
Iceberg DataFile reader and writer API
proposal

Abstract
Iceberg currently supports 3 different file formats: Avro, Parquet, ORC. With the introduction
of Iceberg V3 specification many new features are added to Iceberg. Some of these features
like new column types, default values require changes at the file format level. The changes
are added by individual developers with different focus on the different file formats. As a
result not all of the features are available for every supported file format.
Also there are emerging file formats like Vortex [1] or Lance [2] which either by
specialization, or by applying newer research results could provide better alternatives for
certain use-cases like random access for data, or storing ML models.

Goals
The goal of this proposal is:

●​ Provide a clean, well defined API which file formats need to implement
●​ Implement the new API for the supported file formats
●​ Keep backward compatibility for the current readers/writers
●​ Simplify the existing code by removing the code duplications by using the common

API instead of the big switch/case blocks
●​ Provide a TCK to validate the supported file format implementations

Non goals
The TCK will help identify the missing features for the supported file formats, but
implementing the missing features for the supported file formats could be done
independently.
It is not a goal of this proposal to introduce new file formats. If the community decides
so, that could be done independently later.
It is not a goal of this proposal to change the internals of the current file formats.
Puffin readers and writers (like the ones used by DVs) are out of scope for this proposal.

Design
Each file format reads data into its own object model, and each query engine maintains its
own object model. To avoid performance degradation, we continue using the current
strategy: applying specific transformations between the engine’s object model and the file
format’s object model.

●​ Reading: File format-specific objects are loaded into memory and then converted into
the engine-specific object model.

●​ Writing: The engine-specific object model is transformed into the file format-specific
object model.

This results in a matrix of transformations. To encapsulate these conversions, we define the
Format Model API, which provides ReadBuilder and WriteBuilder interfaces for reading and
writing data.

Format models are registered in the Format Model Registry, which exposes ReadBuilder and
WriteBuilder instances to users. These builders can also be wrapped into writer-specific
builders such as:

●​ DataWriteBuilder for data files
●​ PositionalDeleteWriteBuilder for positional delete files
●​ EqualityDeleteWriteBuilder for equality delete files

Proposed changes implemented for every File Format

Format Model
To maintain performance, direct conversions are used between file formats and
engine-internal formats. Object models encapsulate these conversions and must provide:

●​ ReadBuilder - for reading data files stored in a given File Format into the engine
specific object model,

●​ WriteBuilder - for writing engine specific object model to data/delete files stored in a
given File Format.

Engines can implement and register their own object models to leverage Iceberg’s read/write
capabilities.

Read Builder
File formats implement this interface to provide a builder for reading data files. The builder is
parameterized by user input and returns objects defined by the associated object model.
This interface is directly exposed to users for reader customization.

The interface will not have generic parameters, so the existing format specific
implementations (Parquet.ReadBuilder, Avro.ReadBuilder, ORC.ReadBuilder) could simply
extend the new interface and

Write Builder
File formats implement this interface to provide a builder for writing. It is configured using
user-provided parameters, and the build method generates the appropriate appender.

The appender must support engine-specific input types for data and equality delete modes.
Position deletes are written using a specific PositionDelete Object model

This interface is directly exposed to users for appender customization or wrapped for use in
content file writers.

The interface will not have generic parameters, so the existing format specific
implementations (Parquet.WriteBuilder, Avro.WriteBuilder, ORC.WriteBuilder) could simply
extend the new interface and

Method names
I have collected the method names from the old API, and the proposed new API.
We should go through them and decide what should be the new naming.

 Builder methods

Proposed changes in the iceberg-core module

Format Model Registry
The available Format Models are registered by the register method. These Format Models
will be used to create the Read Builders and the Write Builders. The former ones are
returned directly, the later ones are wrapped into the appropriate writer builder
implementations.
Re-registering Format Models is not allowed as a general rule. To prevent issues where
classes are reloaded by Flink and Spark, the registered model is updated if the classname,
the file format, the object type and the schema type are the same.

Data Write Builder
Interface which defines the methods that are needed for Data File write builders. The Data
File Writer will expect inputs defined by the engineSchema which should be convertible to
the Iceberg schema defined.

Position Delete Write Builder
Interface which defines the methods that are needed for Position Delete File write builders.
The Position Delete File Writer will expect Position Delete records. Setting the row schema is
not supported.

https://docs.google.com/spreadsheets/u/1/d/1cBwyrO9-0x-OgquNhfBpkjfF__VRZgKBqujCnlAkXeY/edit

Equality Delete Write Builder
Interface which defines the methods that are needed for Equality Delete File write builders.
The Equality Delete File Writer will expect inputs defined by the engineSchema which should
be convertible to the Iceberg schema.

Content File Write Builder
Implementation for the different Write Builder interfaces. The builder is an internal class and
could change without notice. The users should use one of the following specific interfaces
instead:

-​ Data Write Builder
-​ Position Delete Write Builder
-​ Equality Delete Write Builder

The Content File Write Builder wraps the file format specific Write Builder. To allow further
engine and file format specific configuration changes for the given writer, the Write Builder’s
build method is called to create the appender which is used by the Write Builder to provide
the required functionality.

Exposing Variants
The proposal is to expose WriteBuilder.inputSchema and ReadBuilder.outputSchema, which
can guide the shredding of variant columns. These schemas would define the expected
structure, including both the shredded columns and a dedicated variant column to capture
any non-shredded data.
This schema-driven approach enables compatibility across different engine-specific
representations. For example, if a DataFrame stores values as tinyint or shortint, the writer
could convert and persist them as integer columns.

Packaging structure
The NameMapping, MetricsConfig classes are required on the interfaces and part of the
core project, so the new files are located in the Iceberg Core project in the
org.apache.iceberg.formats package.

File Format API
●​ These interfaces are implemented by supported file format implementations.
●​ Includes FormatModel, WriteBuilder, and ReadBuilder.

File Write API
●​ Used by engines to register object models and retrieve the appropriate builders for

reading/writing.
●​ Includes FormatModelRegistry, write builder interfaces, and their implementations.

Code duplications
Currently, file format-specific logic is implemented using large switch statements, leading to
duplicated code. After refactoring:

●​ These blocks will be replaced with a single call to fetch the correct builder from the
FormatModelRegistry.

●​ Each file format will no longer need to implement its own data and delete write
builders.

○​ Format-specific logic will move into the format model.
○​ Duplicated code will be deprecated in favor of the unified File Write API.

Backwards compatibility
We need to keep the current file format specific WriteBuilders and ReadBuilders minimally
until the deprecation period. During this period we can reuse the old WriteBuilders and
ReadBuilders to implement the new API. This allows us to keep the old API intact. After the
removal of the old API the implementation needs to be moved, but with the help of the TCK
we can ensure that the functionality remains the same.

TCK

Unit tests
We should organize the test suites to have separate tests for the different table spec
versions.

The test suite should test all the features which are expected from a file format.

●​ Builder properties:
○​ Split handling
○​ Projection
○​ Case sensitivity
○​ Filtering
○​ Container reuse
○​ Batch size

●​ Reading and writing supported data types:
○​ BOOLEAN
○​ INTEGER
○​ LONG
○​ FLOAT
○​ DOUBLE
○​ DATE
○​ TIME
○​ TIMESTAMP
○​ STRING
○​ UUID
○​ FIXED

○​ BINARY
○​ DECIMAL
○​ STRUCT
○​ LIST
○​ MAP
○​ TIMESTAMP_NANO - v3 only
○​ VARIANT - v3 only
○​ UNKNOWN - v3 only
○​ Geometry - v3 only

●​ Returning metadata columns:
○​ FILE_PATH
○​ ROW_POSITION
○​ IS_DELETED
○​ SPEC_ID
○​ PARTITION_COLUMN

■​ Transformations
■​ Partition evolution (adding and removing columns)

●​ Schema evolution:
○​ Adding column (reading with wider schema)
○​ Projection/Removing column (reading with narrower schema)
○​ Removing and adding a column with the same name (name mapping)
○​ Allowed type changes
○​ Reorder columns

●​ Metrics collection
●​ Default values - v3 only
●​ Delete filter handling - v3 only?

○​ Removed rows
○​ Counter handling

●​ Encryption - v3 only

Open Questions

Expose Parquet.ReaderFunction
While implementing the InternalData interfaces for Parquet, Russell came up with the idea to
replace the 3-4 reader functions with a single ReaderFunction.
See:

●​ PR: https://github.com/apache/iceberg/pull/14040
●​ ReaderFunction:

https://github.com/apache/iceberg/blob/042f01a240439691ac67c6d67bd51cf5a4167
dd2/parquet/src/main/java/org/apache/iceberg/parquet/Parquet.java#L1171

We should follow the same pattern for every ReadBuilder/WriteBuilder (Parquet, Avro, ORC)
internally. This could be done in a parallel PR before finalizing this PR.

https://github.com/apache/iceberg/pull/14040
https://github.com/apache/iceberg/blob/042f01a240439691ac67c6d67bd51cf5a4167dd2/parquet/src/main/java/org/apache/iceberg/parquet/Parquet.java#L1171
https://github.com/apache/iceberg/blob/042f01a240439691ac67c6d67bd51cf5a4167dd2/parquet/src/main/java/org/apache/iceberg/parquet/Parquet.java#L1171

The implementation of the new FormatModel will also require us to create more
ReaderFunction/WriteFunction interfaces, and we could utilize the changes mentioned
above.
See:

●​ https://github.com/apache/iceberg/pull/12298/files#diff-f96b8e4567069fcc597f180254
1029d2d1707ec5bc128a631ed7244bf364e22bR84-R107

@FunctionalInterface
public interface ReaderFunction<D> {
 ParquetValueReader<D> read(
 Schema schema, MessageType messageType, Map<Integer, ?>
constantFieldAccessors);
}

@FunctionalInterface
public interface BatchReaderFunction<D, F> {
 VectorizedReader<D> read(
 Schema schema,
 MessageType messageType,
 Map<Integer, ?> constantFieldAccessors,
 F deleteFilter,
 Map<String, String> config);
}

@FunctionalInterface
public interface WriterFunction<S> {
 ParquetValueWriter<?> write(Schema icebergSchema, MessageType messageType, S
engineSchema);
}

Instead of these functional interfaces, we could possibly expose these functions on the
FormatModel constructors, like:
private ParquetFormatModel(
 Class<D> type,
 Class<S> schemaType,
 Parquet.ReadBuilder.ReaderFunction readerFunction,
 Parquet.ReadBuilder.BatchReaderFunction batchReaderFunction,
 Parquet.WriteBuilder.WriterFunction writerFunction) {

The registration of the Format Models will change from this:
FormatModelRegistry.register(
 new ParquetFormatModel<>(
 Record.class,
 Schema.class,
 GenericParquetReaders::buildReader,
 (schema, messageType, inputType) ->
 GenericParquetWriter.create(schema, messageType))));

To this:
FormatModelRegistry.register(
 new ParquetFormatModel<>(
 Record.class,

https://github.com/apache/iceberg/pull/12298/files#diff-f96b8e4567069fcc597f1802541029d2d1707ec5bc128a631ed7244bf364e22bR84-R107
https://github.com/apache/iceberg/pull/12298/files#diff-f96b8e4567069fcc597f1802541029d2d1707ec5bc128a631ed7244bf364e22bR84-R107

 Schema.class,
 new Parquet.ReadBuilder.ReaderFunction() {
 @Override
 public Function<MessageType, ParquetValueReader<?>> apply() {
 return messageType ->
GenericParquetReaders.buildReader(schema(), messageType);
 }
 },
 [..])));

This registration is a bit more chatty, but we can reuse the existing classes instead of
creating new interfaces.

Revisit Generics in the API Design
There was a debate about whether the new ReadBuilder and WriteBuilder interfaces should
use generic parameters. I would like to revisit it, as generics could provide stronger type
safety by ensuring that builders accept the correct input types and produce the correct
output types, especially when these builders are passed around as parameters.

The main concern raised by the community is that introducing generics would prevent
reusing the current classes, like Parquet.WriteBuilder and Parquet.ReadBuilder, without
significant changes, increasing the size and complexity of the changes.

Proposed compromise
Keep generic parameters in the new interfaces, but allow existing implementations to use
Object as a fallback type. For example:
public interface WriteBuilder<D, S> {
 WriteBuilder<D, S> inputSchema(Object schema);
 FileAppender<D> appender() throws IOException;
}

Make the old WriteBuilder/ReadBuilder classes implement them with Object parameters:
public static class WriteBuilder
 implements org.apache.iceberg.formats.WriteBuilder<Object, Object> {

 public WriteBuilder inputSchema(Object newInputSchema) {
 Preconditions.checkNotNull(
 inputSchemaClass, "Input schema class must be set");
 Preconditions.checkArgument(
 inputSchemaClass.isInstance(newInputSchema),
 "Input schema must be of class: %s, found: %s",
 inputSchemaClass.getName(),
 newInputSchema.getClass().getName());
 this.inputSchema = newInputSchema;
 return this;
 }

 public FileAppender<Object> appender() throws IOException {
 return build();
 }

}

The FormatModel could then safely cast to the correct types internally:
public WriteBuilder<D, S> writeBuilder(OutputFile outputFile) {
 return (WriteBuilder<D, S>) Parquet.write(outputFile)
 .inputSchemaClass(schemaType)
 .writerFunction((WriterFunction<Object>) writerFunction);
}

This approach preserves type safety for new implementations while minimizing disruption for
existing ones.

Options going forward:

1.​ Keep both generic parameters (input/output type and schema type)
○​ Pro: Full type safety for both schema and data types.
○​ Con: Requires introducing new method names to avoid clashes (e.g., build()

vs. appender()).
2.​ Keep only the schema type as a generic parameter

○​ Pro: At least schema type safety is preserved; simpler migration.
○​ Con: Input/output type safety is lost, leading to partial consistency.

3.​ Remove generics entirely
○​ Pro: Simplest migration path.
○​ Con: Loses all compile-time type safety, making the API less robust.

References

[1] https://github.com/spiraldb/vortex
[2] https://lancedb.github.io/lance/
[3] https://github.com/apache/iceberg/pull/12774 - Core, Data: File Format API interfaces
[4] https://github.com/apache/iceberg/pull/12298 - Core: Interface based DataFile reader and
writer API - PoC

https://github.com/spiraldb/vortex
https://lancedb.github.io/lance/
https://github.com/apache/iceberg/pull/12774
https://github.com/apache/iceberg/pull/12298

	Iceberg DataFile reader and writer API proposal
	Abstract
	Goals
	Non goals
	Design
	Proposed changes implemented for every File Format
	Format Model
	Read Builder
	Write Builder
	Method names

	Proposed changes in the iceberg-core module
	Format Model Registry
	Data Write Builder
	Position Delete Write Builder
	Equality Delete Write Builder
	Content File Write Builder
	Exposing Variants

	Packaging structure
	File Format API
	File Write API

	Code duplications
	Backwards compatibility

	TCK
	Unit tests

	Open Questions
	Expose Parquet.ReaderFunction
	Revisit Generics in the API Design

	References

