
ES6 Module Loading Performance
(Worklog)
Publicly visible, but please note that this is my raw lab note and not intended for wide
distribution.
ksakamoto@chromium.org

2022

Oct 13: WebBundles v2 PoC benchmark
Context: http://bit.ly/webbundle-v2

Compare three different ways to pass payload bytes from SameOriginWebBundleURLLoader to
WebURLLoaderClient.

Benchmark
https://github.com/google/webbundle/tree/main/webbundle-bench
Generated with --depth 4 --branches 4

Chromium Patches
●​ Baseline: Existing “v1” (NetworkService-based) implementation
●​ DataPipe: Creates a data pipe and passes its consumer end to

WebURLLoaderClient::DidStartLoadingResponseBody.
●​ DidReceiveData: Calls WebURLLoaderClient::DidReceiveData from

SameOriginWebBundleURLLoader::OnData. Doesn't work for RawResource (DCHECKs
in FetchManager::Loader::DidFinishLoading).

●​ BytesConsumer: Creates a SharedBufferBytesConsumer and passes it to
WebURLLoaderClient.

Results
On Z840 workstation, average of 3 runs.

Patch ImportDuration (ms)

Baseline 339

DataPipe 337

mailto:ksakamoto@chromium.org
http://bit.ly/webbundle-v2
https://github.com/google/webbundle/tree/main/webbundle-bench
https://chromium-review.googlesource.com/c/chromium/src/+/3951291/1
https://chromium-review.googlesource.com/c/chromium/src/+/3951291/2
https://chromium-review.googlesource.com/c/chromium/src/+/3951291/3

DidReceiveData 159

BytesConsumer 168

Using a data pipe per subresource has a large performance cost. The BytesConsumer layer
adds some overhead, but the result looks pretty good.

2021

Mar 30: Setting up a new benchmark environment

Benchmark
https://github.com/irori/js-module-benchmark/tree/webbundle
Usage:

Install dependencies
$ npm install

Generate test cases
$./build.sh

Run benchmarks. It runs the browser in headless mode and
output results to stdout.
$ node run_benchmark.js --browser ~/chromium/src/out/Release/chrome

Chromium binaries (for Linux)
●​ Chromium-r867396-linux.zip: Chromium ToT as of 2021-03-30. NetworkService based

implementation.
●​ Chromium-r830437-scopes-linux.zip: Chromium ToT as of 2020-11-24 (just before we

switch to NetworkService based implementation), plus scopes= attribute support
●​ Chromium-subresource-wbn-poc1-linux.zip: Built from this patch. Bundled resources are

intercepted in ResourceFetcher.
●​ Chromium-subresource-wbn-poc2-linux.zip: Built from this patch.This intercepts module

script requests in the Modulator class.

Diagrams showing at which layer each implementation intercepts bundled requests.

Preliminary results
On Z840 workstation.

https://github.com/irori/js-module-benchmark/tree/webbundle
https://drive.google.com/file/d/1xlChFGXl5WRtASLuw9JRZ6MgTySC8o-T/view?usp=sharing
https://drive.google.com/file/d/1FtLVfg5oATSV15p0dNi7KbvX-TVsSx1T/view?usp=sharing
https://drive.google.com/file/d/1MfJholavnvQB5KhfKnJeXL93e7_PfFWV/view?usp=sharing
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/9
https://drive.google.com/file/d/1VPBZlDN90kpHbIth5nYwyG9Ar8cxOU3u/view?usp=sharing
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/13
https://docs.google.com/presentation/d/1_68EbEDApWph7XKGt76k7w1Tox-RkTwXo1iQx5AJQq4/edit?usp=sharing&resourcekey=0-BfAmcPmQPHkwfy2fYe9xiQ

spreadsheet

#modules
unbundled
(http1)

Chromium
ToT

renderer-bas
ed PoC 1 PoC 2 Rollup

110 199 123 91 36 16 9

1110 1504 881 736 258 86 22

11110 13743 8215 7387 2470 663 72

(unit: milliseconds)

2020

Nov 6: Subresource WBN performance - Renderer based vs.
NetworkService based
Compared the performance of subresource loading, between the currently landed
implementation (renderer-based) and the new design (NetworkService-based).

 NS based
(crrev.com/c/2497394/8)

Renderer based
(Chromium ToT #822482)

Moment.js (104 modules) 60ms 70ms

https://docs.google.com/spreadsheets/d/1F4yxv3ieWiffyQffNuiSMLktnrLKThkQxPJic51p3LM/edit#gid=0
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/9
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/13
https://chromium-review.googlesource.com/c/chromium/src/+/2497394/8

Three.js (333 modules) 227ms 271ms

DevTools frontend FCP: 616ms
LCP: 894ms

(timeline)

FCP: 685ms
LCP: 994ms

(timeline)

(Test environment: MacBook Pro 2018)

Jun 11: Subresource WBN loading architecture
The diagram below illustrates current design of Subresource WBN loading PoC:

Most of the WebBundle-specific processes are offloaded to a background sequence, except for
WebBundleLoader which implements ThreadableLoaderClient and pushes loaded WBN bytes
to LinkWebBundleDataSource.

We could optimize a bit more in the background thread, by removing the Mojo interface layer
between WebBundleLoaderFactoryImple and WebBundleParser, and between
WebBundleParser and LinkWebBundleDataSource. However, a trace of three.js shows that the

https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/plw0hew69cjvmkp/devtools-ns-wbn.json?dl=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/fj89cppoffr80dw/devtools-renderer-wbn.json?dl=0
https://chromium-review.googlesource.com/c/chromium/src/+/2206865/13
https://drive.google.com/file/d/1ZfaN2e12WzeU-YNNJmzC3xP59uecd4Km/view?usp=sharing

renderer main thread is busy (see below). So optimization in the background thread may not
improve benchmark performance.

Jun 2: Measuring the new approach of Subresource WBN
●​ Mojo parser: Use data_decoder::WebBundleParser for WBN parsing. It runs in-process,

but adds mojo message serialization overhead. CL
●​ Mojo URLLoaderFactory with IPC: Use SubresoureWebBundlesLoaderFactory. All

subresource loads go through the browser process (straw idea 1 of design sketch). CL
●​ Mojo Parser + Mojo URLLoaderFactory with IPC: Both of the above. CL
●​ Mojo URLLoaderFactory w/o IPC: Use SubresoureWebBundlesLoaderFactory, but

without IPC router. CL
●​ Mojo URLLoaderFactory (bg thread) w/o IPC: Run

SubresoureWebBundlesLoaderFactory in a background thread. CL (old) Improved CL

 Three.js DevTools FCP DevTools LCP

Horo@’s PoC (baseline) 113 ms 596 ms 947 ms

Mojo Parser 146 ms 640 ms 978 ms

Mojo URLLoaderFactory with IPC 399 ms 1092 ms 1778 ms

Mojo Parser +
Mojo URLLoaderFactory with IPC

432 ms 1100 ms 1741 ms

Mojo URLLoaderFactory w/o IPC 400 ms 1081 ms 1747 ms

https://chromium-review.googlesource.com/c/chromium/src/+/2226100/2
https://docs.google.com/document/d/1imEt4TZkuzRVidmkaOaTym9JzPRMK8KSXiPp83797cw/edit#heading=h.8jf9qcio6g86
https://chromium-review.googlesource.com/c/chromium/src/+/2206865/4
https://chromium-review.googlesource.com/c/chromium/src/+/2206865/7
https://chromium-review.googlesource.com/c/chromium/src/+/2206865/7..8
https://chromium-review.googlesource.com/c/chromium/src/+/2206865/8..10
https://chromium-review.googlesource.com/c/chromium/src/+/2206865/13
https://drive.google.com/file/d/1McHdGKrl1GqQeXFobtA_7x3pp4bkROSy/view?usp=sharing

Mojo URLLoaderFactory (bg thread) w/o
IPC

306 ms
259 ms

918 ms
851 ms

1375 ms
1317 ms

Observations:

●​ Using WBN parser via the mojo interface adds some overhead (~0.1ms / resource).
●​ Using mojom::URLLoaderFactory adds more overhead. The DevTools case was even

slower than the WBN navigation case.
●​ With or without IPC did not have a significant performance impact when

SubresoureWebBundlesLoaderFactory is used. Trace suggests that going through up to
URLLoader layer adds several overheads:

○​ More postTask hops on the renderer main thread
■​ 4 main-thread tasks per resource, where ResourceFetcher-level intercept

was 2 tasks per resource
○​ Although the default factory is directly set to the Subresource WBN factory,

render-browser IPCs still happen (safe-browsing?)
○​ Overhead of using mojom::URLLoaderFactory interface (e.g. data pipe creation)

Apr 17: Subresource WBN performance report
Published here.

Apr 6: Module script optimization for Subresource WBN,
continued
The experimental patch used in the Apr 2 measurement had a bug where WBN resource is
fetched/parsed twice.

Here's a result of re-running the devtools-frontend measurement with the fixed patch, and using
a well-ordered WebBundle (resources requested earlier comes first).

spreadsheet
 FCP (ms) LCP (ms)

Subresource WBN 636 921
Subresource WBN + WebBundleModuleScriptFetcher 504 787

WebPack (w/ code splitting) (*1) 599 966
(*1) CSS and JSON resources are fetched from the network.

https://drive.google.com/file/d/1HmogWOFcGT7Yi0o-iYwtl8WouWuYOtSp/view?usp=sharing
https://drive.google.com/file/d/1ZfaN2e12WzeU-YNNJmzC3xP59uecd4Km/view?usp=sharing
https://docs.google.com/document/d/18ihhjZLcRWvne2PiGuj144MGyqJS_OFIe58m50t1LvM/edit#heading=h.waei3kx2cua0
https://drive.google.com/file/d/1McHdGKrl1GqQeXFobtA_7x3pp4bkROSy/view?usp=sharing
https://docs.google.com/document/d/18ihhjZLcRWvne2PiGuj144MGyqJS_OFIe58m50t1LvM/edit#heading=h.i0lnugd2a272
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/12
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/13
https://docs.google.com/spreadsheets/d/1ZmW_LtLyXYSv-qo3TJesc-Yo7Ul1pE5donSSf4N-rCs/edit#gid=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/h6ug8ke1um2h50k/devtools-subresource-wbn-ordered.json?dl=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/5vmefmrpjg4qtm2/devtools-subresource-wbn-modulator-hack2.json?dl=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/zg4x6bdyp78bn3w/devtools-webpack.json?dl=0

Apr 2: Subresource WBN: Use ModuleScriptFetcher to
intercept module script requests
Time breakdown for Subresource WBN suggests that ResourceFetcher has considerable
overhead. Can we cut this by intercepting requests at a higher layer?

This patch adds WebBundleModuleScriptInterceptor which is registered in Modulator and
intercepts module requests whose URLs are in-scope of the WebBundle. Intercepted requests
are handled by WebBundleModuleScriptFetcher which returns response body from the WBN.

Results: Three.js
Here’s a trace of Three.js test, with this patch:

For comparison, here’s a trace of the same test, with the original subresource-WBN PoC patch:

https://chromium-review.googlesource.com/c/chromium/src/+/2072686/9..12
https://drive.google.com/file/d/1TYw53BGkKCIrBaEZRrIVQ_mX23HCnnxm/view?usp=sharing
https://drive.google.com/file/d/1AaAFN7j-mxLMZz3JNVcKXmu-HIHuDIqZ/view?usp=sharing

●​ The time it takes for import(“three.js”) is reduced from 175ms to 100ms.
○​ This not only eliminated almost all of the resource fetching cost, but also reduced

scheduling overheads, as many module scripts are compiled within a single
RunTask.

●​ Since ResourceFetcher is completely bypassed, module scripts do not show up in the
devtools network tab, while they are still visible in the Sources tab.

Results: DevTools frontend
Obsolete, see Apr 6 measurement.
spreadsheet
 FCP (ms) LCP (ms)

Subresource WBN 729 996
Subresource WBN + WebBundleModuleScriptFetcher (*1) 624 858

WebPack (w/ code splitting) (*2) 599 966
(*1) WBN file is fetched twice, by WebBundleModuleScriptInterceptor and WebBundleLoaderFactoryImpl.
I plan to merge them to dedupe the work.
(*2) CSS and JSON resources are fetched from the network.

Mar 30: Subresource WBN: tracing inside
ResourceFetcher::requestResource()
Added trace events to several functions called inside ResourceFetcher::requestResource().

●​ Patch
●​ Trace

https://docs.google.com/spreadsheets/d/1ZmW_LtLyXYSv-qo3TJesc-Yo7Ul1pE5donSSf4N-rCs/edit#gid=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/90szkdlwqfo8fx6/devtools-subresource-wbn.json?dl=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/e7c3ycji5va6zew/devtools-subresource-wbn-modulator-hack.json?dl=0
https://chromedevtools.github.io/timeline-viewer/?loadTimelineFromURL=https://www.dropbox.com/s/zg4x6bdyp78bn3w/devtools-webpack.json?dl=0
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/9
https://drive.google.com/file/d/1AaAFN7j-mxLMZz3JNVcKXmu-HIHuDIqZ/view?usp=sharing

The image below is a trace of a single module script request.
WebbundleURLLoader::LoadAsynchronously() uses only 30% (58us / 191us) of the time inside
ResourceFetcher::requestResource().

Mar 27: Time breakdown for Subresource WBN
Test case:

●​ Three.js (333 modules)
●​ “Empty” app (import three.js and do nothing)
●​ Subresource WBN

○​ Start importing modules after the loading of WBN is completed

Result
Trace file

https://drive.google.com/file/d/1MFpPkTci7SeZYprijMVv1IssOCQwlLRH/view?usp=sharing

Time breakdown (from import start to execution end)

Resource request (ResourceFetcher::requestResource) 42ms

Compile (v8.compileModule) 47ms

Execution (ScriptRunner::ExecuteAsyncTask) 10ms

Other tasks + Overhead 46ms

Total 145ms

Experiment: Using ResourceFetcher::ResourceForStaticData() code
path
In the above trace, almost one-third of the time is spent in ResourceFetcher::requestResource().
ResourceFetcher has a dedicated code path for “static” resources (e.g. data: URLs or resources
from MHTML archive). Would using this code path in subresource WBN reduce the time spent
in Resource Fetcher?

Changes to the Subresource WBN PoC patch

Result (trace)

https://chromium-review.googlesource.com/c/chromium/src/+/2072686/7..8
https://drive.google.com/file/d/1ZBJ0zdlf35s7OdKiajSsM3zpaN46OVIo/view?usp=sharing

Unfortunately this didn’t improve performance, and the trace looks almost the same as the
previous one, except the IO thread looks busy because of the
FrameHostMsg_DidLoadResourceFromMemoryCache IPC. (I tried commenting out this IPC but
it did not improve the main thread performance.)

Actually, ResourceForStaticData() only takes a quarter of requestResource(). The bottlenecks
exist before and after that.

Mar 12: Subresource WBN on a slow network
Two more cases with network throttling (4Mbps Up/Down, 20ms Latency):

●​ Subresource WBN created without resource ordering consideration
●​ Subresource WBN with optimized resource ordering (resources requested earlier comes

first)

Result
spreadsheet

Unordered subresource WBN is very slow because it has to wait until almost entire WBN bytes
are received.

Mar 9: DevTools frontend and modulepreload
Two additional test cases to the Mar 5 benchmark:

●​ modulepreload_fcp: Preload 270 modules that appear to be needed for FCP
●​ modulepreload_all: Preload all (384) modules

Both served by a local HTTP2 server.

With two network conditions:

●​ Unthrottled
●​ Throttled (4Mbps Up/Down, 20ms Latency)

https://docs.google.com/spreadsheets/d/1ZmW_LtLyXYSv-qo3TJesc-Yo7Ul1pE5donSSf4N-rCs/edit#gid=2056550253
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2071526/6/front_end/modulepreload_fcp.html
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2071526/6/front_end/modulepreload_all.html

Result
Spreadsheet

●​ Preloading all modules is negative for FCP, positive for LCP.
●​ Partially preloading scripts (only for FCP) didn't have significant impact for this

benchmark.

Mar 5: Measurements against DevTools frontend

Environment
●​ Chromium @744551 + Subresource WBN PoC patch
●​ Z840 workstation / Linux
●​ Cache disabled via DevTools
●​ Localhost server

Targets
DevTools frontend, with various bundling technologies. Measured DCL/FCP/LCP of initial page
load (the Network tab is selected) using (Chrome’s embedded DevTools’) performance profiler.

Test cases:

●​ Unbundled
○​ From http1 server (using a node.js server)
○​ From http2 server (using simplehttp2server)

https://docs.google.com/spreadsheets/d/1ZmW_LtLyXYSv-qo3TJesc-Yo7Ul1pE5donSSf4N-rCs/edit#gid=2056550253
https://chromium-review.googlesource.com/c/chromium/src/+/2072686/5
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2071526/5
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2071526/5/server.js
http://simplehttp2server

●​ Network WBN
○​ --enable-features=WebBundlesFromNetwork

○​ Reference data, current Network WBN implementation is not optimal / it doesn’t
support progressive / streamed loading.

●​ Subresource WBN
○​ All subresources are loaded from a WBN, via <link rel=webbundle>.

●​ WebPack
○​ With code splitting (default)
○​ Without code splitting (generates one big JS, including scripts that are not used

for initial load)
○​ Note: JSON and CSS are still loaded as separate resources, but in real-world

WebPack projects these are likely to be bundled as well (using WebPack
loaders).

●​ WebPack + Subresource WBN
○​ Bundled WebPack (w/ code splitting) output as a WBN.
○​ Note: WBN for this case is not optimal (unbundled scripts are included too)

Target Data

 Unbundled WBN
WebPack w/
code splitting

WebPack w/o
code splitting

JS count 385 385 42 2

non-JS resource count 173 173 173 173

JS size 4.4 MB 4.4 MB 2.2 MB 6.3 MB

non-JS resource size 0.4 MB 0.4 MB 0.4 MB 0.4 MB

Result
See this spreadsheet for full results, and links to the timeline viewer.

https://goto.google.com/subresource-web-bundle-demo
https://webpack.js.org/guides/code-splitting/
https://docs.google.com/spreadsheets/d/1ZmW_LtLyXYSv-qo3TJesc-Yo7Ul1pE5donSSf4N-rCs/edit#gid=0

DCL fires different timings by the test cases. In the subresource WBN case, it fires without
waiting for any JS resources.
FCP is when the tab bar is painted.
LCP is when the full content of the network tab is rendered.

FCP LCP

Feb 13: Initial measurements for Subresource Web Bundle
Report:
https://docs.google.com/document/d/12jCr8trGxGyBw_YlqWM-DpXetz4NzfY5gfZrNxtCqDk/edit

Summary
●​ Subresource WebBundle (unpackaged in renderer) is faster than

Navigation-to-WebBundle (unpackaged in browser), but still slower than
Webpack-generated JS bundle.

●​ Trace suggests that ResourceFetcher is consuming considerable time in Subresource
WebBundle loading.

Measurement
Environment:

●​ Benchmark: three.js (333 modules) in samples-module-loading-comparison
○​ Just import modules, no wireframe drawing (because it adds noise)

●​ Chromium @739799 + Horo’s PoC patch
https://chromium-review.googlesource.com/c/chromium/src/+/2032692/10

●​ Z840 workstation / Linux
●​ Cache disabled via DevTools
●​ Very fast network (local http1.1 server)

Configurations:

●​ Unbundled

https://docs.google.com/document/d/12jCr8trGxGyBw_YlqWM-DpXetz4NzfY5gfZrNxtCqDk/edit#
https://github.com/GoogleChromeLabs/samples-module-loading-comparison
https://chromium-review.googlesource.com/c/chromium/src/+/2032692/10

○​ Loads every module script from the network.
●​ Navigation to WebBundle from file

○​ Standalone WebBundle containing html and all modules, loaded from a file
(chrome://flags/#web-bundles).

●​ Navigation to WebBundle from network
○​ Standalone WebBundle containing html and all modules, loaded from the

network (--enable-features=WebBundlesFromNetwork).
●​ Subresource WebBundle

○​ WebBundle containing only the module scripts, loaded via <link rel=webbundle>.
●​ Webpack bundle

○​ Single classic script generated by Webpack (no tree-shaking).

 Unbundled Navigation
to WBN
from file

Navigation to
WBN

from network

Subresource
WBN

Webpack
bundle

Time to onload 671 ms 389 ms 370 ms 217 ms 128 ms

First module's fetchStart 31 ms 86 ms 56 ms 40 ms 48 ms

Last module's responseEnd 635 ms N/A N/A 203 ms 58 ms

Caveats:

●​ I haven’t tried very hard to de-noize the results.
●​ No responseEnd timing data for WebBundle navigation cases, as ResourceTiming is

broken

Observations:

●​ Even with a very fast network, unbundled is slower than navigation to WBN.
●​ Subresource WBN is faster than navigation to standalone WBN, because of less IPC.
●​ Webpack bundle is even faster.

Performance Analysis

Here’s a DevTools performance profile of a “Subresource WBN” run:

https://goto.google.com/subresource-web-bundle-demo

See the flame graph at bottom. Yellow slices are script events (Compile / Evaluate Module).
Blue slices are loading events (Send Request, Receive Response, Receive Data, Finish
Loading).

Here’s a trace of (another) “Subresource WBN” run:

ResourceFetcher::requestResource takes 30 ms while V8.ScriptCompiler takes 38 ms.

For comparison, here’s a DevTools profile of a “Webpack bundle” run:

The network request finishes very quickly (~10ms), but parse/compile (in a worker thread) and
evaluate takes a long time. On the other hand, in the “Subresource WBN” case, once all module
scripts are fetched and compiled, evaluation takes only ~15ms.

Next Steps
●​ Identify potential performance optimizations. What's consuming time in

ResourceFetcher? Could we bypass it?
●​ Measurement for a slow network case. Does resource ordering in bundle make

difference?
●​ Measure against other targets (e.g. DevTools frontend) too.

2018

Jul 25: webbundle PoC loading performance
●​ Benchmark: three.js (333 modules) threejs.wbn
●​ Chromium ToT (r577101)
●​ Webbundle PoC Patch

○​ Loads whole .wbn in-memory, and then serve from there
●​ Linux on Z840 workstation

https://drive.google.com/open?id=1Wt-YhbqGGgig_qsfewU89WQXq0ehjZ0J
https://chromium-review.googlesource.com/c/chromium/src/+/1109603

 unbundled,
first load

unbundled,
second load
(disk cache)

webbundle webpack
bundle

Time to onload 977 ms 505 ms 513 ms 381 ms

First module's fetchStart 36 ms 24 ms 89 ms 31 ms

Last module's responseEnd 690 ms 352 ms 361 ms 98 ms

●​ Loading performance of current patch is close to the load from disk cache
●​ First fetchStart is delayed in webbundle due to the bundle loading overhead

Apr 23: Performance across browsers, as of Apr 2018
Environment:

●​ macOS High Sierra 10.13.3 on Mac Pro (Late 2013)
●​ Samples-module-loading-comparison test server on localhost

Browsers:

●​ WebKit r230903 (APRIL 22, 2018)
●​ Safari Version 11.0.3 (13604.5.6)
●​ Firefox Nightly 61.0a1 (2018-04-22)
●​ Firefox 59.0.2 (64-bit)
●​ Chrome Version 68.0.3403.0 (Official Build) canary (64-bit)
●​ Version 66.0.3359.117 (Official Build) (64-bit)

Raw results

Moment.js / three.js
WebKit is 20% faster than Chrome and Firefox.

https://github.com/GoogleChromeLabs/samples-module-loading-comparison
https://docs.google.com/spreadsheets/d/1BVnbGY76LL9R_7fdWS-NMqFIJ_kyTF27_v3crTqKTMI/edit?usp=sharing

Synthesized (linear module graph)
Chrome is slightly faster than WebKit and Firefox, but Chrome crashes on 5000+ modules.

Synthesized (binary module graph)
WebKit was on par with Chrome in Sep 2017, but now WebKit is 1.5x faster than Chrome!

2017

Nov 28: Renderer CPU time accounting
Based on the profile result.

Total: 8.76s (incl. Samples from non-main threads)
RunLoop::Run 7.22s
blink::scheduler::TaskQueueManager::ProcessTaskFromWorkQueue 5.60s

Request

●​ ModuleTreeLinker::FetchDescendants 1.56s
○​ RenderFrameImpl::UpdatePeakMemoryStats 0.36s
○​ ThrottlingURLLoader::StartNow 0.51s

Response
●​ IPC

○​ mojom::URLLoaderClientStubDispatch::Accept 0.11s self
○​ ThrottlingURLLoader::OnComplete 0.14s self
○​ URLResponseBodyConsumer::OnReadable 0.20s self

●​ ResourceDispatcher::OnRequestComplete 2.11s
○​ V8ScriptRunner::CompileModule 1.56s

●​ WebURLLoaderImpl::Context::OnReceivedResponse 0.28s
○​ LocalFrameClientImpl::DidRunContentWithCertificateErrors 0.12s

Execution
●​ blink::ScriptLoader::Execute 0.33s

Calculation

●​ If we could get rid of “Request IPC” and “Response IPC” part by batching and reduce
MessageLoop/scheduler part by half, it would cut at most (7.6%+6.7%+12.0%)=26.3% of
the time.

Nov 21: Profiling with Google CPU Profiler
https://www.chromium.org/developers/profiling-chromium-and-webkit

Renderer process
Procedure:

1.​ Build with enable_profiling = true gn args
2.​ Run Chrome with renderer profiling enabled:

https://docs.google.com/spreadsheets/d/1UeuHZc2ggm7f9NviVBQDPMTYeGqPO-wtoEwm86Nk2oI/edit?usp=sharing
https://www.chromium.org/developers/profiling-chromium-and-webkit

○​ out/Profile/chrome --no-sandbox --profiling-at-start=renderer

https://localhost:44333

3.​ Click “Moment.js unbundled”, and wait for result
4.​ Click “Three.js unbundled”, and wait for result
5.​ Close the Chrome window
6.​ Analyze the results:

○​ pprof out/Profile/chrome chrome-profile-renderer-NNN

Renderer call graph (unfiltered)

This unfiltered view is hard to understand. By using show= option to only show nodes of blink /
content layers, we can get a nice hierarchical view of tasks:

Renderer call graph (content / blink layers only)

To take closer look at each task, focus= option can be used to restrict samples to those going
through a specific node. Here’s call graphs for specific tasks:

●​ ResourceDispatcher::OnRequestComplete (24.09%)
○​ ScriptCompiler::CompileModule (17.12%)

●​ ModuleTreeLinker::FetchDescendants (16.55%)
○​ ResourceFetcher::PrepareRequest (1.71%)
○​ FrameFetchContext::CreateURLLoader (4.34%)

■​ RenderFrameImpl::UpdatePeakMemoryStats is dominant (4.11%)
○​ WebURLLoaderImpl::LoadAsynchronously (7.65%)

●​ ResourceDispatcher::OnReceivedResponse (3.42%)
○​ RenderFrameImpl::DidRunContentWithCertificateErrors (1.37%)

■​ Because the server uses a self-signed certificate

Observations:

●​ RenderFrameImpl::UpdatePeakMemoryStats is heavy (4.11%). Currently it’s called once
per resource request, for ResourceLoadScheduler experimental groups.

●​ Modulator::ResolveModuleSpecifier (3.31%) is called 3 times for each module specifier,
from ModuleScript::Create, ModuleTreeLinker::FetchDescendants, and
ScriptModuleResolverImpl::Resolve. We should cache the resolved URL.

Browser process
●​ Browser-process call graph (unfiltered)
●​ Browser-process call graph (content:: and net:: only)

http://localhost:44333
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/renderer-unfiltered.svg
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/renderer-blink-content.svg
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/OnRequestComplete.svg
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/FetchDescendants.svg
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/OnReceivedResponse.svg
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/browser-unfiltered.svg
https://cdn.rawgit.com/irori/25d6cac337e0c47d749886f0c72635e9/raw/93b94b75b3709a70002001b2001ab1ee95d39c83/browser-content-net.svg

Oct 27: Response body inlining for mojo
Prototyped a mojo-loading version of IPC inlining, and measured the performance.

●​ Linux on Z620 workstation
●​ Chromium ToT @{#512063}
●​ Moment.js / Three.js unbundled test (median of 25 runs)
●​ Inlines response body up to 2KiB

○​ 95 of 104 modules in moment.js and 259 of 333 modules in three.js are subject
to inlining

Results:

 w/o inlining w/ inlining

moment.js 111ms 97ms

three.js 355ms 324ms

●​ Reduced 12.6% for moment.js and 8.7% for three.js.

Oct 19: IPC inlining
Last year, tzik@ ran an experiment that inlines content of resource into IPC message (to avoid
SharedMemory allocation), and reduces the number of IPCs per resource.
I revived that code (by reverting this) and benchmarked unbundle module loading.

●​ Linux on Z620 workstation
●​ Chromium ToT @{#509969}
●​ chrome://flags/#enable-mojo-loading disabled, since this optimization was built on top of

legacy IPC
●​ Moment.js / Three.js unbundled test (median of 25 runs)

Results:

 w/o inlining w/ inlining mojo-loading enabled

moment.js 93ms 84ms 107ms

three.js 310ms 291ms 356ms

●​ Inlining made moment.js 9.7% faster and three.js 6.1% faster.
●​ For this test, Mojo-loading is slower than legacy IPC loading.

https://chromium-review.googlesource.com/c/chromium/src/+/741283
https://bugs.chromium.org/p/chromium/issues/detail?id=580928
https://codereview.chromium.org/2762953004

Tracing for single moment.js load:
●​ trace-momentjs-nomojo.json.gz
●​ trace_momentjs-nomojo-inlining.json.gz

Browser IO thread takes less time when inlined. ResourceLoader::PrepareToReadMore
consumes 179us w/o inlining, 139us w/ inlining in average.

Oct 16: Sampling profiling
Profiled on Mac with Instruments.app (included with XCode).

●​ Chromium ToT @{#508970}
●​ Mac Pro 2013
●​ Procedure:

a.​ Run server.go in samples-module-loading-comparison
b.​ Open http://localhost:44333
c.​ Launch “Time Profiler” in Instruments.app
d.​ Attach to the {renderer, browser} process
e.​ Start profiling
f.​ Click “Moment.js unbundled”
g.​ Click “Three.js unbundled”
h.​ Stop profiling

Module-loading-profile.zip (you need Instruments.app to open trace files)

Renderer
Prettified call graph

Top 5 heavy tasks (colored in the spreadsheet):

●​ content::URLResponseBodyConsumer::OnReadable (2.51s)
○​ Reads response body of a module and compile (first path)
○​ URLResponseBodyConsumer destructor takes 321ms

●​ blink::ModuleTreeLinker::NotifyModuleLoadFinished (2.32s)
○​ Fetches descendants of a module

●​ content::ThrottlingURLLoader::OnComplete (667ms)
○​ Reads response body of a module and compile (second path)
○​ mojo::internal::BindingStateBase::Close takes 238ms

●​ content::ThrottlingURLLoader::OnReceiveResponse (481ms)
○​ Called when response headers are available

●​ blink::ScriptRunner::ExecuteTask (376ms)
○​ Evaluates module after the all submodules fetched / compiled

https://drive.google.com/open?id=0B_IpB7WXmT8iOHdydWI1bnB2OVk
https://drive.google.com/open?id=0B_IpB7WXmT8iRWlHM0JGc3IzQkU
https://github.com/GoogleChromeLabs/samples-module-loading-comparison
http://localhost:44333
https://drive.google.com/open?id=0B_IpB7WXmT8ia2tpVGZyZG8tbkE
https://docs.google.com/spreadsheets/d/1s9TU26PiONVbobsqD8v3oCytzxgC1A4ZC5IDtiMYu0U/edit#gid=1365706136

Browser IO thread
Prettified call graph

●​ It takes long time to post tasks? content::BrowserThread::PostTask() and
base::PostTaskAndReplyWithResult show up in several places.

●​ Invert Call Tree shows that PostPendingTask takes 8% of the time and malloc takes 7%

Oct 13: Tracing inspection: response handling
Here’s a trace during single module response handling, with Chromium ToT @{#508590} with
additional tracing patch:

It seems there’s no easy win, but a few observations:

●​ In average, it takes 300us to process single module response.
●​ V8 takes 160us.
●​ URLResponseBodyConsumer destructor takes 23us.
●​ Populating ResourceTiming takes 19us.
●​ ModuleScript::Create takes 13us to validate module specifiers, which is done again in

ModuleTreeLinker.

Oct 2: Tracing comparison: unbundled vs bundled
See report doc here

●​ Test: moment.js in samples-module-loading-comparison
●​ Chromium ToT @{#505529} with modulepreload patch
●​ Linux on Z620 workstation
●​ Four cases:

○​ Unbundled: unbundled moment.js (104 modules)

https://docs.google.com/spreadsheets/d/1s9TU26PiONVbobsqD8v3oCytzxgC1A4ZC5IDtiMYu0U/edit#gid=403681601
https://docs.google.com/document/d/1XVFzjEK-jlHJU1fHj6WJlDbu90Y6wwO9KGhXbm9DuDw/edit
https://github.com/GoogleChromeLabs/samples-module-loading-comparison
https://chromium-review.googlesource.com/c/chromium/src/+/662697

○​ Unbundled+modulepreload: Injected <link rel=modulepreload> for all modules
○​ Bundled-unoptimized: minified, unoptimized single classic script. Bundled using

webpack with tree-shaking disabled (66kb)
○​ Bundled-optimized: optimized single classic script (50kb)

Unbundled
momentjs_unbundled.json.gz

Timestamp ⊿Time Event

1287ms 0ms HTML ParseStart

1288ms 1ms Root module (app.js) requested

1325ms 38ms app.js arrived

1471ms 184ms All modules fetched and ExecuteScript started

1487ms 200ms Finished

Unbundled + modulepreload
momenjts_modulepreload.json.gz

Timestamp ⊿Time Event

1162ms 0ms HTML ParseStart

1162~1192ms 0~30ms HTMLPreloadScanner kicks fetches for all the 104 modules

1193~1205ms 31ms~43ms <link> tags attached to the DOM, creating another preload
requests

https://drive.google.com/open?id=0B_IpB7WXmT8icUxDb0R2OHdUUjA
https://drive.google.com/open?id=0B_IpB7WXmT8iYVMwcWN5Nm1YMUU

1317ms 155ms All modules fetched and ExecuteScript started

1335ms 173ms Finished

Bundled-unoptimized
momentjs_bundled-unoptimized.json.gz

Timestamp ⊿Time Event

1564ms 0ms HTML ParseStart

1565ms 1ms app.js requested

1572~1581ms 8~17ms app.js gets parsed in ScriptStreamer thread (not shown in the
screenshot)

1582ms 18ms ExecuteScript started

1636ms 72ms Finished

Bundled-optimized
momentjs_bundled-optimized.json.gz

Timestamp ⊿Time Event

1352ms 0ms HTML ParseStart

1353ms 1ms app.js requested

1358~1377ms 6~15ms app.js gets parsed in ScriptStreamer thread (not shown in the

https://drive.google.com/open?id=0B_IpB7WXmT8ibXIzdnJ2eWtqbms
https://drive.google.com/open?id=0B_IpB7WXmT8iR2xCN19WcXNCMlk

screenshot)

1368ms 16ms v8.compile on main thread

1370ms 18ms ExecuteScript started

1398ms 46ms Finished

Time breakdown

(spreadsheet)

●​ In unbundled case, renderer main thread is 70ms (35%) idle waiting for network
resources

●​ Modulepreload reduces idle time but increases blink overhead
●​ In bundled-unoptimized case, v8 time has increased compared with unbundled cases.

Bundling overhead?
○​ 32ms when unbundled -> 42ms + 9ms in ScriptStreamer thread

●​ In bundled-optimized, v8 time is 16ms in main thread + 9ms in ScriptStreamer thread

Sep 26: Synthesized tests revisited
The new algorithm of module tree fetching has been landed, so I did measurement for
synthesized module graphs again.

See results in spreadsheet

●​ branch=1
○​ Chrome's performance is now close to linear, as the O(n^2) operation has been

removed. Actually Chrome is faster than Safari for this (unrealistic) test.

https://docs.google.com/spreadsheets/d/1_dmTPFVQFIIVsH6AY-pO48gPHGPOBBYUeDeK0ZGrJTU/edit?usp=sharing
https://chromium-review.googlesource.com/c/chromium/src/+/674748
https://docs.google.com/spreadsheets/d/1MiNkFkGvpWini7d8Uo_QFsSqI5xuszf75dFaM5v2pdw/edit#gid=2090264539

●​ branch=2

○​ Now Chrome is on par with Safari. (Was 1.5x~2x slower than Safari in July)

Sep 5: Where is the bottleneck?
Here is the trace while loading modules of unbundled Three.js test.

Browser IO thread:

Renderer main thread:

Renderer main thread is only 60% busy while browser IO thread is 100% busy. This means we
have to make IO handling faster (e.g. batching IPC etc.) in order to improve module loading
speed.

Aug 16: Test server update - repetitive loading test
In order to reduce variability, added a functionality to load the module tree repeatedly (under
different URLs) and report the median time. (commit)

Aug 9: Upstreamed test server
The Go test server (with synthesized test support) is now part of the
samples-module-loading-comparison repo.

Aug 2: A finding in deep-dependency case
In ModuleTreeLinker, HashSet for the ancestor list is copied twice, in Fetch() and in the
constructor. This can be slow when dependency is very deep:

https://github.com/GoogleChrome/samples-module-loading-comparison/commit/cd4a9f8cc625bf8dcedc73d430dbde1a38bda00f
https://github.com/GoogleChrome/samples-module-loading-comparison

This could be a reason why Chrome gets slow as #depth increases.

Note: This wouldn’t be a problem in the new algorithm, as the ancestor list will be going away.

Jul 28: Modules graph visualization
Download: visualizable-module-loader-bundled.js

Built on top of the ES Module Loader Polyfill.

Usage:

 <script src="path/to/visualizable-module-loader-bundled.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/vis/4.20.1/vis.min.js"></script>

 <div id="module-graph"></div>

 <script>
 // Replace <script type="module" src="module.js"> with this:
 var loader = new VisualizableModuleLoader();
 loader.import('module.js').then(() => {
 loader.visualize(document.getElementById('module-graph'));
 });
 </script>

Example: moment.js, three.js
Update Oct 10: Changed to layout hierarchically by depth of nodes

https://drive.google.com/uc?authuser=0&id=0B_IpB7WXmT8iUlRwNkxCcFBFTW8&export=download
https://github.com/ModuleLoader/browser-es-module-loader
https://superficial-decision.surge.sh/moment.html
https://superficial-decision.surge.sh/three.html

Jul 27: Test automation
Updated the test archive: module-loading-bench.tar.gz

●​ Added a script to run the synthesized test repeatedly, using WebDriver. See
runner/README.md for details.

Jul 26: Synthesized test case results
Measured the time to onload, changing the depth of dependency graph.

See results in spreadsheet

●​ branch=1
○​ For depth=100, Chrome is 1.2x slower than WebKit. For depth=3000, Chrome is

1.7x slower than WebKit.

https://drive.google.com/uc?authuser=0&id=0B_IpB7WXmT8iemNNcGh4cTd5Zms&export=download
https://docs.google.com/spreadsheets/d/1MiNkFkGvpWini7d8Uo_QFsSqI5xuszf75dFaM5v2pdw/edit#gid=0

●​ branch=2 (log scale, since num of modules grows exponentially.)

Jul 25: Server update
Module-loading-bench.tar.gz

●​ Shows window.performance based timings

https://drive.google.com/uc?authuser=0&id=0B_IpB7WXmT8iemNNcGh4cTd5Zms&export=download

●​ Added synthesized module-tree test case
○​ You can specify the shape of module dependency tree by the query parameters

depth=n and branch=m. See README.md for details.

 Chrome 62.0.3166.0
canary

Safari TP35 WebKit nightly
r219860

depth=10, branch=2
(2047 modules) 3674ms 2249ms 2165ms

depth=2, branch=45
(2071 modules) 2554ms 1955ms 2070ms

depth=2000, branch=1
(2001 modules) 8899ms 5986ms 5823ms

Jul 24: Unbundling Vue.js
Just to get some idea about how hard to add a new test case.

TodoMVC with unbundled Vue.js (108 modules)

Cloned vue.js repo and did the followings:

●​ Stripped flow types by flow-remove-types
●​ Rewrote import statements to browser-loadable relative paths (using ad-hoc ruby script)
●​ ..and modify several places manually to get it working

Takeaway: It's hard without knowledge about modern JS build system and a systematic
approach, like using rollup / babel plugins Sergio used in his test.

https://obese-ladybug.surge.sh

Jul 21: Go test server
Ported the HTTP/2 server used in Sergio’s test into Go language, to see if the server is adding
any performance overhead.

Download link: module-loading-bench.tar.gz

Here’s the result of loading the “Unbundled” tests three times for each server. (Time to onload,
Chrome Canary 62.0.3164.0 on Macbook Air)

Unbundled moment.js (104 modules)

 node-spdy Go

1st 424ms 371ms

2nd 433ms 354ms

3rd 440ms 363ms

Unbundled three.js (333 modules)

 node-spdy Go

1st 1.18s 1.04s

2nd 1.17s 1.07s

3rd 1.16s 1.05s

The Go implementation is 10%~15% faster.

Jul 20: Try Sergio’s test on latest Chromium
https://sgom.es/posts/2017-06-30-ecmascript-module-loading-can-we-unbundle-yet/

●​ It worked without modification
●​ But unbundled moment.js is very slow (3.8s on Z620)

○​ -> Kouhei’s patch made it 20x faster!

Safari TP35 vs Chromium after the Kouhei’s patch (Macbook Air, no network shaping)

 Safari Chromium

Moment.js bundled, optimized 23ms 61ms

https://github.com/GoogleChrome/samples-module-loading-comparison
https://drive.google.com/uc?authuser=0&id=0B_IpB7WXmT8iemNNcGh4cTd5Zms&export=download
https://sgom.es/posts/2017-06-30-ecmascript-module-loading-can-we-unbundle-yet/
https://chromium-review.googlesource.com/c/578531/

Moment.js bundled, unoptimized 33ms 72ms

Moment.js unbundled 328ms 439ms

Three.js bundled, optimized 65ms 182ms

Three.js bundled, unoptimized 79ms 258ms

Three.js unbundled 915ms 1190ms

	ES6 Module Loading Performance (Worklog)
	2022
	Oct 13: WebBundles v2 PoC benchmark
	Benchmark
	Chromium Patches
	Results

	2021
	Mar 30: Setting up a new benchmark environment
	Benchmark
	Chromium binaries (for Linux)
	Preliminary results

	2020
	Nov 6: Subresource WBN performance - Renderer based vs. NetworkService based
	Jun 11: Subresource WBN loading architecture
	Jun 2: Measuring the new approach of Subresource WBN
	Apr 17: Subresource WBN performance report
	Apr 6: Module script optimization for Subresource WBN, continued
	Apr 2: Subresource WBN: Use ModuleScriptFetcher to intercept module script requests
	Results: Three.js
	Results: DevTools frontend

	Mar 30: Subresource WBN: tracing inside ResourceFetcher::requestResource()
	Mar 27: Time breakdown for Subresource WBN
	Result
	Experiment: Using ResourceFetcher::ResourceForStaticData() code path

	Mar 12: Subresource WBN on a slow network
	Result

	Mar 9: DevTools frontend and modulepreload
	Result

	Mar 5: Measurements against DevTools frontend
	Environment
	Targets
	Result

	Feb 13: Initial measurements for Subresource Web Bundle
	Summary
	Measurement
	Performance Analysis
	Next Steps

	2018
	Jul 25: webbundle PoC loading performance
	Apr 23: Performance across browsers, as of Apr 2018
	Moment.js / three.js
	Synthesized (linear module graph)
	Synthesized (binary module graph)

	2017
	Nov 28: Renderer CPU time accounting
	Nov 21: Profiling with Google CPU Profiler
	Renderer process
	Browser process

	Oct 27: Response body inlining for mojo
	Oct 19: IPC inlining
	Oct 16: Sampling profiling
	Renderer
	Browser IO thread

	Oct 13: Tracing inspection: response handling
	Oct 2: Tracing comparison: unbundled vs bundled
	Unbundled
	Unbundled + modulepreload
	Bundled-unoptimized
	Bundled-optimized
	Time breakdown

	Sep 26: Synthesized tests revisited
	Sep 5: Where is the bottleneck?
	Aug 16: Test server update - repetitive loading test
	Aug 9: Upstreamed test server
	Aug 2: A finding in deep-dependency case
	Jul 28: Modules graph visualization
	Jul 27: Test automation
	Jul 26: Synthesized test case results
	Jul 25: Server update
	Jul 24: Unbundling Vue.js
	Jul 21: Go test server
	Jul 20: Try Sergio’s test on latest Chromium

