Day 5.8 Comparison Tests

$$\sum_{i=1}^{\infty} a_{i}$$

- 1) Consider the infinite series $\sum_{n=1}^{\infty} a_n$
 - a) What can we conclude *about the series above* if $\lim_{n\to\infty} a_n = 0$?
 - b) What can we conclude *about the series above* if $\lim_{n\to\infty} a_n \neq 0$?
- 2) Which series (circle them) must diverge *according to the divergence test*? Justify your answers carefully.

a)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}}$$

The comparison test and the limit comparison test

- 3) Let $\{a_n\}_1^{\infty}$ and $\{b_n\}_1^{\infty}$ be two sequences for which $0 < a_n < b_n$, for $n = 1, 2, 3, \ldots$
 - a) If $\sum_{n=1}^{\infty} a_n$ converges, what can we say about $\sum_{n=1}^{\infty} b_n$?
 - b) If $\sum_{n=1}^{\infty} a_n$ diverges, what can we say about $\sum_{n=1}^{\infty} b_n$?
 - c) If $\sum_{n=1}^{\infty} b_n$ converges, what can we say about $\sum_{n=1}^{\infty} a_n$?
 - d) If $\sum_{n=1}^{\infty} b_n$ diverges, what can we say about $\sum_{n=1}^{\infty} a_n$?

4) *Use the comparison test* to determine whether each series converges (C) or diverges (D).

State clearly each of the following: i) which series, $\sum_{n=1}^{\infty} b_n$, you are comparing your series to; ii) the convergence or divergence of $\sum_{n=1}^{\infty} b_n$ (justify).

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2} + 1}$$
 C ____ D ____

b)
$$\sum_{n=1}^{\infty} \frac{n}{n^{5/2} + n}$$
 C ____ D ____

c)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 - 1}$$
 C ___ D ___

d)
$$\sum_{n=1}^{\infty} \frac{3^n + n^3}{2^n}$$
 C____D____

5) <u>Use the limit comparison test</u> to determine whether the given series converges or diverges.

State clearly each of the following: i) which series $\sum_{n=1}^{\infty} b_n$ you are comparing your series to; ii) the convergence or divergence of $\sum_{n=1}^{\infty} b_n$ (justify); iii) show the steps of the limit test, i.e. evaluate $\sum_{n\to\infty}^{\infty} \frac{a_n}{b_n}$.

a)
$$\sum_{n=1}^{k} \frac{n+1}{n^{5/2} - n^{3/2}}$$
C ___ D ___

$$C \underline{\hspace{1cm}} D \underline{\hspace{1cm}} b)$$