
Iceberg DataFile reader and writer API
proposal

Abstract
Iceberg currently supports 3 different file formats: Avro, Parquet, ORC. With the introduction
of Iceberg V3 specification many new features are added to Iceberg. Some of these features
like new column types, default values require changes at the file format level. The changes
are added by individual developers with different focus on the different file formats. As a
result not all of the features are available for every supported file format.
Also there are emerging file formats like Vortex [1] or Lance [2] which either by
specialization, or by applying newer research results could provide better alternatives for
certain use-cases like random access for data, or storing ML models.

Goals
The goal of this proposal is:

●​ Provide a clean, well defined API which file formats need to implement
●​ Implement the new API for the supported file formats
●​ Keep backward compatibility for the current readers/writers
●​ Simplify the existing code by removing the code duplications by using the common

API instead of the big switch/case blocks
●​ Provide a test suite to validate the supported file format implementations

Non goals
Implementing the missing features for the supported file formats could be done
independently.
It is not a goal of this proposal to introduce new file formats. If the community decides so,
that could be done independently later.

Design
Each file format reads data into its own object model, and each query engine maintains its
own object model. To avoid performance degradation, we continue using the current
strategy: applying specific transformations between the engine’s object model and the file
format’s object model.

●​ Reading: File format-specific objects are loaded into memory and then converted into
the engine-specific object model.

●​ Writing: The engine-specific object model is transformed into the file format-specific
object model.

This results in a matrix of transformations. To encapsulate these conversions, we define the
Object Model API, which provides ReadBuilder and AppenderBuilder interfaces for reading
and writing data.

Object models are registered in the Object Model Registry, which exposes ReadBuilder and
AppenderBuilder instances to users. These builders can also be wrapped into writer-specific
builders such as:

●​ DataWriteBuilder for data files
●​ PositionalDeleteWriteBuilder for positional delete files
●​ EqualityDeleteWriteBuilder for equality delete files

Proposed changes in the iceberg-api module

Object Model
To maintain performance, direct conversions are used between file formats and
engine-internal formats. Object models encapsulate these conversions and must provide:

●​ ReadBuilder - for reading data files stored in a given File Format into the engine
specific object model,

●​ AppenderBuilder - for writing engine specific object model to data/delete files stored
in a given File Format.

Engines can implement and register their own object models to leverage Iceberg’s read/write
capabilities.

Read Builder
File formats implement this interface to provide a builder for reading data files. The builder is
parameterized by user input and returns objects defined by the associated object model.
This interface is directly exposed to users for reader customization.

Appender Builder
File formats implement this interface to provide a builder for writing. It is configured using
user-provided parameters, and the build method generates the appropriate appender.

The appender must support:

●​ Engine-specific input types for data and equality delete modes
●​ Positional deletes, where the row type is PositionDelete

This interface is directly exposed to users for appender customization or wrapped for use in
content file writers.

Proposed changes in the iceberg-data module

Object Model Registry
The available Object Models are registered by the registerObjectModel method. These
Object Models will be used to create the Read Builders and the Appender Builders. The
former ones are returned directly, the later ones either used directly, or wrapped into the
appropriate writer builder implementations.

Data Write Builder
Interface which defines the methods that are needed for Data File write builders. The Data
File Writer will expect inputs defined by the engineSchema which should be convertible to
the Iceberg schema defined.

Position Delete Write Builder
Interface which defines the methods that are needed for Position Delete File write builders.
The Position Delete File Writer will expect Position Delete records. If the row schema is set
then the positional delete records should contain the deleted rows specified by the
engineSchema. The provided engine schema should be convertible to the Iceberg schema.

Equality Delete Write Builder
Interface which defines the methods that are needed for Equality Delete File write builders.
The Equality Delete File Writer will expect inputs defined by the engineSchema which should
be convertible to the Iceberg schema.

Write Builder
Implementation for the different Write Builder interfaces. The builder is an internal class and
could change without notice. The users should use one of the following specific interfaces
instead:

-​ Data Write Builder
-​ Position Delete Write Builder
-​ Equality Delete Write Builder

The Write Builder wraps the file format specific Appender Builder. To allow further engine
and file format specific configuration changes for the given writer, the Appender Builder’s
build method is called to create the appender which is used by the Write Builder to provide
the required functionality.

Packaging structure

File Format API
●​ These interfaces are implemented by supported file format implementations.
●​ Includes ObjectModel, AppenderBuilder, and ReadBuilder.
●​ Located in the Iceberg Core project, because the NameMapping, MetricsConfig

classes are required on the interfaces and part of the core project.

File Write API
●​ Used by engines to register object models and retrieve the appropriate builders for

reading/writing.
●​ Includes ObjectModelRegistry, write builder interfaces, and their implementations.
●​ Located in the Iceberg Data project.

Code duplications
Currently, file format-specific logic is implemented using large switch statements, leading to
duplicated code. After refactoring:

●​ These blocks will be replaced with a single call to fetch the correct builder from the
ObjectModelRegistry.

●​ Each file format will no longer need to implement its own data and delete write
builders.

○​ Format-specific logic will move into the object model.
○​ Duplicated code will be deprecated in favor of the unified File Write API.

Test suite
We should organize the test suites to have separate tests for the different table spec
versions.

The test suite should test all the features which are expected from a file format.

●​ Builder properties:
○​ Split handling
○​ Projection
○​ Case sensitivity
○​ Filtering
○​ Container reuse
○​ Batch size

●​ Reading and writing supported data types:
○​ BOOLEAN

○​ INTEGER
○​ LONG
○​ FLOAT
○​ DOUBLE
○​ DATE
○​ TIME
○​ TIMESTAMP
○​ STRING
○​ UUID
○​ FIXED
○​ BINARY
○​ DECIMAL
○​ STRUCT
○​ LIST
○​ MAP
○​ TIMESTAMP_NANO - v3 only
○​ VARIANT - v3 only
○​ UNKNOWN - v3 only
○​ Geometry - v3 only

●​ Returning metadata columns:
○​ FILE_PATH
○​ ROW_POSITION
○​ IS_DELETED
○​ SPEC_ID
○​ PARTITION_COLUMN

■​ Transformations
■​ Partition evolution (adding and removing columns)

●​ Schema evolution:
○​ Adding column (reading with wider schema)
○​ Projection/Removing column (reading with narrower schema)
○​ Removing and adding a column with the same name (name mapping)
○​ Allowed type changes
○​ Reorder columns

●​ Metrics collection
●​ Default values - v3 only
●​ Delete filter handling - v3 only?

○​ Removed rows
○​ Counter handling

●​ Encryption - v3 only

Design Alternatives
There are several alternatives which were discussed and rejected during the evaluation, but
for future reference they are kept below.

Minimal changes

Registry
Similarly to the InternalData read and write builders proposal [3], we can introduce a registry
for the data file readers and writers. The registry would store/and return the readers/writer
factories based on the following selection criteria:

1.​ Data file format
2.​ Row data type (input for readers, output for writers)
3.​ Builder type - needed when we have multiple available implementations, like Parquet

Comet/Iceberg readers

Builder
Current file format builders (ReadBuilder/WriteBuilder/DataWriteBuilder/DeleteWriteBuilder)
are very similar for the supported file formats. There are only minimal differences which we
can deprecate and consolidate. We should create a common interface which will be part of
the new API. These builders should implement this interface. The Builders contain the file
format specific codes.

DeleteFilter
We need to formalize the DeleteFilter API as it is pushed down to the Parquet vectorized
reader to filter out the records on the reader side.

BuilderFactory
The following builder factory groups are planned for the different row data types

●​ Record - Generic reader/writer
●​ ColumnarBatch (Arrow) - for the Arrow reader
●​ RowData - for the Flink reader/writer
●​ InternalRow - for the Spark reader/writer
●​ ColumnarBatch (Spark) - for the Spark vectorized reader

The BuilderFactory contains the conversion specific codes which converts:

●​ In case of the readers the file format specific raw data to the target type
●​ In case of the writers the target type to the file format specific raw data

We need to create a matrix of builder factories for every supported row data type. This
guarantees performance since we can avoid an extra conversion to a common type and
convert everything directly to the target type.

The conversion code (former createReaderFunc/createBatchedReaderFunc) needs the
following parameters:

●​ In case of the readers:
○​ InputFile to read
○​ Task to provide the values for metadata columns (_file_path, _spec_id,

_partition)
○​ ReadSchema to use when reading the data file

○​ PartitionType (based on all specs in the table) which is used for calculating
values for _partition column

○​ DeleteFilter is used when the delete record filtering is pushed down to the
reader

●​ In case of the writers:
○​ OutputFile to write
○​ Input data schema

Fewer interfaces
There are many duplicated properties for the different builders. If we use inheritance to
remove the duplication then we will end up with a high number of interfaces and base
classes. We could accept the code duplication and create a single interface/base class for:

●​ ReaderBuilder
●​ AppenderBuilder
●​ DataWriterBuilder
●​ We still need to use inheritance for EqualityDeleteWriterBuilder and

PositionalDeleteWriterBuilder to easily migrate the current Avro/Parquet/ORC
implementations.

See: https://github.com/pvary/iceberg/tree/file_format_api_minimal_few_class

Simplify builder API
In all of the pervious alternatives the builder API required information which needed to for the
parametrization of reader transformations:

 ReaderBuilder<?> builder(
 InputFile inputFile,
 ContentScanTask<?> task,
 Schema readSchema,
 Table table,
 DeleteFilter<?> deleteFilter);

Some of it is duplicated information already configured for the builder:

 T split(long newStart, long newLength);
 T project(Schema newSchema);
 T filter(Expression newFilter);

We could allow the ReaderService to initialize the builder before the actual build method is
called. This could enable the service to use all of the data provided by the builder
parametrization, and result in a cleaner interface.

See: https://github.com/pvary/iceberg/tree/file_format_api_builder_only

https://github.com/pvary/iceberg/tree/file_format_api_minimal_few_class
https://github.com/pvary/iceberg/tree/file_format_api_builder_only

Interface only API
In the previous alternatives the builder API provided base classes which handled the
common build parameters. While that approach removed duplicated boilerplate code for
builders it restricted implementation inheritance and increased the size of the changeset.
Alternatively, we can provide an interface only API and leave the boilerplate code in the
format specific classes (Parquet.java/Avro.java/ORC.java)

See: https://github.com/apache/iceberg/pull/12298

[1] https://github.com/spiraldb/vortex
[2] https://lancedb.github.io/lance/
[3] https://github.com/apache/iceberg/pull/12060 - Core: Add InternalData read and write
builders
[4] https://github.com/apache/iceberg/pull/12069 - WIP generic reader
[5] https://github.com/apache/iceberg/pull/12164 - WIP File format write

https://github.com/apache/iceberg/pull/12298
https://github.com/spiraldb/vortex
https://lancedb.github.io/lance/
https://github.com/apache/iceberg/pull/12060
https://github.com/apache/iceberg/pull/12069
https://github.com/apache/iceberg/pull/12164

	Iceberg DataFile reader and writer API proposal
	Abstract
	Goals
	Non goals
	Design
	Proposed changes in the iceberg-api module
	Object Model
	Read Builder
	Appender Builder

	Proposed changes in the iceberg-data module
	Object Model Registry
	Data Write Builder
	Position Delete Write Builder
	Equality Delete Write Builder
	Write Builder

	Packaging structure
	File Format API
	File Write API

	Code duplications

	Test suite
	Design Alternatives
	Minimal changes
	Registry
	Builder
	DeleteFilter
	BuilderFactory

	Fewer interfaces
	Simplify builder API
	Interface only API

