsic and extrinsic properties) where it
cannot be measured or is unknown for some reason. Moreover, it can provide a time and
cost-effective alternative to experimental measurements of materials’ properties. Finally,
materials modelling offers a possibility to predict the material’s functionality or activity
even before it is produced to prevent the appearance of properties of concern, and thus
enables development of materials that are safe by design.

7.2 Use of computational models to compute NM properties

The implementation of modelling in the nanomaterial domain is a relatively recent.
direction of research. Most published works focus on prediction of nanoparticle cellular
uptake, cytotoxicity, molecular loading, molecular release, nanoparticle adherence,
nanoparticle size, and polydispersity (Jones et al, 2016). Several studies show very
reasonable predictions;, however, most of these models focus on specific types of
nanoparticles only and rely on the use of very limited datasets, making the
generalization of the models very challenging, given the complexity of the nanomaterial
world. Seria interesante tener en cuenta la computacién cuantica.

7.2.1 Intrinsic properties

In what regards the chemical composition and intrinsic properties of nanomaterials,
several software programs (e.g. Adriana. Code, Dragon, Molcomm-Z and
PaDEL-Descriptor) are available and can be used to calculate relevant descriptors on
chemical structures. Some descriptors can be extracted directly from results from
quantum-mechanical calculations (examples). These calculations can be very
computationally-intensive and time consuming. Time and cost of calculations can be
reduced by selecting the appropriate level of theory for geometry optimization, but this
can go at the cost of the predictive ability of the model. Using simplified, semi-empirical
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methods (Recife Model 1, Parametrization Model 6, etc.) it is possible to calculate the
molecular parameters for molecules in a short time (Puzyn et al., 2009). However, for
structures that are largely different from the structures used for parametrization, the
results will not suffice and may lead to incorrect description of the structure. For
untypical molecules it is better to use ab initio or Density Functional Theory methods
which require more computational resources. This situation also applies for
nanomaterials, because they are no longer simple molecular compounds and the
implementation of higher levels of theory in the ab initio formalism is recommended
(Puzyn et al, 2009). Fortunately, literature indicates that the most significant
size-dependent changes of some physicochemical properties of nanoparticles are
observed below 5 nm, whereas the changes for sizes between 15 and 90 nm can be
neglected. In addition, Gajewicz et al. (2011) showed that for metal oxide clusters
several molecular descriptors change with the size of the clusters. The physicochemical
properties either change (i) linearly with size or (ii) up to reaching “saturation point”, in
which the properties have constant values characteristic for the bulk material. This
implies that it is possible to estimate the properties of a given nanoparticle by
performing calculations for a series of much smaller molecular clusters and then fitting
an appropriate function (Gajewicz et al., 2011).Las nuevas propiedades no solamente
estan vinculadas al tamafio y la geometria, sino a los fenémenos de transporte que se
correlaciona con las cuasiparticulas digase fonones, plasmon y pienso que este aporte
contribuye de manera sustancialTheoretical descriptors involve quantum chemical or
molecular simulation methods to derive molecular properties, but nanomaterials may
have their own special properties, e.g. for metal oxide nanomaterials the crystal
structure is important (Ying et al,, 2015). Different types of theoretical descriptors are
discerned: (i) constitutional properties such as periodic table-based descriptors
(molecular weight, cation charge, metal electronegativity, etc.) which are easy to obtain
(Kar et al,, 2014) and (ii) electronic properties (regarding metal oxide NPs) such as band
gap and valence gap energy, AHMe+ or the molar heat capacity. From a quantum
chemistry viewpoint nanoparticles are large systems, which complicates the necessary
calculations at the proper level of theory and other approaches are needed to determine
the proper structural descriptors for nano-QSARs (Puzyn et al, 2009). These
quantum-chemical properties can be calculated using several software programs, e.g.
Puzyn et al (2011) established a model to describe the cytotoxicity of metal oxide NP to
E. coli, calculating 12 descriptors at the semi-empirical level of the theory using the PM6
method implemented in the MOPAC software. The enthalpy of formation of gaseous
cation with the same oxidation state as the metal-oxide structure, AHMe+, was shown
an efficient descriptor of the chemical stability of metal oxide and their cytotoxicity.
Other descriptors that have been calculated for metal oxide nanoparticles include molar
heat capacity, average of the alpha and beta lowest unoccupied molecular orbital
(LUMO) energies (Pathakoti et al, 2014) and the atomization energy, atomic mass,
conduction band energy, ionization energy and electronegativity (Liu et al., 2013). The
calculation of these descriptors is computationally demanding.

Other approaches to derive structural descriptors have been described in the literature
(i) Glotzer and Solomon (2007) proposed a system of eight orthogonal “dimensions”
(surface coverage; aspect ratio, faceting, pattern quantization, branching, chemical
ordering, shape gradient and roughness) to measure the structural similarities between
various nanostructures. How to quantify these eight dimensions still needs to be solved.
(ii) The chemical composition can also be expressed by simple constitutional
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descriptors (e.g. atomic numbers) or by a single descriptor based on correlation weights
derived from molecular graph or atomic orbitals theory (Toropova et al., 2006). Based on
these theories, another approach that has been implemented in nano-QSAR model
development makes use of the CORAL software (Benfenati et al, 2011). Based on
SMILES, optimal descriptors can be defined and correlated with endpoints such as
cytotoxicity of metal oxide nanoparticles (Toropova et al., 2012) or binding affinity of
fullerene derivatives to HIV-1 protease (Toropov et al., 2010). However, for general
implementation of nano-QSAR models this method of representation of the structure is
unfeasible because of the complexity of the molecular architecture. Therefore in a next
evolution, the chemical information was integrated with additional heterogeneous
(eclectic) data, such as size, concentration, irradiation, porosity, etc. (Toropov et al,,
2015). Building on the SMILES notation, additional SMILES-like sequences of symbols
that codify the physicochemical and biochemical conditions of chemicals and
nanomaterials in biological systems have been introduced and termed quasi-SMILES
notation. These can then be used to calculate optimal descriptors and applied in
nano-QSAR modelling (Toropov et al, 2015; Toropova et al, 2016). (iii) Simplex
representation of molecular structure (SiRMS) are a 2D level generated two-, tri-, and
tetra-atomic molecular fragments for which descriptors can be derived (Sizochenko et
al, 2015). (iv) The Liquid Drop Model has been described as a novel approach to
represent the supramolecular structure of nanoparticles (Sizochenko et al., 2014). The
main idea behind this approach is to use a combination of simple descriptors which
reflect nanoparticles’ structure for the different levels of organization: from a single
metal oxide molecule (i.e. chemical structure) to a supramolecular ensemble of
molecules (i.e. nanoparticle size). LDM has for example been described to determine the
surface energy of nanoparticles (Nanda, 2012). Using the LDM extensive
quantum-mechanical calculations can be avoided. (v) QSAR-perturbation approach in
which a moving average approach was applied to the data in order to generate new
descriptors that reflect their relative importance in the model (Luan et al., 2014)

7.2.2 Extrinsic properties

The environmental fate and biological activity of a nanomaterial can be influenced
modified by the medium, which can affect its surface charge, surface reactivity, and
surface composition (coating) and even lead to a change in the particle’s core
composition . Therefore, a set of extrinsic characteristics should complement the
standard description. The typical quantities used with nanomaterials include:

hydration energy, heats of immersion, contact angle for water

surface charge density at different pH values and salt concentrations
nanomaterial dissolution rate

binding energies for essential biomolecules or adsorbates molecular groups

Atomistic simulation, both classical and ab initio, and mean-field theories
(Poisson-Boltzmann theory) can be used to evaluate these properties for NM at realistic
conditions. Hydration energy (per unit area) or heat of immersion, or contact angle can
be used to characterise the degree of hydrophobicity of the material. For example,
atomistic molecular dynamics simulations can evaluate the adsorption energies of water
molecules at the nanomaterial surface. Hydration free energies of the dissolved material
molecules can be computed to predict the NM dissolution rates, using methodology
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developed for prediction of free energy of solvation (Jambeck et al, 2014). The charge
and hydration energies of nanomaterials should generally be calculated at relevant
temperatures (i.e. room or body temperature, 293 K, or 310 K, respectively and salt
concentrations (pure water, physiological concentrations 100 mmol/L to 150 mmol/L)
and pH values from 3 to 7, reflecting the condition in the lab or in different
compartments of living organisms. For calculation of surface charge at different pH and
salt concentrations, one can use the methods based on Poisson-Boltzmann mean field
equation that includes charge regulation (Behrens et al., 1999;Behrens et al., 1999a).

7.3 Use of material models for support risk assessment

Modelling nanotoxicity is about predicting the risk due to the use of NM. Risk is defined
as the probability that exposure to a hazard will lead to a negative consequence for the
cell fate, or more simply, Risk = Hazard x Exposure. Hence modelling, in addition to
hazard models, should include exposure models. Exposure models are intended to
predict how NM evolve in the environment, including aggregation, and hence may harm
human health and/or wildlife. Exposure models are intended to predict how NM evolve
in the environment, including aggregation, and hence may harm human health and/or
wildlife. NM exposure effects can be based on whole animal evaluations, cellular-level
evaluations, or molecular-level evaluations. For example, whole animal evaluations could
provide screening-level measurement using species of rat, mouse, zebrafish, and other
animal models; cellular-level evaluations could have measures of different types of cell
death; and molecular-level evaluations could include global gene expression, gene
localization, and function (Harper et al. 2011).

7.4 Challenges: Multiscale modelling of bionano interface

In view of importance of the interactions at the bionano interface for initiation of AOPs
and for systemic distribution of NMs, the NM characteristics directly addressing the
interactions between NM and biomolecules are most informative. Although they may be
not completely independent from the basic properties of the NM, as expressed by their
intrinsic descriptors, a systematic evaluation of the descriptors for interactions may
make predictive models much more compact and robust. Examples of such descriptors
are: content of NM protein corona composition, adsorption enthalpy for an amino acid,
lipid molecule, or a protein on the NM surface, hydrophobicity, production of ROS. All of
these require a modelling of the NM in realistic environments.

The major challenge here is the need to use multiscale models for the characterisation of
interactions. The relevant systems sizes of several nanometers are too large for direct
atomistic simulation, so a coarse-grain description is required, which would be able to
preserve information about the interaction specificity. In addition to this, the number of
relevant molecules involved in the interactions with NM can be enormous, so the corona
composition (i.e. list of proteins) as such may be an impractical property to be used for
predictions. Each nanoparticle immersed in plasma may have its own unique corona
(Dobrovolskaya et al, 2014). In comparison to this, protein abundances in the corona
may reflect the properties of the NM that determine its propensity to bind certain type of
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molecule. Therefore, one should aim for statistical descriptors of the proteins interacting
with the NM.

In contrast to NMs, the development of descriptors for biomolecules is relatively
straightforward due to their chemical uniformity, e.g. the same amino acids present in all
proteins or nucleic acids in all DNA. For proteins, the simplest descriptors can be
constructed using their amino acid (AA) sequence. These can include counts of amino
acids of different types, net charge or total mass. Already this characterization is very
rich and capable of predicting complex events at the bionano interface (Walkey et al.,
2014;Kamath et al.,, 2015). Moreover, obtaining descriptors from AA sequences can be
done by using a wide range of software tools such as the EMBOSS PepStats tool (Rice et
al, 2000). More advanced descriptors for proteins can be built by analyzing their
structure. In some cases, starting with the AA sequence of the protein the 3D structure of
the molecule can be retrieved from the Protein Data Bank and then used to construct the
descriptors. When the structure is not available, one can then use a structure prediction
software. There are multiple automated tools available for this task, such as i-Tasser (Roy
et al., 2010). Using the measured or predicted 3D structure of the protein, several
advanced descriptors can be calculated. Lopez et al. developed a one-bead-per-amino
acid (united atom - UA) model of globular proteins, which is suitable for this purpose
(Lopez et al., 2015; Lopez et al.,, 2017). Some examples of advanced descriptors that can
be calculated include protein globule dimensions (radius of gyration and hydrodynamic
radius), aspect ratio, dipole moment, rotational inertia, dielectric constant,
hydrophobicity, surface charge at different pH and salt concentrations. In addition,
protein charge at different pH can be calculated using the Poisson-Boltzmann cell model
with charge regulation as reported by Barroso da Silva et al. (Barroso da Silva et al,,
2017).

For proteins, an evaluation of interaction properties requires an assumption about the
protein structure at the conditions of interest. With the known 3D structure of the
protein and the nanomaterial, bionano interaction descriptors can be systematically
calculated based on how the proteins adsorb onto the surface of the NMs. While a
calculation of the precise conformation of adsorbed molecules and a careful evaluation
of ensemble averages is definitely a challenging task, several relevant quantities can be
calculated using a simplified approach. To make the problem tractable, one can make
two major approximations: assume additivity of the interactions between the building
blocks of the biomolecule and the NM and neglect the change of conformation for
adsorbed molecules. While these assumptions prevent one from obtaining accurate
adsorption energies, they allow for a uniform screening of thousands of molecules and
ranking them based on how strongly they will attach to the surface of the NM. This
ranking represents a statistical measure of the content of the biomolecular corona and
constitutes a unique fingerprint of a NP. Using the united atom protein model (Lopez et
al, 2015), one can compute preferred adsorbed orientation and evaluate mean
adsorption energy at different conditions. Moreover, using the same bottom-up
construction approach, one can engineer an ultra-coarse-grained model (united amino
acid - UAA) that closely reproduces the total protein-protein pairwise interaction energy
profiles obtained in the united atom model. In the UAA model, one would typically need
between 5 and 30 united-amino acid beads to capture the geometry and reproduce the
adsorption characteristics of the original protein. This second coarse-graining can be

60



based on the mass distribution in the complete protein and can be optimized by tuning
the protein diffusion coefficients to those obtained using UA model. The UAA model
would be then suitable for modelling competitive protein adsorption and formation of
protein corona (Poggio et al., 2017).

7.5 Challenges: Missing predictive models for some
descriptors

In the mechanistic toxicity assessment paradigm, the NM properties should be related to
the molecular and biological modes of action of the material. Such an approach is
proposed, in particular, in the H2020 SmartNanoTox project. Then, the attention is
focussed on the Molecular Initiating Events of the AOPs, triggered by the NMs interaction
with the biological tissue. Where such MIEs are known, a calculation of the relevant
descriptors is essential. Among the known candidate MIEs one can name production of
ROS, cellular uptake, cell association, or lysosomal damage. ROS production and
oxidative stress are known to be correlated with the conduction band gap for metal
oxide NMs (Burrello et al,, 2010;Ying et al., 2015). The models proposed in these latter
works use reactivity descriptors to build the energy band structure of oxide
nanoparticles and predicts their ability to induce an oxidative stress by comparing the
redox potentials of relevant intracellular reactions with the oxides' electronic energy
structure. At the same time, the descriptors for interactions of NMs with lipids, lung or
cell membrane, or receptor proteins are missing. Supposedly, they can be constructed
based on molecular interaction descriptors, using the multiscale methodology as
described above, and hydrophobicity descriptors.

Another obviously missing property is NM dissolution rate, which is associated with
(metal) ion release. Dissolution can be an important factor understanding the cellular
response to a range of different NMs and has the potential to become a key component of
a screening process for categorizing NMs with common hazard potential based on their
potential to release ionic species. Several approaches to this problem are taken by
SmartNanoTox project: (i) comparisons of bond energies with solvation energies for a
given ion/atom/molecule (ii) kinetic models to assess the timescale of any dissolution
(iii) biased MD simulations of free energy barriers to dissolution of NPs including
surface reconstruction and change on contact with water, (iv) where appropriate direct
MD studies of spontaneous dissolution and the influence of surface ligands and coronas.
If successful, these approaches will lead to a molecular understanding of the relevant
mechanisms of hazard and tractable predictive models for different
nanoparticle/ligand/water systems. In addition, catalytic activity of NMs can be assessed
in the first instance by calculating frontier orbitals for given NP systems by density
functional theory and correlating them with experimental data to provide tractable
expressions for use in assessing toxicological activity.

From the point of release, the state of the NM can change in many respects both before
and after the contact with biological tissues. The affected properties may include
oxidation, adsorption of foreign material from the atmosphere, waters or soil, partial
removal of the engineered coating. The relevant descriptors are: time after release,
temperature, coating quality (percentage of coverage), amount of pollutants.
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7.6 Challenges: Coupling and linking models for predicting
biological events

The ability of the NM to dissociate and produce reactive species, to affect the
conformation of vital biomolecules, or interfere in metabolic or reproductive processes
determines the NM'’s ability to cause hazardous effects. From a biological point of view,
this can be explained as inducing MIEs leading to initiation of an AO. NM properties
profoundly affect the molecular processes at the bionano interface. Thus, detailed
characterization of the NM after initial contact with organism at different stages of the
systemic transport can provide molecular level descriptors for “mechanism-aware”
toxicity prediction schemes. Materials modelling along with experimental NM
characterization after the contact can be used to develop the relevant NM descriptors. At
the first level, such descriptors would include characterization of the interfacial NM
contact with biomolecules in terms of binding energies of biomolecule elements (amino
acids, lipid headgroups, etc.). Such descriptors should be organized in a bionano
interactions database, which will be used for prediction of the NM corona formation
including characterization of the corona outer surface, and prediction of likelihood of the
particular hazardous effects. To finally develop the mechanism-aware QSARs one should
perform systematic analysis of the NM-induced pathways and map the NM
physicochemical properties to the MIE and thus to the specific AO for any NM. This
approach is described in detail in Chapter 8. The overall assessment scheme thus will
combine materials modelling, systems biology, in vivo and in vitro studies.
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Conventional human health risk assessment (HHRA) approaches, on which the chemical
regulatory system is founded, involve chronic or subchronic animal exposures and the
targeted analyses of adverse effects such as cancerous tumours or non-cancer effects of
regulatory importance. However, these assays are time and cost-intensive and require
the prior knowledge of mode of action of a toxicant. Moreover, most of the chronic
exposure models use maximum tolerate dose and thus lack broader application. The
pace at which technology is evolving, new substances or chemicals are being regularly
added to the market, which require rapid screening for their safety. For most part, the
type of toxicity induced by novel substances is not known, and due to the time and cost
burden associated with the conventional testing, timely screening of novel chemicals for
the potential hazard is not possible. Thus, newer approaches that significantly reduce
time and cost required to complete the assessment of a chemical for its potential toxicity,
yet providing comprehensive understanding of the underlying mode-of-action of the
toxicity are constantly being sought.

A comprehensive understanding of the toxicity induced by nanomaterials will require a
comprehensive appreciation of material physics and chemistry along with their
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anticipated behaviour at various levels of biological organisation including molecular,
cellular, organ, and tissue levels as shown in the Figure 8-1(modified from ref. 8-1).
Integration of the information derived from these various levels using statistical,
mathematical and bioinformatics tools is the key to understanding the overall
complexity of the biological responses induced by this novel class of materials and for
their effective regulation (ref. 8-1, 8-2).

Systems biology for nanotoxicology
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With the advent of novel molecular techniques, biological data is being generated at a
phenomenal pace. Sophisticated tools collectively known as ‘omics’ that can generate
exhaustive inventories of molecular entities such as genes (transcriptomics), proteins
(proteomics), small biomolecules (metabolomics), and biological networks
(bioinformatics) in normal homeostasis condition and how these entities change under
stress or during a disease process have been developed. Genome-scale sequencing tools
have resulted in a renaissance of big data enabling visualisation of genetic landscape that
is perturbed following a substance exposure. Consequently, the need for
machines/computers that can enable handling, organisation and curation of large
datasets has become inevitable. Mathematical models and statistical algorithms have
been developed to understand how the various molecular entities interact with one
another and their relationship with the observed phenotype, i.e. cellular toxicity or
disease process.

Figure 8-1 shows various types of data that are used in bioinformatics or systems
biology approaches, the ‘omics’ platforms available for genome-wide profiling and how
integration of the various layers of omics data can enhance understanding and
appreciation of the biology at action during normal and disease states in an organism,
enabling holistic understanding (systems level) of the perturbed system. In general, the
omics data can be categorised into three individual categories: components, interactions
and functional states data (ref. 8-3). Components data provide individual catalogues of
molecular entities such as genes, proteins, lipids, metabolites etc. that are differentially

66



expressed. Interactions data provide details on how these individual entities interact
within a biological space and functional state data incorporates data from all ‘omics’
platforms and interactions data to reveal the cellular state or phenotype of an organism
following a challenge.

Table 8-1 (modified from Ref. 8-4) lists various omics platforms available and a brief
explanation of the type of data that they generate.

Omics Platforms

Genomics Genome is the ‘blue print’ that holds information on the
structure and function of an organism that is encoded in the
DNA (genetic material), organised in subunits of individual
genes. Genomics is the study of this blue print - genes and the
interaction between them. Variations in gene sequences due
to mutations can influence the organisms’ response to a
stressor and alter its susceptibility to diseases.

Transcriptomics The transcriptomics is the study of the complete set of RNA
transcripts produced by the genome at a given time during
development, normal homeostasis or disease states.
Transcriptome is highly sensitive to the changing internal and
external environment and thus, transcriptomic changes
accurately reflect the organisms’ response to endogenous and
extrinsic stimuli.

Proteomics The proteins are functional units of genes. The proteomics is
the study of the full set of proteins encoded by a genome
enabling their identification and quantification during
normal homeostatic and following exposures to stressors.
The proteome helps understand the functional impact of
altered transcriptome linking the gene expression changes to
a phenotype (Phenome).

Metabolomics Metabolomics is the study of metabolites (low molecular
weight) present in biological fluids, cells and tissues. Altered
levels of metabolites are good indicators of altered
physiological states following exposures to stressors and
thus, are used as sensitive markers of exposure and/or
effects in biomonitoring and surveillance studies.

Epigenics Epigenetics is the study of changes in gene expression that
are not the consequence of changes in DNA sequence. It is the
study of chromatin and the effects of RNA interference on
transcription. Chemical modifications to DNA or
DNA-associated proteins involved in DNA packaging
(chromatin) are one of the epigenetic mechanisms and
methylation of DNA is one of the epigenetic endpoints
commonly studied. Epigenetic changes are heritable, and are
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influenced by the environmental processes, environmental
exposures.

Microbiome The term ‘microbiome’ refers to a group of microorganisms
in a given environment. The study of taxonomic and
functional changes to the composition of the microbiome and
its impact on human health and disease is a rapidly evolving
field in toxicology. Multi-omic technologies and advances in
the computational and bioinformatics tools are playing an
important role in advances in this field.

However, considering the ever-growing list of nanomaterials and the next generation
hybrid nanomaterials appearing on the market, the comprehensive testing ‘omics’ tools
are not sustainable. Thus, a strategy involving few representative or reference classes of
nanomaterials of diverse physical -chemical properties should be queried in an
organised and systematic manner using the ‘omics’ tools in Figure 8-2.

Figure 8-2: Experimental work flow and the information generated

1. Select well characterised (physical-chemical characterisation) reference nanomaterials

v

2, Conductin vivo or in vitro, short term or long term experiments considering the relevant
route of exposure
3

Conduct omics experiments using one or multiple components {see the box below)

Use statistical and computational algorithms to identify the changes occurring in all
components and interactions between the components within the cell during normal and
following exposure to toxic substances.

5. Use bioinformatics tools to identify the altered cellular behaviour or phenotype and identify
the underlying mechanisms leading to toxicity.

Components Interactions
Genomics - DNA Protein-protein
Transcriptomics - mRMA Protein-DMNA

Proteomics - proteins
Metabolomics - metabolites
Lipidomics - lipids

Localizomics — cellular localisation

Functional states

Metworks — flux maps
or fluxomics

Phenotyoe - phenomics

The resulting data can then be used to inform various components of human health risk
assessment process including (ref. 8-5),
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1. To identify hazard induced by toxic substances, thereby informing
mechanisms-of-action or mode of action.

2. To build adverse outcome pathways identifying causally linked molecular changes
that result in disease development.

3. To support the design and development of targeted mechanisms-based in vitro
assays that eventually form the basis of predictive toxicology tools.

4. Identification of candidate markers of exposure or effects that can inform
biomonitoring and surveillance activities

5. To identify critical effect levels - derivation of transcriptomics/pathways-driven
point of departure using dose-response modelling.

6. To support weight of evidence (for data poor chemicals, omics data can be used to
link the exposure to an effect).

7. To build gene/protein signatures that can be used to classify group of chemicals
based on their genomic response.

8. To prioritise substances that may need further toxicity assessment by other
methods.

Transcriptomics - a case study in bioinformatics

Of all the tools, gene expression profiling or transcriptomics (measures changes in the
coding or non-coding RNA in cells or tissues following exposure to a substance) tools
have been the most advanced. Due to the mature microarray and sequencing
technologies, the broad annotation level of genes, and the availability of statistical
software for reliable and reproducible analyses of the large data generated,
transcriptomics is extensively applied to identify chemicals’ mode of action. In the
context of nanomaterials, a combination of gene and protein expression profiling and
bioinformatic analyses have been applied to elucidate the mechanisms by which
nanomaterials induce pulmonary toxicity at an occupationally relevant dose (ref. 8-6,
8-7, 8-8); to identify potential biomarkers of pulmonary effects induced by
nanomaterials (ref. 8-9, 8-10, 8-11); characterize repercussions of local inflammation
(lungs) on other secondary tissues (e.g., heart and liver) following nanomaterial
exposure; and validate the relevance of in vitro data to predicting in vivo responses to
NM exposure (ref. 8-12, 8-13, 8-14). Moreover, a database of toxicity fingerprints that are
specific to lung diseases (ref. 8-15, 8-16) and computational tools that can be used to
predict the toxicity of new ENMs that have yet to undergo experimental testing (ref.
8-15, 8-16) have been developed. More recently, Labib et al.(ref. 8-17) demonstrated
how transcriptomics data can be used in an adverse outcome pathway framework to
identify the most relevant pathways or networks of interest to a disease, and strategies
that can be used to calculate pathway dose-response that can be then used for
calculating critical effect levels. In addition, predictive tools developed based on
chemical toxicity are worth attention, since toxicological responses can be expected to be
comparable on a mechanistic level. For example, an omics-based description of
toxicological responses that broadly captures and accurately predicts liver toxicity on
both cellular and organismal level was recently described ( ref. 8-18). The so called
Predictive Toxicogenomics Space covers several toxicity-associated mechanisms such as
oxidative stress, cell cycle disturbances, DNA damage response and mitochondrial
dysfunction, commonly also associated with ENM (reviewed in ref. 8-19). In another
study, a framework for predicting the hazards associated with complex mixtures of

69



chemicals using single-chemical transcriptomics data was established (ref. 8-20). Thus,
applicability of transcriptomics not only to identify the subtle biological effects induced
by low doses of nanomaterials very early after the exposure but also in risk
characterisation of nanomaterials has been well demonstrated.

Although regulatory acceptance of transcriptomics data is not yet achieved, a lot of
efforts are being made to harmonise the protocols and data analyses methods. Guidance
documents and development of standards are being established. A committee for the
‘application of genomics to mechanisms-based risk assessment’ is established by the
ILSI/HESI. OECD has established Molecular Screening and Toxicogenomics advisory
group and have initiated efforts to harmonise genomics approaches for risk assessment.
The European Chemicals Agency have also initiated discussion among academia,
regulators and industry on the implementation of new approach methodologies (NAMs)
into regulations such as REACH (ref. 8-21). However, for now, the data can be effectively
used to inform chemicals’ mode of action, identify important events relevant to disease
progression and in the development of mechanisms-based High throughput screening in
vitro assays that are predictive of in vivo responses. Moreover, for data poor substances
such as nanomaterials, the data can be used as weight of evidence, and for screening or
prioritising nanomaterials for further testing.

8.2 Challenges moving forward

While a tremendous progress has been made in the area of transcriptomics, several
challenges lie ahead. Prior to its routine inclusion in safety testing of substances and
acceptance in regulatory science, standard operating protocols have to be developed;
data reporting and data analysis standards have to be established, quality check and
quality control standards have to be defined, analysis algorithms have to be developed
and standardised, and internationally harmonised guidelines have to be developed. The
regulatory acceptance criteria have to be developed and areas of regulatory applications
have to be identified. Appropriate training courses to analyse and interpret
transcriptomics data in a consistent manner have to be established. In addition,
appropriate data management strategies are a fundamental requirement for efficient
nanobioinformatics. Databases for storing omics data in standardized formats are
available and provide access to ENM-associated omics data. However, metadata and
associated toxicological and physico-chemical data requires ENM-specific databases
capable of linking to the external omics databases. An example of such a database is the
eNanoMapper database (ref. 8-22). This will enable linked and annotated (using
ontologies as outlined in Section 5 of this report) buildup of transcriptomics data for
reference substances, useful in further nanobioinformatics modeling approaches.

Other challenges involve data, tools, software and model sharing. Although some
published datasets are deposited in the public repositories and are accessible, the
reporting formats for ENM and their associated toxicity and physico-chemical data are
not standardised for uptake and analysis by other researchers. Transcriptomics is one of
the extensively tested and applied genome-wide profiling tools, although standards are
yet to be developed for data analysis and data representation. Transcriptome profiling
can involve different microarray platforms and based on the statistical algorithms used,
the interpretation of the data can vary from laboratory to laboratory. Thus consistency,
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reproducibility and reliability are the major issues that need to be tackled and may be
addressed to some extent within the nanosafety community by the establishment of
consistently tested reference ENM data sets.

8Application of other ‘omics’ data to nanotoxicology

Although, due to the methodological limitations and large diversity of proteins and
metabolites within the biological samples, not applied as extensively as transcriptomics,
data derived from other ‘omics’ platforms such as, proteomics and lipidomics have been
used to gain understanding of the underlying mechanisms of nanomaterial induced
toxicity. Multi-omics approach involving lipidomics, proteomics and transcriptomics was
applied to derive an understanding of carbon nanotube induced toxicity (ref. 8-23, 8-24,
8-25). A redox proteomics approach was proposed as first tier screening method for
prioritisation of nanomaterials for further testing (ref. 8-26). Thus, each omics platform
will provide a unique perspective of the changing phenotype, and development and
validation of tools that aid in managing, processing and integration of multi-platform
data towards biologically meaningful interpretation of the observed changes will be the
key.

OMICS DATA ANALYSIS METHODS
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As stated above, the key to obtaining biologically relevant results from the microarray
studies is the stringent and accurate analysis of large and complex datasets using
appropriate statistical and bioinformatics methods. The Fig 8-3 shows the steps involved
in analysing the ‘omics’ data in general.

Figure 8.3 Flow chart of data analysis
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For many omic technologies and platforms several analytical steps are conceptually
common. First, the raw data files must be read into the software environment, the
quality of the raw data needs to be evaluated in order to ensure that technically
suboptimal data points are excluded. Next, the data preprocessing, consisting mainly of
normalization and batch effect evaluation and correction are carried out. Primary
normalization and data filtering for factors contributing to variation such as differences
in dye incorporation, hybridization efficiencies, etc. within arrays and across arrays will
enable identification of differentially expressed genes or proteins. Handling batch effects
successfully is largely accepted to be a crucial aspect of omics data analysis, but is
unfortunately still neglected and poorly documented in many published studies (ref.
8-27, 8-28, 8-29) . However, as current microarray and RNA-seq platforms have a
relatively good level of technical reproducibility, the largest sources of bias in
experiments tends to be the biological material itself (ref. 8-30). Known biases such as,
cell culture growth batches can be modelled as long as a balanced experimental design
has been employed, e.g., using the limma linear modelling or general linear modelling
framework. Since omics experiments are derived from complex protocols consisting of
multiple steps, the probability to introduce unwanted bias, which is not otherwise
corrected by data normalization, remains high. Several normalization methods are
available and the choice of one over the others depends on intrinsic properties of the
omics technology used and on the experimental design. The scientific community has
largely converged on the use of methods and tools implemented in the R programming

72



language as it is free and publicly available. Bioconductor provides tools for the analysis
of high-content genomic data and is open source and open development
(www.bioconductor.org). A few of the widely used normalization methods include,
locally weighted scatterplot smoothing (LOWESS) or data-driven LOWESS, and robust
multiarray analysis (RMA).

Typically, the identification of the responding molecular species to a specific exposure is
carried out by using univariate statistical methods that aim at testing each molecular
feature in the data set individually (ref. 8-31). Upon the definition of likelihood (usually
p-values) and magnitude (fold changes) of the molecular alterations, the features that
are significantly responding to a given exposure are identified and lists of e.g.
differentially expressed genes (in the case of transcriptomics) are compiled. In
transcriptomics data analysis, a number of methods have been proposed, of which linear
models followed by eBayes testing gained enormous popularity (ref. 8-32) Since
microarray analysis involves multiple comparisons, false positives are very common and
thus, tests such as the moderated t-tests were developed specifically for microarray
analysis. The p-values from the statistical test are then adjusted either using the false
discovery rate (FDR) correction to minimize the number of false positives or by
controlling the Family-wise error rate (FWER) for example with Bonferroni correction. A
false discovery rate adjusted p-value of less than 0.05 and a fold- change cut-off of 1.5 in
either direction are routinely applied to the microarray datasets. The resulting stringent
list of differentially expressed genes or proteins is then queried to identify altered
functional pathways. Advanced statistical techniques such as hierarchical clustering,
K-means clustering, self-organising maps enable identification of similar expression
patterns across the samples, signatures specific to a class of chemicals, tissue or a cell
type or a phenotype. The various statistical methodologies used to analyse the big data
are summarised in Section 6.

In toxicogenomics, efforts establishing reproducible data analysis frameworks that are
communicable to regulators are currently being established. The MAQC consortium
accessed the technical performance and application of ‘omics technologies for clinical
application and safety assessment have been investigated. The consortium completed
three projects evaluating the performance of microarrays, genome-wide association
studies and RNA-sequencing, with particular reference to the reproducibility of
transcriptomics data, between-experiment concordance, within-laboratory repeatability,
and cross-platform reproducibility. The results from these studies indicate that using a
p-value and a fold change threshold and subsequently sorting by the fold-change to
identify the most prominent differentially expressed genes enhanced reproducibility of
the results while balancing the sensitivity and specificity. The work of the consortium
has advanced microarray and RNA-seq analytical pipelines that can be leveraged for
developing data analysis frameworks and best practices (ref. 8-33). However, it should
be also considered that, given the complex nature of the molecular interactions,
multivariate analysis could help highlighting additional sets of molecular features that
might not be strongly associated to exposure effect when considered independently (ref.
8-34, 8-35, 8-36). In this sense, multivariate approaches relying on machine learning
algorithms can also aid the finding of molecular biomarkers with toxicity predictive
value to be further implemented in high-throughput targeted assays.
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The primary readout of omics experiments usually consists of lists of molecular features
significantly altered due to an exposure. To further facilitate the interpretation of these
results, the molecules (genes, proteins, or metabolites) are mapped onto existing
pathway databases and gene ontologies. Eventually, the goal is to anchor the expression
changes at the gene or protein levels to the observed phenotype in an organism. A single
gene or protein may be involved in multiple functions and therefore identifying isolated
groups of genes or proteins that are differentially expressed may not be sufficient to
understand the perturbed biology. Software tools for the systematic annotation of gene
interactions derived from the literature are available. Classification systems such as gene
ontology tools help identify categories of molecules that are altered following exposure.
Kyoto Encyclopedia of Genes and Genomes, Gene Microarray Pathway Profiler, Ingenuity
Pathway Analysis or WikiPathways tools can be used to identify pathways and functions
that are perturbed following exposure to substances in experimental models. Although
these literature-based tools often provide network representations of co-citation
relationships, they are not really providing any regulatory gene network inference
capability.

The statistical evaluation of the pathway and ontology over-representation is usually
performed either by a hypergeometric test or a Kolmogorov-Smirnov test. Many tools
are freely available online for carrying out this task, which is typically performed by
uploading, for instance, a list of differentially expressed genes onto a web service and
retrieving lists of significantly enriched biological themes. It should be noted that these
services do not always include updated version of the pathways and ontologies
definitions, risking introduction of bias in the outcome (ref. 8-37) . A robust approach
that considers the complexity of biology and avoids testing isolated genes for
significance is gene set enrichment analysis (GSEA). The method determines whether a
priori defined sets of genes, such as pathways or gene ontologies, are statistically
over-represented in relation to genes outside the pathway when compared to an
exposure control (ref. 8-38, 8-39). These methods can be assumed to allow better
comparison between diverse omics data sets (ref. 8-40, 8-41). Furthermore, the results
are then useful for omics-based scoring methods, which can be used for predictive
modelling (ref. 8-42, 8-43). As stated early in the section, omics data can be used to
construct AOPs (ref. 8-20) and mechanistic descriptions of key events are being
incorporated within a broader biological / toxicological context. GSEA using
toxicity-predictive gene sets can be used to evaluate quantitatively such key events.

In recent years, multi-omics approaches have been used in a number of biomedical
fields. The aim in this type of analyses is to portray a more comprehensive landscape of a
biological state of interest by interrogating multiple molecular compartments from the
same biological system. Computational methods specifically addressing multi-omics
modeling have been proposed (ref. 8-44, 8-45, 8-46), but this approach is still
under-used in nanotoxicology with only a few studies on multi-walled carbon nanotubes
(ref. 8-6, 8-47, 8-48, 8-49).

Omics analysis is normally referred to as a high-content analysis, where few samples are

tested for a high number of parameters (e.g. genes) and is relatively slow and costly.
However, reduced sets of toxicity-associated genes can be assayed at higher throughput
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and lower cost, e.g., Luminex® or more recently TempO-seq (RASL-seq) targeted RNA
sequencing technology (ref. 8-50). To the benefit of the nanoinformatics community,
high-throughput transcriptomics platforms are in development, e.g., in the LINCS and the
Tox21 Phase III projects, and enable rapid gene profiling experiments with both several
doses and biological replicates using multiple models of 800-1500 genes (reviewed in
ref. 8-51). Although, NM effects analyzed using traditional microarrays, such as Agilent
or Affymetrix GeneChips®, form the basis for most existing gene profiling analyses of
NMs and provide reference values for recent next-generation sequencing and future
generation of HTS data from selected toxicity-reflective gene sets.

There is also a clear need to develop new technologies and incorporate novel data
streams for human health risk assessment. For example, applying toxicogenomics to
characterize the biological responses to exposures to nanomaterials and evaluate
possible dose-response relationships (ref. 8-17, 8-52, 8-53). Software such as
BMDExpress provides an opportunity to conduct such analyses (ref. 8-54). Benchmark
dose analysis along with multivariate technics such as GSEA (ref. 41) to derive the most
sensitive enriched pathway as well as the overall median BMD value for key gene
members of significantly enriched pathways, provide good estimates of the most
sensitive apical endpoint benchmark dose (ref. 8-55, 8-56).
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9. The community: Overview of Stakeholders
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Different nanoinformatics stakeholders may be identified and described via different
approaches. One approach is based on the data life cycle (Figure 7) as described by
Harper et al. (2013).
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Figure 7: Overview of nanoinformatics stakeholders according to the data life cycle

The data life cycle starts with the generation of raw experimental data by different
independent researchers or research groups (= Data Creators in Figure 7). Typically this
data is processed, analyzed, and published by those groups. Unfortunately, and despite
long ongoing discussions, in most cases the raw and also the full processed datasets are
not published alongside the scientific publication. Some other scientific fields like
protein crystallography or proteomics, in contrast, require that the primary data be
stored in a database as a prerequisite for any peer-reviewed publication. In these fields
there is a long tradition of depositing data in publicly accessible databases and
accordingly knowledge that it is not only generated by research groups that create new
experimental data but also by research groups re-analyzing existing data in data
repositories.

In the field of nanoEHS, however, in silico toxicologists (=Data Analysts in Figure 7) that
aim to derive computational models from primary data often first need to extract the
details from the published literature in order to render the data usable for
computational analysis and predictive modeling. Although data extraction is possible
from publications, and can even be facilitated by computational means, this approach is
still limited. Typically it will result in loss of data as publications usually highlight certain
data in a study that fits the message of the authors. In addition, the authors usually
depict mean or median values only, the whole set of experimental results is only rarely
included. No effect data or data that does not demonstrate the sought after effects are
often not published at all. It is well known and widely acknowledged that in particular
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no-effect data are very important for regulatory decision-making but also they are
important for the advancement of nanoEHS science in general.

Storing all nanoEHS data in federated, interoperable data repositories would allow for
inter-laboratory comparisons and support the definition of the errors and variability
within and between studies. It would also serve a range of other purposes such as
supporting the establishment of nanomaterial grouping approaches, facilitating the
generation of various in silico models, enabling meta-analysis of data etc. Overall there
would be plenty of benefits starting from the level of the individual researcher up to the
scientific, regulatory and industrial communities, as summarized in Figure 8.
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Figure 8: Impact of nanoinformatics for various stakeholders

Looking into the various stakeholders from the perspective of academia, industry and
regulators one may assume that each has different needs and main objectives, as
summarized in Table 2.

Table 2: Overview of (Nano)informatics needs from the perspectives of the different
stakeholders

Perspective of Academia | Perspective of Industry Perspective of Regulators
(Research users based in non-industrial (Manufacturers and downstream users of (Government or international bodies
research settings such as universities or | nanomaterials, insurers, contract producing regulations, policies or

research centers) research organisations, regulatory
consultancies etc.)
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recommendations for sfae use of

nanotechnologies)

Create new experimental
data and deposit data in an
access-controlled manner
(at least until published)

Use existing data for
justification of waiving of
individual tests

Use existing data for

analysis of plausibility

Secure experimental data

Use existing data to fill data

Use existing data to “verify”

by uploading into databases | gaps for regulatory | reliability of data obtained

such that they can be | purposes (e.g. risk | with non-standard test

assessed and re-used (by | assessment and | guidelines

the same groups, by | management).

consortia, by the public)

Benchmark own data by o Use existing data to better

comparison  with  data Use ex1st.1ng data  for understand justifications in
interpretation of safety

obtained in other groups
(“peer review”)

assessment results

QSAR models

Use data for design of new
experiments/ experimental

Use existing data to design
new materials with specific

studies, for compound | properties (i.e. safer
selection etc. products that retain their
quality /performance)

Use existing data for

substance prioritization

Use data for model building

Use data to establish health
and safety procedures to

Use data to build weight of
evidence arguments

protect workers,
consumers, and the
environment
Use available datasets and Require that the data are
modelling software, ideally generated according to
under open license standards (e.g. ISO, OECD)
and regulatory demands
(e.g. REACH.)
Lab data becoming GLP & OECD TG for use in Regulatory
Interested party
GOAL Academia Industry Regulator
Use data for|ingert tick or | insert tick or | insert tick or
design of new
experiments/ Cross Cross Cross
experimental any required any required any required
studies, for supporting text supporting text supporting text
compound
selection etc.

80




Use existing data
for substance
prioritization

[kp1]It may be possible to make the goals more concise.

For example, researchers want to benefit from new hypothesis that can drive new
research. Industry might be more interested to derive information about a new material
in an early development phase to learn whether the material properties are useful for
the specific product needs and to get early warning signs of possible hazards and risks of
the material. Regulators, finally, would appreciate linkages between specific material
properties and hazards that they then may feed into specific regulatory actions.

Each of the stakeholders has their own specific needs and objectives. Most likely there
will be no single one fit-for-all-purpose database. However, there might be common data
elements that would be useful for field-specific purposes as well as serving the dual role
of being useful for predictive modeling and establishing structure-property
relationships.

One of the most important elements in further developing the field of nanoinformatics is
starting and enhancing the dialogue between the different stakeholders such that they
become aware of the needs of other stakeholders. As nanoscience in general but also
nanoEHS is highly interdisciplinary, nanoinformatics can only mature if all the
stakeholders actively participate in this process.

10. The community: Impact on stakeholders

Danail Hristozov', Andrea Haase?, Nina Jeliazkova?, Iseult Lynch*, Kai Paul®

!Greendecision Srl.

% German Federal Institute for Risk Assessment, Germany

3 Idea consult Ltd, Bulgaria

*School of Geography, Earth and Environmental Sciences, University of Birmingham,
Edgbaston, B15 2TT Birmingham, United Kingdom

> Blue Frog Scientific Limited, Quantum House, 91 George Street, Edinburgh, EH2 3ES,
United Kingdom

To be able to predict the properties, interactions and/or the adverse (eco)toxicological
effects of the nanomaterials, it is fundamental to have access to high quality (meta)data.
The many nanosafety projects have cost hundreds of millions of euros to generate a huge
amount of relevant physicochemical, toxicokinetics, fate, exposure and (eco)toxicity data
in over a decade of research. However, this information is only accessible via disparate
and heterogeneous sources, offering different types of information in different formats
(e.g. technical reports, excel sheets, data inventories, knowledge bases, scientific
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publications). The only way to make a good use of this enormous volume of available
data for the EHS assessment of nanomaterials is to curate them, link them to relevant
modelling tools and make those accessible to their potential users from the research
community, industry and regulation by means of user-friendly interfaces.

10.1 Impact on the Research Community

The challenging goal of developing and implementing a global nanoinformatics
infrastructure will have a significant impact on research cohesion and international
collaboration as it will require coordinated cooperation among EU and US scientific
projects, centers and institutions to avoid overlaps, strengthen complementarities and
create synergies that would eventually bring us closer to the goal. In addition, it will
inevitably have a huge impact on the international efforts for harmonisation and
standardisation of ontologies and data representation and sharing specifications, which
will facilitate research across several domains, including chemistry, biology, toxicology,
environmental science and others.

The modelling community will especially benefit from ready-to-use curated datasets,
spanning endpoints of regulatory importance, and from open source and/or open access
modelling components, developed in collaboration with experts from the respective
scientific domains. This will allow comparison between different modelling approaches,
which will ultimately lead to advancement in the nanoinformatics research area. The
inclusion of data quality and completeness criteria, including information of what is
technically and analytically feasible by the experimental setups will be a unique asset
towards increasing the trust and validity of the model results. The modelling community
will also benefit from interoperability of data and modelling components, allowing
dynamic retrieval and analysis of data, beyond the static datasets.

10.2 Impact on Industry

Nanoinformatics can have a significant impact on industry as it can optimise testing for
risk assessment under REACH, and also under e.g. the Biocides, Cosmetics, and Foods
Directives. It can lower the cost not only of regulatory compliance but also of R&D&I for
developing new products. There is already a large and growing market for data-driven
modelling solutions that, once implemented, can increase confidence in nanotechnology
to encourage innovation across several sectors, including but not limited to electronics,
construction, packaging, food, energy, health care, automotive.

Indeed, key fundamental properties of nanomaterials may highlight their usefulness for
certain objectives, e.g. pest control, medicine delivery or remediation. These databases
may highlight more efficacious technologies than those that already exist, allowing for
their replacement. The information may highlight undesirable properties such as
excessive toxicity. Therefore, access to large and usable databases can steer innovation
not only towards new nanotechnological advances but also safer implementation of
these technologies, through SbD strategies.
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In the domain of regulatory compliance, nanoinformatics can facilitate the applicability
of standard tests as data curation and access to the wider community can help to reach

consensus on testing methodologies and implementation of regulations. Currently with a
lack of clarity on how nanomaterials will be regulated and tested, in part created by lack
of access to quality data, it becomes difficult for companies to justify running full testing
or regulatory programs or, much worse, investing in possible nanotechnology
innovations. The data from nanoinformatics exercises will enable sound decisions to be
made, and aid companies to comply with regulations.

Nanoinformatics can lead to the development of predictive models to facilitate both SbD
strategies in the early stages of innovation and more cost-efficient regulatory risk
assessment once the nano-enabled products are ready to go to the market. These could
be for a particular endpoint (i.e. a QSAR for determining possible mutagenicity) or for
exposure modelling. Models that can predict varying endpoints are used to tailor the
testing strategy and to highlight any potential issues with particular methodologies/test
guidelines which need to be addressed before testing can commence. In extreme cases
model predictions may direct a company totally away from further pursuing a substance.
When testing becomes technically infeasible these models can be used instead of
standard testing. They can also be used as weight of evidence arguments when
compiling dossiers that use read-across or trend analysis. In addition, exposure models
can be used to predict both environmental and human exposure in a more cost and
time-effective manner than the use of monitoring programmes, and sometimes they are
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the only alternatives as it is not possible to monitor the release of a substance which is
not yet on the market, and it is infeasible to expect that every nanomaterial must be
monitored. re—derived—expostre EVEeTS or—each—seeratrieo WOTKEYS Tonah vy
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Companies, especially SMEs, with limited resources for health and safety management
are expected to benefit greatly from an interoperable nanosafety data and modelling
infrastructure. Its implementation through the existing risk assessment and
management tools (e.g. SUNDS) can have a significant practical value for both industries
and regulators since it would make it possible to integrate technical data about the risks,
benefits and costs of nanomaterials into sustainability portfolios to make informed
decisions about how to address their safer production, downstream use and end-of-life
treatment. It can also aid industries in making decisions on whether to invest in
developing new nanotechnology products or to select conventional alternatives.

Such a nanoinformatics platform that combines data curation and modelling capabilities
with user-friendly interfaces would be particularly interesting for SMEs as it would
enable them to more readily perform regulatory EHS assessments and select options for
safer product design. This can reduce their R&D&I costs and can enable them to more
effectively compete with larger industries. Moreover, the application of high-quality
curated data will reduce uncertainty in risk assessment and will improve risk
communication, which will contribute to more positive market interpretation of their
products and to better business cases.

Regulatory consultancies:

The pressure to assist companies in making technically challenging decisions about
safety of their products has increased proportionally to the evolution of regulations.
While there are a small number of consultancies providing nanoEHS assessment support
to businesses, those can be are limited in terms of the data sources and analytical tools
they can use. The nanoinformatics infrastructure could be used by these consultants or
directly by the businesses for risk analysis and/or R&D&I decision making. The same
also applies to researchers working in academia who design, develop or use
nanomaterials or nano-enabled products. In addition, regulators in a variety of sectors
(e.g. consumer products, cosmetics, food, medicines, chemicals and substances) also
require data sources and modelling tools to do their own safety assessments. Similarly,
standardisation bodies (e.g. OECD, ISO) would greatly benefit from annotating data
originating from existing standards as this this would allow them to further improve
those or to better adapt them to nanomaterials.

10.3 Impact on Regulatory Agencies

The nanoinformatics data and modelling infrastructure will further enable the safety
assessment of nanomaterials. This will provide regulators with access to curated data
and enhanced prediction capacity at moderate costs, to inform hazard and exposure
modelling for risk analysis. Moreover, data may be immediately used for the
advancement of regulation. Tests that are trialed and used in academia or by industry
can highlight possible deficiencies, and therefore show where adaptations or new test
methods need to be devised. The data may also highlight the need for different
assessment factors, safety factors or methods for determining key critical values under
certain legislative of frameworks. This will ensure that the implementation of the
regulation is responsible and protective. This can only be established once a
comprehensive data set has been realized. In this sense nanoinformatics can aid in the
progression and iterative processes of regulation. The legislation, and guidance around
it (i.e. testing guidance and practical guides), will give industry confidence in following
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the regulatory framework in order to achieve compliance. Further, when obligations are
part of a legal framework (which is outwith the current legislation) it will ensure that
industry must comply with the provision of critical data in order to properly assess and
address nanomaterial risk. However, under many frameworks such as REACH, there is
simply guidance on best practices which do not form any particular part of the
legislation. The decision on what encompasses “critical data” must be agreed upon by all
stakeholders using sound scientific justification but also not breach competition laws to
ensure a fair market. Currently, for instance, there are several highlighted nanomaterial
physical chemical properties within IUCLID, however, there is currently no consensus on
which are the most important, and no legal obligation to supply this. It is unfeasible to
request every single property for cost, time and relevance purposes. Nanoinformatics
can aid in many areas of dossier preparation allowing a responsible, time- and
cost-effective release to market.

The nanoinformatics data, when properly realized can also aid in the creation,
implementation and validation of new testing methods. These can be for screening
purposes or to highlight non-threshold and threshold effects. The data will be key in
developing intelligent alternative testing strategies such as in vitro, in silico and in
chemico methodologies. Reducing cost, time and use of animals. The data may not only
be useful for nanomaterials but regulation on a wider scale with a key goal in
appropriate use of these alternative methods to reduce the need to experimental testing
on animals. Further, data on higher tier test may be used as proof-of-concept for the
alternative testing strategies.

The data can be collated in a comprehensive repository such as the EUON, and this
database can be used by tools such as the OECD QSAR toolbox, allowing read-across,
data collation and trend analysis to be more easily realized for data-gap filling. The data
can also be used to generate reliable predictive models for exposure assessment, and
highlight the key properties which affect the fate of the materials so that the release of
the materials can be properly partitioned. The models may also be used to generate
screening data for substances of concern. In combination, the raw data from the studies
and models, may be used to screen and highlight nanomaterials of concern. Here, when
substances are highlighted, then can be moved into current frameworks within the
legislation, such as compliance checks (i.e. check the dossier for sound scientific
justifictions and the correct implementations of risk management measures) or placed
on to the relevant lists for further action, such as the CORAP (community rolling action
plan) list or list of substances of very high concern (SVHC). There is also currently a lack
of differently tiered models, for instance, Tier 1 exposure model requires little chemical
and activity specific data, thus being the most unrealistic and conservative. Such models
are quick and cost-effective and can be used in situations where little risk is expected.
Tier 2-3 modelling requires much more information, but are more realistic and less
restrictive. Such tiering is useful for cost and time-effectiveness, but also to ensure
optimal realism and protectiveness.

Nanoinfromatics will be key to reaching consensus on modes of action and adverse
outcome pathways for particular nanomaterials. Information toward adverse outcome
pathways can be used for the inception of new tests which can be used instead of animal
testing. This information allows the use of targeted in vitro, in chemico and in silico tests
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at varying points of the AOP in order to define if a hazard will present. These tests
reduce animal testing and are more time and cost-effective. These are not justa goal in
the nanotechnology community, but globally for chemicals across all stakeholders. For
instance, one recent development for the chemical industries and REACH is the
implementation of non-animal test methods for skin sensitization (ECHA Chapters on,
Guidance on Information Requirements and Chemical Safety Assessment R7a-c:
Endpoint Specific Guidance, 2017). For some consumer products such methodologies
form the backbone of the safety assessment and legislative processes as consumer
products do not allow any animal testing to ensure their responsible release into market.
Therefore, in vitro data, read-across to chemicals registered under other legislations (e.g.
REACH; although data protection laws must be considered in their use by third-parties)
and data from QSARs are used. To substantiate the application of read-across the
similarities are further drawn by the use of QSARs and in silico assessments. Currently
during tier 1 and tier 2 environmental safety assessments QSARs are exclusively used as
is basic fate modelling (Salvito et al.,, 2002). Only at tier 3 is experimental data used but
still alongside landscape modelling. Without such tools, an informative and responsible
safety assessment for consumer products becomes difficult, if not impossible, leading to
a cessation of development in extreme cases. Further when selecting an analogue it is
highly useful, and sometimes required to ensure the success of testing, that some
properties can be predicted using QSARs.

Having a comprehensive repository of nanomaterials is essential for the successful
implementation of read-across. It must be usable but also tailorable to the users needs
and able to search the particular material or property of interest. It is also important for
the researching community to reach a consensus on the most pertinent properties which
should be compared during read-across strategies to prove that the nanomaterials will
behave in a similar manner, i.e. size, surface coating etc. This will form the core of a
read-across argument and the required bridging studies. Nanoinformatics will allow
such a consensus to be reached, and for guidance to be dispensed in such documents as
ECHA’s read-across assessment framework (2017).

All these strategies form the backbone of more streamlined and cost-effective test
strategy and dossier preparation. Along the entire process they allow more informed
decisions to be made and also the reduction of testing on animals. The wide use in
industry will also lead to the rapid advancement of such methodologies with the success
and failures of their implementation dictating the future path of research or research
focus.

Further, nanoinformatics from varying stakeholders, in particular industry, from
monitoring studies of nanomaterial concentrations in the environment and during
worker activities will aid in the inception of nanomaterial specific release factors should
they be required. Here, there must be effort industry in creating these initial monitoring
programmes, using the information to present sound scientific justification for any
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adaptation to release factors to be used. Based on knowledge and site specific averages,
for the general life-cycle stages which could be found on a nanoinformatics database, it
will be possible to produce a framework where there is a further element of realism so
as not to be restrictive to the technology but also to ensure regulatory protection. A
similar framework was set up by CEFIC and such end goals specific environmental
release factors were achieved for varying industries. Nanoinformatics may also help
highlight the most appropriate risk management measures and operational conditions,
as well as their effectiveness.

Overview of existing Databases and nanoEHS database

Projects

Andrea Haase', Iseult Lynch?, Nina Jeliazkova®

! German Federal Institute for Risk Assessment, Germany
% University of Birmingham, UK
3 Ideaconsult Ltd, Sofia, Bulgaria

The following general, i.e. not nano-specific, databases could be of interest for nanoEHS
(Table 3) and may provide some important general approaches.

Table 3: Overview of general (i.e. not nano-specific) databases

Name

Link

Description

eChemPortal

https:

www.echemportal.or

chemportal/index.action

e

Global Portal to Information on
Chemical Substances

(includes information on Physico-
chemical properties, ecotoxicity,
environmental fate and behaviour,
toxicity)

ChEMBL

https:

www.ebi.ac.uk/chembl

manually curated chemical database
of bioactive molecules with drug-like
properties, contains compound
bioactivity data (e.g. Ki, Kd, IC50, and
EC50)

ChEBI

https:

www.ebi.ac.uk/chebi

a freely available dictionary of
molecular entities focused on ‘small’
chemical compounds

ChemSpider

http:

www.chemspider.com

a free chemical structure database
providing text and structure search
access to over 58 million structures
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PubChem https://pubchem.ncbi.nlm.nih.go | Free database of chemical molecules,
v/ consists of three dynamically
growing primary databases.
- Compounds (82 million entries)
- Substances (198 million entries)
- BioAssay (1.1 million entries)
DrugBank https://www.drugbank.ca unique bioinformatics and
cheminformatics resource that
combines detailed drug data with
comprehensive drug target
information
ToxNet https://toxnet.nlm.nih.gov group of databases covering
chemicals and drugs, diseases and
the environment, environmental
health, occupational safety and
health, poisoning, risk assessment
and regulations, and toxicology
ToxBank http://toxbank.net central data warehouse for toxicity
data management and modelling,
includes a "gold standards"
compound database, a repository of
selected test compounds, a reference
resource for cells, cell lines and
tissues of relevance for in vitro
systemic toxicity research
ToxCast https://www.epa.gov/chemical- | EPA's most updated, publicly
research /toxicity-forecaster-toxc | available high-throughput toxicity
asttm-data data on thousands of chemicals
ToxRefDB http://actor.epa.gov/toxrefdb provides detailed chemical toxicity
data
ECHA DB https://echa.europa.eu/informat | Provides information on substances
ion-on-chemicals/registered-sub | registered with ECHA
stances
Array https://www.ebi.ac.uk/arrayexp | Functional genomics data
Express ress/
TG-GATES http://toxico.nibiohn.go.jp/engli | Toxicogenomics data
sh/
Gene https://www.ncbi.nlm.nih.gov High Throughput Expression Data
Expression eo/
Omnibus
Organism http://www.wormbase.org/#01 | Genomic data for the various species
specific 2-34-5,
databases http://wfleabase.org/database/

This section highlights an important difference between the US and the EU in terms of
approaches. Over the last 10 years or so, the US had a concerted effort on nanoEHS with
3 large-scale centres of excellence. (CEINT at Duke University, UC CEIN at UCLA and
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more recently CNN at Harvard) and one needs to visit the respective websites for
detailed informatics information. By contrast, the EU has funded over 50
nanosafety-related projects each ranging from 2-4 years in duration. Somewhat
confusingly, both the project and the outputs from the project often carry the project
name in the EU context, so datasets are referred to as the NanoX project dataset, and the
NanoY project visualisation tools etc. There is strong incentivisation for tools /
approaches / ontologies developed in one projects to be carried forward into
subsequent projects, but an agreed naming convention for these co-developed
hybrid-products has yet to be agreed. This is an important issue for the EU
nanoinformatics community to resolve sooner rather than later in terms of making real
progress and enhancing clarify for international collaborators.

Within the OpenRiskNet (www.openrisknet.org), a project funded under the Horizon
2020 EINFRA-22-2016 Programme (project ID: 731075) an open e-infrastructure will
be delivered, providing resources and services to a variety of communities requiring risk
assessment, including chemicals, cosmetic ingredients, therapeutic agents and
nanomaterials. OpenRiskNet is working with a network of partners, organized within an
Associated Partners Programme. One of the OpenRiskNet case studies will address
specific needs identified by the nanosafety community. The case study will be defined
based on project partners’ experience in NanoEHS projects and activities within
NanoSafety Cluster (NSC) working groups and task forces. Interactions with nanosafety
projects have already been established in order to identify the key questions to be
addressed, and where the OpenRiskNet infrastructure could be deployed and tested.
OpenRiskNet will support the sustainability and further development of the
eNanoMapper infrastructure supporting NSC needs. It offers the potential to incorporate
data and tools developed within the NSC within the broader European scientific
infrastructure and to combine them with resources developed within other areas such
as chemical safety assessment.

More specifically addressing the informatics needs of the nanosafety community, the
Horizon2020 project NanoCommons (project ID: 731032) will establish a
nanoinformatics platform to convert the nanoEHS scientific discoveries into legislative
frameworks and industrial applications, through concerted efforts to integrate,
consolidate, annotate and facilitate access to the disparate datasets.drive best practice
and ensure maximum access to data and tools. Networking Activities will span
community needs assessment through development of demonstration case studies (e.g.
exemplar regulatory dossiers). Joint Research Activities will integrate existing resources
and organise efficient curation, preservation and facilitate access to data/models.
Transnational Access will focus on standardisation of data generation workflows across
the disparate communities and establishment of a common access procedure for access
to the data and the modelling and risk prediction/management tools. NanoCommons
will integrate across EU and US approaches to nanosafety data management and
includes efforts to ensure sustainability of the nanosafety knowledge infrastructure
through an advanced infrastructure and eventual integration into the EU Observatory
for NanoMaterials (EUON, https://euon.echa.europa.eu/).
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Figure X: Schematic illustration of the positioning of NanoCommons and how it will
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internationally.

Appendix 1 provides a brief overview of some the recently finished or currently running
projects whose main efforts were targeted towards developed of databases, or which
developed large scale data sets or models for interrogating datssts. itis not intended as
a complete overview, as projects contributed text voluntarily, rather than been
systematically added. Table 4 provides an overview of the main databases and datasets
specifically developed for nanoEHS.

Table 4: Overview on nano-specific databases:

Name Link EU/ | Freely description
SN accessible/
Registration
eNanoMap | http://search.data.ena | EU partly Contains primary
per nomappernet/ research data from
various finished
nanoEHS projects and
from literature
NanoHub | https://nanohub.org/
DaNa http://www.nanoparti | D Freely Contains information for
kel.info/ accessible the general public and
for researchers, SOPs
OCHEM http: EU Freely Contains experimental
accessible data on nano and
non-nano materials,
allows to generate new
models on the basis of a
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wealth of descriptors of
various kind, allows for
proper model evaluation,
and allows to store
models either privately
or publically.

NECID

http://www.necid.eu

NanoDatab
ank

EU

Focus on exposure data

http://www.cein.ucla.e
du/new/p192.php?pag
elD=408

UsS

Not currently?

Contains over 1000
uploaded investigations
from CEIN as well as
external investigators.
Hazard focussed.

Nanomater
ial-Biologic
al
Interaction
S
Knowledge
base

http://nbi.oregonstate.

edu/

UsS

Freely
Accessible

Contains over 200 in vivo
toxicological
assessments of
nanomaterials in the
embryonic zebrafish model.
Includes nanomaterial
characterization, mortality,
and 21 morbidity endpoints
such as morphological
malformations, behavioral
abnormalities and disrupted
physiological function.

NanoMILE

https://ssl.biomax.de

nanomile/cgi/login bi

oxm portal.cgi

EU

Registration
required

Contains
characterisation data
and HTS toxicity data for
120 NMs, with detailed
mechanistic, omics and
ecotox data for a sub-set.
Supplemented with
literature data in places,
and used as basis for
QSAR development.

ModNanoT
0Xx

ADD LINK

EU

Freely
Available

Curated database on
ecotox data, focussed
mainly on silver,
spanning 2007-2017.
Currently integrating
into CEINT’s NIKC
database and already
available via
eNanoMapper database.
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10.2 Modelling Projects

The following table gives on overview of the most important modelling projects.

Table 5: Overview on modelling projects

Name Link EU/ [ Finishe | Short description
UsS |d?
NanoPUZZLES | http://nanopuzzles.eu EU |yes
ModENPTox http://fys.kuleuven.be/apps EU |yes
mgggngtgxz
PreNanoTox http://prenanotox.tau.ac.il EU |yes
MembraneNan | http://www.membranenan EU |yes Multiscale modelling
oPart art.eu/ of NM-membrane
and NM-protein
interactions.
MODERN http://modern-fp7.biocenit.ca | EU |yes
t/
eNanoMapper | http://www.enanomappernet [ EU |yes
L
COSTTD1204 | http://www.modena-cost.eu/ | EU |[yes
MODENA
SmartNanoTox | http://www.smartnanotox.eu/ [ EU [ongoin | Bionano interactions
g models and
database. AOPs for
pulmonary
exposure, pathway
modelling, nano-
and
bioinformatics-base
d mechanism-aware
prediction tools.
UC CEIN http://www.cein.ucla.edu/ne | US [ongoin | In silico data
w/p10.php?pagelD=170 g transformation and

decision-making
tools are involved in
data processing to
provide hazard
ranking, exposure
modeling, risk
profiling, and
construction of
nano-SARs. These
research activities
are combined with
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educational
programs that

10.3 NanoEHS projects generating large-scale datasets

Table 6 gives on overview on other important and interesting projects that are providing
large-scale data sets relevant to nanoEHS.

Table 6: Overview on interesting projects

Name Link EU/ US | Finishe | Short description
d?
NanoMILE | http://nanomile.eu-vri | EU yes Mechanistic understanding of
.eu/ NNs interactions with living
systems and the environment,
across their entire life cycle,
leading to a framework
(approach, experimental
protocols, experimental data,
QSAR models...) for MNMs
classification according to
their biological or
environmental impacts.
NanoSoluti EU yes
ons
SUN EU yes
ProSafe EU yes
NANoREG EU yes
FutureNan
oNeeds
NANECO http://ochem.eu NATO | yes Development of QSAR models
for metallic nanomaterials
NanoToxCl ERANE | Ongoin
ass T g
NanoReg?2 EU Ongoin
g
caLIBRAte EU Ongoin
g
ACEnano http://www.acenano- | EU Ongoin | Development of a holistic
project.eu g analytical framework for

reproducible NM
characterisation, embedded in
an operational ontology
(“common language”) and
data framework to allow
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identification of causal
relationships between NMs
properties, be they intrinsic,
extrinsic or calculated, and
biological, (eco)toxicological
and health impacts.

11. Milestones and Pilot Projects

Primary Author: Fred Klaessig

Contributors/Reviewers: A. Haase (BfR), Y. Cohen (UCLA), V. Grassian (UCSD), V. Stone
(Herriot Watt), U. Vogel (NRCWE), D. Spurgeon (CEH), G. Visser (DSM), A. Falk
(BioNanoNet), A. Worth (JRC), D. Winkler (CSIRO), I. Lynch (U. of Birmingham), Marc
Williams (U.S. Army), Alan Kennedy (U.S. Army), Lisa Strutz (U.S. Army) and nanoWG
participants.

11.1 Introduction

Other sections of the Nanoinformatics 2030 Roadmap are very inclusive regarding
concepts and collaborations that advance the goals outlined in Section 3. In suggesting
milestones and pilot studies, however, we are placing some boundaries on expectations.
Informatics and ontologies require a disciplined attention to definitions, controlled
vocabularies, well-defined data sets and metadata, etc. Consequently, we wish to be
explicit here regarding the steps taken in crafting the Nanolnformatics Roadmap’s
milestones and pilot projects: this Introduction provides context; the three Perspectives
describe challenges facing the scientific fields in achieving the Roadmap’s goals; and the
Commentary connects this work to related EU Roadmaps. The resulting milestones and
suggested pilot studies are provided as tables.

The milestones are listed according to near, mid- and far time horizons together with the
scientific fields expected to contribute most to that specific topic. The early, or
near-term, objectives identify a base set of activities; the mid-term objectives measure
progress; and the far-term goals anticipate regulatory requirements if the resulting tools
are to be accepted by risk assessment professionals.

The overarching strategy involves a progression of predictive computational models,
each specific either to a topic (property, species, biological response) or to a stage in a
nanomaterial’s life cycle and each having utility to risk assessment. A modularized
approach allows for flexibility in using available data, in judging model accuracy and in
addressing regulatory requirements. Two visualizations are used to offset the flexibility
regarding models. The Particle Description can be used to align phys-chem properties to
specific particle regions (e.g. Core , shell, hydration layer etc.) and compositions. The
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Particle Journey can be used to align models to stages in the nanomaterial’s life cycle or
to laboratory tests (e.g. membrane/biological barrier contact, internalisation,
biodistribution / sub-cellular localisation, site of action, mode of action, transformations,
clearance mechanisms etc.).

The milestones address three recognized challenges facing nanoinformatics and
predictive computational models: (1). limited data sets; (2). limited data access due to
proprietary, intellectual property or legal restrictions combined with the lack of
long-term support for a nano-data repository and for data curation for acceptable recall
and precision to retrieve data from appropriate repositories; and (3). regulatory
requirements for harmonized test methods conducted according to GLP. In response, the
milestones (a) encourage data generation through collaborations, surrogate test
methods, newer screening techniques, while (b) recognizing that progress will be
uneven and (c) suggesting that read-across and related data-filling techniques (QSARs &
trend analyses) are the means for introducing the fruits of this work into the regulatory
process.

The reader is reminded that the background to the individual milestones and their
sources were provided in Section 4, Introduction, and the citations are: the
Nanoinformatics 2020 Roadmap (1,2); the COST sponsored workshop in Maastricht
(3,4); and a 2014 NSF-sponsored workshop (5)..

11.2 Perspectives for Toxicological Milestones

The Nanoinformatics 2030 Roadmap responds to two aspects of toxicology and related
biological sciences (ecotoxicology, medicine, physiology, systems biology). Firstly, there
is hypothesis-driven research conducted against a backdrop of bioinformatics, assay
development, alternative test strategies, adverse outcome pathways (AOPs), introduction
of new capabilities with ‘omics’ and so on. Secondly, there is the manner in which
toxicology is practiced in a regulatory context, i.e. an insistence on harmonized test
methods conducted according to GLP. This insistence is substantive, reflecting societal
considerations of public health, statutory language and legal precedent that are
embodied in regulatory agency procedures.

While the distinctions between hypothesis-driven research and regulatory practice may
be well known to many in the toxicological sciences, researchers in the physical and
computational sciences are generally less aware of the distinctions and their importance
for how research is utilisable (or not) by regulators. Accordingly, the Roadmap
‘co-locates’ computational models with the stages found in a material’s life cycle as in
Table 12-1: the middle column lists the life cycle stages through to the point of sampling
where laboratory test protocols prevail (abiotic, mesocosm, in vitro or in vivo); the
left-hand column aligns computational models to those stages and laboratory tests; and
the right-hand column identifies the likely user of the model’s estimates (manufacturer,
processor, formulator) or the associated risk assessment concept.

Table 11-1: Overview on how different models relate to LCA stages
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Modes | Stages s

Process & Performance Particle Manufacturer/Distributor
Materials Modeling QSAR Properties Performance
Cheminfo Modeling  ATS
Adsorption 1 Formulation Interactions Processor/formulator
Multi-media transport Fate/Exposure Inhalation/oral/dermal
Transformations Air/water/soil
Biological transf. Test Media Interactions Protein or Env. corona
AQP PBPK Receptor Uptake/biodistribution
MIE In organism/cell
Response Cellular Mechanism
v Outcome Whole animal
Population

Alternative test strategies (ATS) and adverse outcome pathways (AOP) are examples of
hypothesis-driven research. Neither is utilized currently for chemicals by regulators, as
they have not yet undergone validation as outlined by the OECD (6). In general,
regulatory expectations of reliability and relevance, such as expressed in the Klimisch
score (7), favor established assays from EPA or the OECD conducted according to GLP.

Risk assessment professionals may estimate a property/biological activity when
chemical substances are grouped and tools, such as QSAR/QSPRs, trend analysis or
read-across default rules, are used for filling property/biological activity data gaps.
Read-across can also be used for estimating effects across species.

Data-filling techniques (QSARs, trend analyses and read-across) have been considered
for nanomaterials (8, 9) and are a potential means for introducing new approaches
(ATS, AOP and computational methods) to the regulatory process. Procedures for
grouping chemical substances remain to be established, but we can anticipate that
similarity in toxicokinetics will be a critical selection factor. In Table 12.1, toxicokinetics
(incorporated into PBPK modeling) includes uptake, biodistribution, and receptor
interactions at the Molecular Initiating Event (MIE).

The criteria regulators will consider necessary for model acceptance will become
increasingly visible with future progress (see the FDA's guidance (10) on PBPK models
as a current example). The milestones alert the reader to such matters through phrases
such as ‘credible AOPs’, ‘validation requirements’, and ‘regulatory endorsement’ but don’t
necessarily give guidance on how to achieve these.
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11.3 Perspectives for Physico-Chemical Milestones

While several nanoEHS disciplines describe chemical substances using simple chemical
formulae for molecular identities, e.g. TiO,, these fields differ when touching upon
physicochemical properties. The Chemical Abstract Services does not index TiO,
information according to volume or shape. Yet, in early 2017, the EPA with ‘nanoscale
form’ and ECHA with ‘nanoform’ decided to differentiate particles with identical core
compositions using size, shape and surface chemistry/coating distinctions (11, 12).

In materials science, a phase of uniform composition that is in equilibrium with other
phases through the phase rule defines the molecular identity, which was one justification
for not considering size (volume) when indexing information. However, the
physico-chemical properties often considered meaningful to toxicological studies are
non-equilibrium functions, perhaps steady-state or those emphasizing kinetic pathways,
which reflect the non-equilibrium nature of nanomaterials. Using the EPA ruling (11) as
an example: dissolution is kinetics (solubility is equilibrium); zeta potential reflects
coatings and adsorbed species (not the core composition); dispersion stability may
involve steric or electrostatic factors; and surface reactivity is re-phrased to be biology,
“.the degree to which the nanoscale material will react with biological systems.” Surface
reactivity essentially encompasses the nano-bio interface.

There are complicating factors regarding molecular identity. For organic molecules, the
molecular entity in the solid and in solution is essentially the same covalently bonded
molecule. For inorganic materials, metals or metal oxides, the molecular identity in the
solid may encompass ionic or metallic bonding and may not be the species found in
solution. The experience gained with QSAR/QSPRs for drug discovery may not be
translatable to metal oxide toxicity. The second complicating factor is the dual nature of
the particle (13): acting as a particle for dispersal, biodistribution and cell entry and
acting as a chemical reservoir for some modes of action (dissolution, drug release,
biopersistence).

Returning to equilibrium and steady state distinctions, melting is both a phase transition
and a form of dissolution. Melting point depression can be estimated using the
Gibbs-Thompson equation, which combines equilibrium thermodynamic concepts with
case-specific solid-liquid interface energies. Functional assays (14) involve transport
properties, which may be constrained by case-specific macroscopic conditions (flow
rate) or surface kinetics. These case-specific considerations will influence the selection
of descriptors in models.

To illustrate the potential for distinguishing among identities, Figure 12-1 is a particle
visualization, a physical model, utilizing terms defined by ISO TC-229. One
recommendation is to assign a physico-chemical property to the localized region and
composition likely to govern that phenomenon, e.g. zeta potential with surface layer and
shape with particle substrate. The particle description highlights possible sources for a
changing nanolayer composition across the life cycle (Table 12-1).
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Figure 12-1 Nanomaterial physical model
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In the milestones, coatings also include surface layers or protein or other acquired
biomolecule coronas that were not present when first manufactured. The first milestone
supports a review of data collected from the OECD test study programs such as
NANOREG to establish a base case.

One pilot project focuses on dissolution, a common theme to several of the nanoEHS
disciplines, and it aims to clarify issues, such as ionic solids not retaining their nominal
molecular identity upon dissolution. There is a large body of dissolution data and
solubility modeling that may be applicable to nanoscale materials, but may be indexed
under other metadata or ontology rules than those used in nanoEHS. Collecting this, and
indexing it with nanoEHS terms may unlock additional large datasets for use in model
development.

11.4 Perspectives for Modelling Milestones

There is a great diversity in model types, including computational ones. The regulatory
framework is itself a model, as it is a simplified representation of a much more complex
system. It is a form of decision model that utilizes numerical values for selected variables
(production volumes, intended uses, human health and ecotoxicity endpoints). There are
variants both broader and narrower (15, 16) that extend beyond statutory
requirements. In populating decision models, one may use laboratory generated test
results or the numerical estimates from computational models. These in turn can be
based on quantum mechanical calculations of molecular bonding or other descriptors
examined in Sections 6 & 7.

There are models that utilize thermodynamic concepts, such as dynamic energy budget
or Ostwald-Freundlich dissolution (17, 18). For the most part, dispersal models of
particle-as-colloid accept the applicability of classical DLVO theory. As discussed in
Section 12.3, size-dependent properties imply that the nanomaterial is not at
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equilibrium, but rather in a steady state or a kinetically hindered state. This raises
significant concerns when a computational estimate of dissolution is incorporated into a
decision model or physiologically-based pharmacokinetic/ADME model without
considering kinetically hindered dissolution mechanisms (10, 16, 18).

There is also uncertainty regarding the meaning of ‘structure’ when proposing a
computational model for QSPR. Is it the structure of a molecule (bond lengths, angles,
functional groups) or is it the particle’s external shape influencing those molecular
concepts or is it the particle’s internal arrangement of surface, coating, surface layer?
The same questions about the meaning of ‘structure’ arise with QSARs.

All models, frameworks and theories are prone to variants of Type III errors, where the
question posed extends beyond the model’s domain, yet the model returns a result.
Basing computational models solely on in vitro assay data to predict in vivo outcomes
raises the prospect of such errors, as does using QSPR or other models to predict
properties outside of the domain of the ‘training’ dataset. Models, like experiments, can
be surprisingly robust and can fail as well (19).

Model validation, which is the subject of an OECD guidance document regarding QSARs
(20), raises two related issues. Firstly, the subject matter, the QSAR, must have a “defined
domain of applicability” and secondly, should have a “mechanistic interpretation (if
possible)” that tie the descriptors to the endpoint being predicted. There is also a
guidance document on computerized systems, including databases, data approval and
periodic review that may be applicable to the data sets used to validate a model (21).

It is not yet known how these guidance documents will be applied to computational
models or the underlying datasets. This is one reason for favoring a modularized
approach, where each module can be tested against data specific to a target endpoint,
thereby enhancing its acceptability in data-filling. Descriptors might be tested using
broad datasets extending beyond nanoscale materials, but once accepted then be
re-calibrated to a narrower nanoscale material dataset for a regulatory submission.

11.5 Commentary on related EU activities

The European Nano Safety Cluster has published two related documents: the 2016
“Closer to the Market Roadmap” (CTTM) and the 2017 “Regulatory Research Roadmap”
(RRR) (22, 23). Additionally, the Joint Research Centre has published a final report for
the NanoComput project. Some commentary is appropriate as there are significant
overlaps, but with different focal points.

The CTTM emphasis is on assuring workers and consumers that there are procedures,
policies and programs in place to reduce uncertainties surrounding nano-enabled
products. Integral to the CTTM program is providing “solid operational knowledge (high
level of scientific expertise and robust accumulated datasets)” (Recommendations in
22).
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A significant overlap occurs in the discussions of two bottlenecks (21, page 30) that also
identify the responsible parties for resolving hurdles (basic scientific knowledge,
research to support regulation and Nanotechnology Market/CTTM). For “uncertainties
in risk assessment and in regulation,” the recommendation for regulatory research in the
CTTM is to improve & stabilize regulation and to communicate uncertainties. Regarding
the “lack of validated methods (toxicological and analytical) for nanosafety assessment,”
the CTTM recommends developing scientific knowledge via equipment, harmonization,
round robins, validation studies and general guidelines on how to standardize
nano-specific protocols.

The RRR (23) has a fully integrated risk analysis framework as its objective, while the
Naoninformatics Roadmap leverages databases & metadata considerations to expand
the use of computational models. In both cases, validation is critical to successful use by
regulators.

Both the RRR and Nanoinformatics Roadmap attempt to bring awareness of regulatory
requirements forward in time. For the RRR, this is expressed as:, “It should also be noted
that while the hexagon diagrams indicate prioritisation, issues situated on the
right-hand side (long term and distant future priorities) of each prioritisation diagram
need to be considered at an early stage to ensure that any short-term activity generates
outputs that will be useful for developing longer-term priorities.” The RRR connects high
quality data to validated methods, while the Nanoinformatics Roadmap ties quality to
the metadata found in either ISA-TAB-nano or ISA-TAB-JSON formats and in the ontology
(NPO or eNanoMapper).

The EC’s Joint Research Centre has issued a report (24) reviewing current computational
models that may be useful to regulatory authorities. It is comprehensive and shares
many concepts with this Roadmap, but with a different emphasis. The JRC’s advisory role
to the Commission leads it to specific recommendations regarding public dissemination,
filling knowledge gaps with concrete regulatory applications in mind and developing a
one stop hub for databases and models. The Roadmap offers milestones directed at a
wider stakeholder group whose activities may contribute useful data for modeling, but
leaving applicability to regulatory frameworks as a second validation step.

In the Table listing milestones, the scientific fields most involved in achieving a specific
goal along the roadmap are indicated, aligning roughly with the CTTM approach.
Additionally, the same color code used with the RRR’s hexagons has been added to the
Milestone Table to identify those activities that are predominantly data generation,
method development and regulatory framework milestones. Relative to the JRC report,
the milestones place greater emphasis on read-across exercises as a means to gain
feedback on model and dataset acceptability.
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Year Milestone Tox. | P-Chem | Models
Near | 1). Document benchmark NMs: their biological & X X X
I physico-chemical data, coatings, manufacturing technique(s),
production volumes; primary use patterns.
Near | 2).Develop functional assays and NM-descriptors to model X X
I environmental changes: confirm where possible with in situ
instrumentation and relate to pristine NMs, their dissolution,
dispersal, homo- and hetero-aggregation
Near | 3).Develop high throughput methods for measuring NM X
I interactions with plasma proteins (protein coronas) for PBPK
modeling of NM distribution in the body.
Near | 4).Propose data sharing/file transfer, ontology, & terminology X X X
[ | criteria for interoperable nanoEHS databases and online
modeling services and promote appropriate training programs
Mid 5). Develop surrogate & fast screen assays suitable for tiered X
I testing that align with credible AOPs in order to evaluate NM
descriptors for computational model validation
Mid 6). Consensus on validated particle descriptors useful for X
physico-chemical properties and for environmental changes to
serve as a basis for modeling biological endpoints
Mid 7). Identify NP fingerprints (biomarkers, NP property X X
I descriptors, functional assays) to allow for NP grouping and
with selected OECD TG’s in vitro endpoints
Mid 8). Clarify computer model validation requirements for X X
regulatory purposes (particle descriptors including coatings;
chemical grouping)
Mid 9). Establish high throughput in vitro protocols for generating X
_I large datasets useful for validating model descriptors
Far 10). Complete a suite of validated models for environmental fate X
and effect that are useful & endorsed by regulators for QSAR,
trend analysis and read-across purposes
Far 11). Complete a suite of PBPK models that include ADME and X
NP-protein corona factors
Far 12). Develop appropriate assays for identifying the AOP profile X
B for new NP classes and the minimum characterization data set
for classifying a new NM to a class
Far 13). Regulatory endorsement of in vitro predictive models for X X

NMs

Il = Data Generation; || = Method; and | = Regulatory
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Pilot Projects

Data set availability (schedule and

access criteria):

e caNano: accessible for non-confidential
data

e Nanomaterial Registry: accessible;
limited nanoEHS data

e UC-CEIN (nanoinfo.org) & CEINT: have
requirements;

e NANOREG: access in 2017

e OECD Working Party access awaiting
clearances

e [dentify other database resources &
access criteria

e Data management plans for academic
institutions

e Open Science end-point vision.

Informatics Infrastructure:

e Instances of Characterization standards
at ASTM;

e Extensible particle ontology standard at
ASTM;

e [SA-TAB-nano upgrade led by Duke and
OSUu;

e Incorporation of UDS considerations
into standards;

e Revisit error expression, data templates,
metadata selection with existing
datasets and templates

e Establish a coordination site

Dissolution:

e (larify industry interest and identify
participants;

e Pursue collaboration with Materials
Genome Initiative & European Modeling
Council;

e Pursue collaboration with
Pharmaceutical colleagues regarding
drug release experience;

e C(larify regulators requirements for use
in read-across;

e Examine nanomaterials aging and
transformation implications.

Informatics literacy:
e Survey Ph.D. students & Post-docs on
informatics acceptance;

e Survey PLs on informatics acceptance;
e Incorporate help desk and P.I. proposals
from NanoCommons and Oregon State

University
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Appendix 1: Summary of Database Projects (2010-2017)

The NSC Working Group on Databases together with the caLIBRAte project, distributed a
database survey in December 2016. Thirty-two responses were received, from the
following projects: Cerasafe, Cosmo, DaNA, eNanoMapper, Handbook of Chemistry and
Physics, HSE Nano, Keele University (several projects), Mercury, NanoFate,
NanolmpactNet, NanoMILE, NanoPUZZLES, NANoREG, Nanosolutions, Nanovalid, NECID,
Neptune, S2ZNANO, Sanowork, Scaffold, Serenade, SIRENA, SUN, TINE, UK NanoRegister,
and VieilleNanos. According to the responses, the majority of types of data and
information on nanomaterials collected by the responding projects (multiple answers
possible) were on physicochemical characterization (24), in vitro toxicity (17), in vivo
toxicity (17), ecotoxicology (14), human exposure (12), or environmental release/fate
(10). Other questions of the survey addressed the main objective(s) of the database,
database design and implementation, database availability/accessibility, the use of
semantics technology methods, the data collection and curation, the copyright and
licensing aspects. The results of the survey will be published on the NanoSafetyCluster
website. Further details of selected projects are given below.

A1l.1 eNanoMapper

The EU FP7 project eNanoMapper ran from February 2014 to February 2017 and
developed a computational framework for nanomaterials toxicological data, which is
based on open standards, open source, common languages, and an interoperable design,
enabling a more effective and integrated approach to risk assessment. eNanoMapper has
created a modular, extensible infrastructure for transparent data sharing, data analysis,
and the creation of computational toxicology models, which aims to support data
management in the area of nanoEHS and to enable an integrated approach for the risk
assessment of nanomaterials. To achieve these, eNanoMapper developed an ontology, a
data infrastructure and modelling tools with applicability in risk assessment of
nanomaterials. The ontology includes common vocabulary terms used in nanosafety
research. The database includes functionalities for data protection, data sharing, data
quality assurance, search interfaces for different needs and usages, comparability and
cross-talk with other databases (https://search.data.enanomapper.net). A collection of
descriptors, computational toxicology models and modelling tools were developed,
enabling the use and integration of nanosafety data from various sources [5-7],
including web tools: Jaqpot (http://www.jagpot.org, [36]) which allows online
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Modelling (building and validating models), Read-across, Interlaboratory comparison
and Experimental Design, while Nano-lazar, available at
https://nano-lazar.in-silico.ch/predict, offers online Read across toxicity predictions.
The project also provided a rich library of information and documentation (tutorials,
webinars, reports and publications) to support and guide the users. In addition, a
collection of modelling tools developed within FP7 nano modelling projects was created:
http://www.enanomapper.net/nsc-modelling-tools

A1.2 NECID

Under the leadership of IFA (Institute for Occupational Safety and Health of the German
Social Accident Insurance) and TNO (TNO - innovation for life) a working group of
PEROSH (Partnership for European Research in Occupational Safety and Health)
institutes developed and tested a database software called NECID (Nano Exposure and
Contextual Information Database). The software supports the user to collect and store
data of exposure measurements ofNOAA (Nano-Objects and their Agglomerates and
Aggregates). In addition to measurement data of individual instruments the collection
and documentation of work conditions, or so called “contextual information” is a focus
of this project.

The NECID software includes a nanomaterial specific exposure database, as well as
features for data sharing and data assessment. The software runs locally on a computer
but also offers a web-based central database for the exchange of information. A key
factor for the project is the harmonization of “nano exposure measurements” and their
documentation. Therefor NECID uses, as far as possible, a harmonised ontology to
enable links to other databases. During the construction of NECID, cooperation and
exchange of information to other projects like NANoREG, Marina, caLIBRAte, GUIDEnano
were important parts of the work..

After an intensive testing phase within the project a software license for NECID is
available to every organization dealing with the challenge of handling NOAA or the risk
assessment of these tasks. At the moment the license is free of charge. For further
information please contact NECID@DGUV.de or visit the webpage WWW.NECID.eu.

A1.3 SERENADE

CEREGE-Labex SERENADE is the primary contact in Europe for the US database efforts
led by CEINT- Duke University with ongoing effort on data management, curation and
with the US-nanoinformatics program as to determine a strategic plan for data
standardization, templates and guidance documents for data harmonization between
Europe and USA. Discussions were also active during the ProSafe ~-OECD conference in
Paris (end of 2016) to link EU and US databases (interoperability, ontology, data
exchange formats). The CEINT group works in close collaboration with the EU
Nanosafety Cluster Database Group and the EU-US Database CORs (Community of
Research) on templates harmonization and especially on the NanoReg templates and
format. All partners to share expertise for products stability assessment (simulation of
products use), environmental fate study, ecotoxicology, end of life with the ProSAfe
project.. and develop common set up, protocols in order to compare data and implement
exposure models.
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A1.4 GuideNano

A web-based Exposure Scenario Library has been developed within the GUIDENANO
project to read-across the exposure scenarios. The library includes contextual
information (NMs properties, task description, exposure controls) and measurement
data of 200 occupational exposure scenarios covering a wide range of NMs (CNT, CNF,
Si02, ZnO, Ag..). The library can be searched by NM name, life-cycle, source domain,
contributing exposure scenario. The ES Library is hosted online and managed by IOM
and available using the link http://guidenano.iom-world.co.uk/. GuideNano partners
continue to work with eNanoMapper and other members of NSC Working Group to map
the ES Library variables with those already available in the eNanoMapper database and
to add new terms if necessary with the aim of constructing an exposure ontology and
ultimately to make all the exposure data available via the database developed in
eNanoMapper.

A1.5 SUN

The SUN project has successfully accomplished the design, implementation and
population of a web-based data repository, a searchable operational project database to
store and maintain the data generated by the project. An extensive exercise was carried
out with SUN project partners to develop data collection templates, procurement,
completeness, quality-checked, collation and storage of the scientific project data into a
flexible and user friendly operational database. The implemented database provides
facilities to search, query and retrieve selected project data-sets. We anticipated sharing
and uploading the SUN data to an instance of the “final” eNanoMapper database early on
in the project however, data sharing permissions, embargos etc. needs to be formalised
with SUN project partners. To advance this, SUN partners are currently involved in
further related developments, having been contacted by the NANOREG2 and CaLIBRAte
projects, aiming to supply them with final SUN data.

A1.6 Nanolnformatics Knowledge Commons (NIKC)

The Nanolnformatics Knowledge Commons (NIKC) Database was designed by the Center
for Environmental Implications of NanoTechnology (CEINT) to gather engineered
nanomaterial exposure and toxicity data into an organizational structure permitting
readily accessible data for broader scientific inquiry. The NIKC consists of a database
(DB) and associated applications for data entry and data analysis; the DB contains CEINT
data as well as data extracted from published literature, and is accessible to CEINT
members as well as NIKC collaborator groups in the US and abroad. The NIKC is an
important component in realizing the goals of CEINT, which include: elucidating the
general principles that determine nanomaterial behavior in the environment; identifying
data and metadata necessary to support forecast of exposure potential, bioaccumulation,
and bioactivity; and identifying key functional assays [8] that are predictive of
measurements of interest.
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The NIKC supports development of analytical tools such as the Nano Product Hazard and
Exposure Analytical Tool (NanoPHEAT), a custom-built app designed to graphically
indicate exposure risk outcomes from products incorporating engineered nanomaterials.
CEINT has also adopted management of the community-drive(n) ISA-TAB-Nano project
[9], which establishes consistent file-sharing formats for nanomaterial data to enable
integration of information even in advance of formally established standard(s)
processes. ISA-TAB-Nano was developed by the National Cancer Informatics Program’s
Nanotechnology Working Group (NCIP NanoWG) and has been adopted and adapted by
a number of projects including the EU-wide NANoREG project. CEINT is leading the
community-based effort to expand the standardized protocol templates used to develop
consistent and comparable data, with particular focus on including critical elements of
nanomaterial datasets identified via CEINT’s work. These include: transformation and
exposure endpoints, inclusion of media parameters within the primary dataset
describing nanomaterial characterizations, and functional assay measurements used to
predict (exposure and hazard) outcomes of interest.

A1.7 QsarDB

QsarDB has been developed over the course of past decade within several EU funded and
national (in Estonia) research initiatives (see www.gsardb.org). It is a general repository
solution for organizing, storing, preserving and using QSAR models. It is also designed
for accommodating nano-structures and nano-materials. The storage of QSAR models
and related data is a complicated issue and available storage solutions have been
reviewed recently [REF1]. QsarDB is open and gives freedom to develop model to the
developer and allows preserving and efficient reusing of models. What is equally
important, it gives an easy access to QSAR models to potential users, providing
transparent view to the constituents of the model and allows independent verification.
QsarDB consists of several components (e.g. data format, repository and tools). Qsar
DataBank data format [REF2] is a format for representing QSAR model information (data
and models) in systematic and machine readable way. Qsar DataBank data format is
generic and has been also used for Quantitative nano-Structure-Activity Relationships
[see example collection of models http://hdl.handle.net/10967/120]. The format is
extendable, for example to include further developments for models with nanostructures
and nanoparticles. The archives in Qsar DataBank data format can be freely deposited to
the QsarDB smart repository [REF3]. The QsarDB smart repository is a practical
resource and tool that enables research groups, project teams and institutions to share,
present and use Quantitative Structure-Activity Relationships data and models. At the
moment, the repository includes over 400 (Q)SAR models, is expanding and developed
further.

A1.8 GRACIOUS

The newly funded GRACIOUS H2020 project will continue the efforts of the above
projects to establish a data curation system, which will be developed based on the
eNanoMapper database and on elements and templates from other relevant nanosafety
data inventories such as NANoREG, NanoReg2, DANA 2.0, SUN, MARINA and NanoETox
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to allow both the integration of newer data and the use of raw and aggregated data for
regulatory risk assessment and Stage-Gate innovation decision making. This data
curation system will be designed to allow seamless integration with a variety of
modelling tools (ranging from simple rules and theoretical models to complex in silico
(e.g. Q(n)SP/AR) algorithms) into an interoperable data and modelling ‘infrastructure’.
This ‘infrastructure’ will be connected to the GRACIOUS interoperable module for
grouping and read-across of nanoforms to deliver to it curated data and computing
capabilities. The module will be specifically designed to enable existing user-friendly
risk assessment and management software tools (e.g. SUNDS, caLIBRAte SoS) to perform
grouping and read across. Its results will be delivered as easy to comprehend dynamic
charts and textual reports to facilitate further analysis and/or decision making.
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