W1+2+3

Java Exercises: Data Types,
Input/Output, Increment/Decrement
Operators

Grading criteria:
1. Correctness (70%):
e The program compiles and runs without errors.
e The program produces the correct output for given inputs.
e All specified functionalities are implemented correctly.

2. Commenting the Logic (30%):
e The code includes comments explaining the purpose of major code sections.
e The comments describe the logic behind key operations and decisions.
e The comments help readers understand how the code works.

Exercise 1: Simple Calculator
Objective: Practice using arithmetic operators, input/output, and basic data types.

1. Write a Java program that prompts the user to enter two integers.
2. Perform the addition, subtraction, multiplication, and division of these two numbers.
3. Display the results to the user.

Expected Input:
Enter the first integer: 10
Enter the second integer: 5

Expected Output:
Addition: 15
Subtraction: 5
Multiplication: 50
Division: 2.0

Exercise 2: Temperature Converter
Objective: Practice using arithmetic operators, input/output, and data types.

1. Write a Java program that prompts the user to enter a temperature in Celsius.
2. Convert the temperature to Fahrenheit using the formula: F = (C * 9/5) + 32.
3. Display the temperature in Fahrenheit.

Expected Input:
Enter temperature in Celsius: 25

Expected Output:
Temperature in Fahrenheit: 77.0

Exercise 3: BMI Calculator
Objective: Practice using arithmetic operators, input/output, and data types.

1. Write a Java program that prompts the user to enter their weight (in kilograms) and
height (in meters).

2. Calculate the Body Mass Index (BMI) using the formula: BMI = weight / (height * height).

3. Display the BMI to the user.

Expected Input:
Enter your weight in kilograms: 70
Enter your height in meters: 1.75

Expected Output:
Your BMI is: 22.857142857142858

Exercise 4: Counter Program
Objective: Practice using increment and decrement operators, input/output, and basic data
types.

1. Write a Java program that prompts the user to enter an integer. The program should
then increment and decrement the integer, displaying the results.

Requirements:
1. Prompt the user to enter an integer.
2. Increment the integer using the ++ operator and display the result.
3. Decrement the integer using the -- operator and display the result.

Expected Input:
Enter an integer: 10

Expected Output:
After incrementing: 11
After decrementing: 10

Exercise 5: Leap Year Checker
Objective: Practice using logic conditions and input/output.

1. Write a Java program that prompts the user to enter a year.

2. Check if the year is a leap year using the following conditions:

3. Avyearis aleap year if it is divisible by 4, except for years divisible by 100, but these
centurial years are leap years if they are divisible by 400.

4. Display whether the year is a leap year or not.

Expected Input:
Enter a year: 2024

Expected Output:
2024 is a leap year.

W4 + 5

Java Exercises: Switch, For Loop

Grading criteria:
1. Correctness (70%):
e The program compiles and runs without errors.
e The program produces the correct output for given inputs.
e All specified functionalities are implemented correctly.

2. Commenting the Logic (30%):
e The code includes comments explaining the purpose of major code sections.
e The comments describe the logic behind key operations and decisions.
e The comments help readers understand how the code works.

Exercise 1: FizzBuzz Variation with Switch and For Loop

Write a program that prints numbers from 1 to 100. However, for multiples of 3, print "Fizz", for
multiples of 5, print "Buzz", and for numbers that are multiples of both 3 and 5, print
"FizzBuzz". Use a for loop and a switch statement to handle this.

Expected Output:
1

2
Fizz
4
Buzz
Fizz
5
8
Fizz
Buzz

Exercise 2: Grade Calculation Using Switch
Write a program that calculates the grade based on the percentage entered by the user. The
program should categorize the grade using a switch statement. The grades should be
categorized as follows:
e Afor 90-100%
B for 80-89%
C for 70-79%
D for 60-69%
F for 0-59%

Expected Input:
85

Expected Output:

Your grade is B

Exercise 3: Guess the Number Game

Write a program that randomly generates a number between 1 and 10. The user needs to guess
the generated number. After each guess, the program will provide feedback, informing the user
whether their guess is too high, too low, or correct. The game will continue until the user
correctly guesses the number. Once the correct number is guessed, the program will display the
total number of attempts it took the user to guess correctly.

Expected Input & Output:

Welcome to the Number Guessing Game!
I have selected a number between 1 and 10. Try to guess it!

Enter your guess: 5
Too low! Try again.

Enter your guess: 8
Too high! Try again.

Enter your guess: 6

Correct! The number was 6.
It took you 3 attempts.

Challenge Extension:

e Difficulty Levels: Add difficulty levels (e.g., Easy: Range 1-50, Medium: Range 1-100,
Hard: Range 1-1000).

Expected Input & Output:

Welcome to the Guess the Number Game!
Choose a difficulty level:

1. Easy (1-50)

2. Medium (1-100)

3. Hard (1-1000)

Enter your choice (1/2/3): 2

I have selected a number between 1 and 100. Try to guess it!
Enter your guess: 45

Too low! Try again.

Enter your guess: 75

Too high! Try again.

Enter your guess: 60
Correct! The number was 60.

It took you 3 attempts.

W6 + 7

Exercise: Library Management System
with Access Modifiers

Objective: Create a simple library management system using OOP principles with
arrays and access modifiers.

Requirements:

1. Classes and Objects:

Create a Book class with the following attributes:
o title (private String)
o author (private String)
o isbn (private String)
o isAvailable (private boolean)
e Create a Library class with the following attributes:
o books (private Book(])
o bookCount (private int)
2. Methods:

e In the Book class, add methods to:
o Display book details (public).
o Check availability (public).
o Getters for title, author, isbn, and isAvailable (public).
e In the Library class, add methods to:
Add a new book (public).
Remove a book by ISBN (public).
Search for a book by title or author (public).
Display all books (public).
Borrow a book (public).
o Return a book (public).
3. Main Method:

O

o O O O

e Create a Main class with a main method to:
o Instantiate the Library class.
o Add some books to the library.
o Demonstrate borrowing and returning books.
o Display the list of all books in the library.

W38

Banking System: Using Abstract Classes, Interfaces, Overloading, Overriding, and
Inheritance

Problem Statement:

Enhance the banking system by incorporating abstract classes and interfaces.

* Use an abstract class BankAccount as a blueprint for different types of accounts.
* Use an interface Transaction to define common operations like deposit and withdraw.

* Implement overloading for deposits and overriding for withdrawals.

Requirements:
1. Create an abstract class BankAccount that includes:
+ Common attributes: accountHolder and balance.
* An abstract method withdraw(double amount).
* A concrete method displayBalance() to show the balance.
2. Create an interface Transaction that defines:
* A deposit(double amount) method.
* A withdraw(double amount) method (to be overridden in subclasses).
3. Create subclasses SavingsAccount and CurrentAccount that:
+ Extend BankAccount (inheritance).
* Implement Transaction (interface).
* Override the withdraw() method with custom rules.
4. Use Overloading:
+ deposit(double amount): Deposits a given amount.

+ deposit(double amount, String currency): Deposits with currency conversion
(simplified).

W12

Exercise: Utilizing Selenium for writing
automation test cases.

Grading criteria:
1. Correctness (70%):
e The program compiles and runs without errors.

e The program produces the correct output for given inputs.
e All specified functionalities are implemented correctly.

2. Commenting the Logic (30%):
e The code includes comments explaining the purpose of major code sections.

e The comments describe the logic behind key operations and decisions.
e The comments help readers understand how the code works.

Exercise: Write at least 2 test cases for each of the below scenarios

1. Navigate to saucedemo.com.

2. Create test cases for the login page.
3. Develop test cases to list all products on the inventory page.

4. Formulate test cases to verify the checkout process.

W13

Exercise: Utilizing Selenium for writing
automation test cases.

Grading criteria:
1. Correctness (70%):
e The program compiles and runs without errors.
e The program produces the correct output for given inputs.
e All specified functionalities are implemented correctly.

2. Commenting the Logic (30%):
e The code includes comments explaining the purpose of major code sections.
e The comments describe the logic behind key operations and decisions.
e The comments help readers understand how the code works.

Exercise: Write at least 2 test cases for each of the below scenarios in the demo website:
https://the-internet.herokuapp.com/

Dynamic Controls
Dynamic Loading
Dropdown
Disappearing Elements
Javascript Alerts
Add/Remove Elements

oukhwN-~

https://the-internet.herokuapp.com/

Tab 7

Exercise: Utilizing Selenium for writing
automation test cases.

Grading criteria:
1. Correctness (70%):
e The program compiles and runs without errors.
e The program produces the correct output for given inputs.
e All specified functionalities are implemented correctly.

2. Commenting the Logic (30%):
e The code includes comments explaining the purpose of major code sections.
e The comments describe the logic behind key operations and decisions.
e The comments help readers understand how the code works.

Exercise: Design the codebase for each page in saucedemo.com following the POM (Page
Object Model) architecture.

- Refactor the existing test cases for saucedemo.com by implementing the POM (Page
Object Model) architecture to create streamlined, modular, and reusable test cases.

Tab 8

	W1+2+3
	Java Exercises: Data Types, Input/Output, Increment/Decrement Operators
	W4 + 5
	Java Exercises: Switch, For Loop
	Challenge Extension:

	W6 + 7
	Exercise: Library Management System with Access Modifiers
	

	W8
	W12
	Exercise: Utilizing Selenium for writing automation test cases.
	W13
	Exercise: Utilizing Selenium for writing automation test cases.
	Tab 7
	Exercise: Utilizing Selenium for writing automation test cases.
	Tab 8

