SUBJECT: MATHEMATICS CLASS: SS 3

SCHEME OF WORK

WEEK TOPIC

- 1. Calculation on interest on bonds and debentures using logarithm table and problems on taxes and value added tax.
- 2. Coordinate Geometry of straight line: Cartesian coordinate graphs, distance between two points, midpoint of the line joining two points.
- 3. Coordinate Geometry of straight lines: Gradient and Intercepts of a line, angle between two intersecting straight lines and application.
- 4. Differentiation of algebraic functions: meaning of differentiation, differentiation from first principle and standard derivatives of some basic functions.
- 5. Differentiation of algebraic functions: Basic rules of differentiation such as sum and difference, product rule, quotient rule and maximal and minimum application.
- 6. Integration and evaluation of simple algebraic functions: Definition, method of integration: substitution, partial fraction and integration by parts, area under the curve and use of Simpson's rule.
- 7-12. Revision and mock examination.

REFERENCE TEXT

- New General Mathematics for SS book 3 by J.B Channon
- Essential Mathematics for SS book 3
- Mathematics Exam Focus
- Waec and Jamb past Questions

WEEK ONE

• Calculation on interest on bonds and debentures using logarithm table

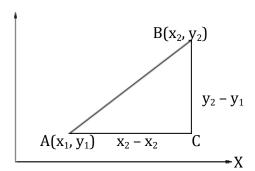
• Problems on taxes and value added tax.

WEEK TWO

- Coordinate Geometry of straight line: Cartesian coordinate graphs
- distance between two points
- midpoint of the line joining two points
- Coordinate Geometry of Straight line:
- Cartesian coordinate graph:

Distance between two lines:

In the figure below, the coordinates of the points A and B are (x_1, y_1) and (x_2, y_2) , respectively. Let the length of AB be l.



Using Pythagoras theorem:

$$AB^2 = AC^2 + BC^2$$

$$l^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$$1 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example:

Find the distance between the each pair of points: a. (3, 4) and (1, 2) b. (3, -3) and (-2, 5) Solution:

Using
$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

a.
$$l = \sqrt{(3-1)^2 + (4-2)^2}$$

$$1 = \sqrt{2^2 + 2^2}$$

$$1 = \sqrt{8} = 2\sqrt{2}$$
 units

b.
$$l = \sqrt{(3 - (-2)^2 + (-3 - 5)^2}$$

$$= \sqrt{5^2 + (-8)^2}$$

$$= \sqrt{25 + 64} = \sqrt{89} = 9.43$$
 units

Evaluation: Find the distance between the points in each of the following pairs leaving your answers in surd form: 1.(-2, -5) and (3, -6) 2.(-3, 4) and (-1, 2)

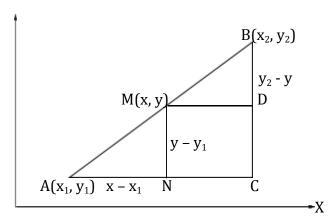
Mid-point of a line:

The mid-point of the line joining two points:

у

 $X_2 - X$

 $\mathbf{x} = \underline{\mathbf{x}_2 + \mathbf{x}_1}$



Triangle MAN and BMD are congruent, so AM = MD and BD = MN

$$\mathbf{x} - \mathbf{x}_1 = \mathbf{x}_2 - \mathbf{x}$$

$$X + X = X_2 + X_1$$

$$2x = x_2 + x_1$$

$$y - y_1 = y_2 - y$$

$$y + y = y_2 + y_1$$

$$2x = x_2 + x_1$$

$$\mathbf{v} = \mathbf{v}_r + \mathbf{v}_r$$

2 Hence, the **mid-point** of a straight line joining two is $\begin{bmatrix} \underline{x_2 + x_1} & \underline{y_2 + y_1} \\ 2 & 2 \end{bmatrix}$

Example: Find the coordinates of the mid-point of the line joining the following pairs of points.

- a. (3, 4) and (1, 2)
- b. (2, 5) and (3, 6)

Solution:

Mid-point =
$$\left(\frac{\underline{x_2 + x_1}}{2}, \underline{y_2 + y_1} \right)$$

a. Mid-point =
$$\left(\frac{1+3}{2}, \frac{4+2}{2}\right) = (2,3)$$

b. Mid-point =
$$\begin{bmatrix} -3+2 \\ 2 \end{bmatrix}$$
 = $\begin{bmatrix} -\frac{1}{2}, \frac{11}{2} \end{bmatrix}$

Evaluation: Find the coordinates of the mid-point of the line joining the following pairs of points.

- a. (-2, -5) and (3, -6) b. (3, 4) and (-1, -2)

General Evaluation

- 1. Find the distance between the points in each of the following pairs leaving your answers form: 1. (7, 2) and (1, 6)
- 2. What is the value of r if the distance between the points (4, 2) and (1, r) is 3 units?
- 3. Find the coordinates of the mid-point (-3, -2) and (-7, -4)

Reading Assignment: NGM for SS 3 Chapter 9 page 77 – 78,

Weekend Assignment:

- 1. Find the value of $\alpha^2 + \beta^2$ if $\alpha + \beta = 2$ and the distance between the points $(1, \alpha)$ and $(\beta, 1)$ is 3 units.
- 2. The vertices of the triangle ABC are A (7, 7), B (- 4, 3) and C (2, 5). Calculate the length of the longest side of triangle ABC.
- 3. Using the information in '2' above, calculate the line AM, where M is the mid-point of the side opposite A.

WEEK THREE

- Coordinate Geometry of straight lines:
- Gradient and Intercepts of a line
- Angle between two intersecting straight lines and application

Gradient and Intercepts of a line

Gradient of a line of the form y = mx + c, is the coefficient of x, which is represented by m and c is the intercept on the y axis.

Example

1. Find the equation of the line with gradient 4 and y-intercept -7.

Solution

$$m = 4$$
, $c = -7$,

Hence, the equation is; y = 4x - 7.

Evaluation:

- 1. What is the gradient and y intercept of the line equation 3x 5y + 10 = 0?
- 2. Find the equation of the line with gradient 9 and y-intercept 4.

Gradient and One Point Form

The equation of the line can be calculated given one point (x, y) and gradient (m) by using the formula; y - y = m(x - x)

Example

Find the equation of the line with gradient -8 and point(3, 7).

Solution

m = -8,
$$(x1, y1) = (3,7)$$

Equation: $y - 7 = -8(x - 3)$
 $y = -8x + 24 + 7$

$$y = -8x + 31$$

Evaluation:

- 1. Find the equation of the line with gradient 5 and point(-2, -7).
- 2. Find the equation of the line with gradient -12and point (3, -5).

Two Point Form:

Given two points (x1, y1) and (x2, y2), the equation can be obtained using the formula:

$$y2 - y1 = y - y1$$

 $x2 - x1$ $x - x1$

Example: Find the equation of the line passing through (2,-5) and (3,6).

Solution

$$6 - (-5)/3 - 2 = y - (-5)/x - 2$$

$$11 = y + 5/x - 2$$

$$11(x-2) = y + 5$$

$$11x - 22 = y + 5$$

$$y - 11x + 27 = 0$$

Evaluation:

- 1. Find the equation of the line passing through (3, 4) and (-1, -2).
- 2. Find the equation of the line passing through (-8, 5) and (-6, 2).

Angles between Lines

Parallel lines:

The angle between parallel lines is 0^0 because they have the same gradient

Perpendicular Lines:

Angle between two perpendicular lines is 90^{0} and the product of their gradients is – 1. Hence, $m_{1}m_{2}$ = - 1 **Examples:**

1. Show that the lines y = -3x + 2 and y + 3x = 7 are parallel.

solution:

Equation 1:
$$y = -3x + 2$$
, $m_1 = -3$

Equation 2:
$$y + 3x = 7$$
,

$$y = -3x + 7$$
, $m_2 = -3$

since; $m_1 = m_2 = -3$, then the lines are parallel

2. Given the line equations x = 3y + 5 and y + 3x = 2, show that the lines are perpendicular. solutions:

Equation 1: x = 3y + 5, make y the subject of the equation.

$$3y = x + 5$$

$$y = x/3 + 5/3$$

$$m_1 = 1/3$$
Equation 2: $y + 3x = 2$,
$$y = -3x + 2$$
, $m_2 = -3$

hence: $m_1 \times m_2 = 1/3 \times -3 = -1$

since: $m_1m_2 = -1$, then the lines are perpendicular.

Evaluation: State which of the following pairs of lines are: (i) perpendicular (ii) parallel

(1)
$$y = x + 5$$
 and $y = -x + 5$ (2). $2y - 6 = 5x$ and $3 - 5y = 2x$ (3) $y = 2x - 1$ and $2y - 4x = 8$

Angles between Intersecting Lines:

y = mx + c

The gradient of y = mx + c is $\tan \theta$. Hence $m = \tan \theta$ can be used to calculate angles between two intersecting lines. Generally the angle between two lines can be obtained using: $\tan \theta = m2 - m1$

1 + m1m2

Example: Calculate the acute angle between the lines y=4x-7 and y=x/2+0.5.

Solution:

Y=4x -7, m1=4, y=x/2+0.2, m2=1/2.

Tan 0 = 0.5 - 4. = -3.5/3

1 + (0.5*4)

Tan 0 =- 1.1667

O = tan - 1(-1.1667) = 49.4

Evaluation: Calculate the acute angle between the lines y=3x-4 and x-4y+8=0.

General Evaluation:

1. Calculate the acute angle between the lines y=2x-1 and 2y+x=2.

2.If the lines 3y=4x-1 and qy=x+3 are parallel to each other, find the value of q.

3. Find the equation of the line passing through (2,-1) and gradient 3.

Reading Assignment: NGM for SS 3 Chapter 9 page 75 – 81

Weekend Assignment

1. Find the equation of the line passing through (5,0) and gradient 3.

2. Find the equation of the line passing through (2,-1) and (1,-2).

3. Two lines y=3x - 4 and x - 4y + 8=0 are drawn on the same axes.

(a) Find the gradients and intercepts on the axes of each line.

(b) Find the equation parallel to x - 4y + 8 = 0 at the point (3, -5)

WEEK FOUR

Differentiation of algebraic functions: meaning of differentiation

- Differentiation from first principle
- Standard derivatives of some basic functions.

Consider the curve whose equation is given by y = f(x) Recall that $m = y_2 - y_1 = f(x+x) - f(x)$

X₂- X₁X

As point B moves close to A, dx becomes smaller and tends to zero.

The limiting value is written on Lim $\underline{f(x+x) - f(x)}$ and is denoted by as $x \to 0$

dx

f'(x) is called the **derivative of f(x)** and the **gradient function of the curve**

The process of finding the derivative of f(x) is called differentiation. The rotations which are commonly used for the derivative of a function are $f^1(x)$ read as f – prime of x, df/dx read as dee x of f df/dx read dee - f dee - x, dy/dx read dee - y dee - x

If y = f(x), this dy/dx = f'(x) (it is called the differential coefficient of y with respect to x.

Differentiation from first principle: The process of finding the derivative of a function from the consideration of the limiting value is called differentiation from first principle.

Example 1

Find from first principle, the derivative of $y = x^2$ Solution

$$y = x^{2}$$

$$y + y = (x + x)^{2}$$

$$y + y = x^{2} + 2xx + (x)^{2}$$

$$y = x^{2} + 2xx + (x)^{2} - y$$

$$y = x^{2} + 2xx + (x)^{2} - x^{2}$$

$$y = 2xx + (x)^{2}$$

$$y = (2x + x)x$$

$$y = 2x + x$$

$$x$$

$$Lim x = 0$$

$$\frac{dy}{dx} = 2x$$

Example 2:

Find from first principle, the derivative of 1/x

Solution

Let
$$y = 1$$

 x
 $y + y = 1$
 $x + x$

$$y = \frac{1}{x+x} - y$$
$$y = \frac{1}{x+x} - \frac{1}{x}$$

$$y = x - \frac{(x + x)}{(x + x)x}$$

$$y = x - \frac{x - x}{x^2 + xx}$$

$$dy = -\frac{x}{x^2 + x}$$

$$y = -\frac{1}{x + x}$$

$$x^2 + x$$

$$x = 0$$

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

Evaluation: Find from first principle, the derivatives of y with respect to x:

1.
$$Y = 3x^3$$

2.
$$Y = 7x^2$$
 3. $Y = 3x^2 - 5x$

Rules of Differentiation: Let
$$y = x^n$$

 $y + dy = (x + dx)^n$
 $= x^n + nx^{n-1}dx + n(n-1) \underline{x^{n-2}(dx)^2 + ... (dx)^n}$
 $2!$
 $= x^n + n x^{n-1}dx + \underline{n(n-1) x^{n-2} (dx)^2 + ... + (dx)^n - x^n}$
 $2!$
 $= nx^{n-1}dx + \underline{n(n-1) x^{n-1} (dx)^2}$
 $2!$
 $dy/dx = n^{xn-1} + n(n-1) x^{n-1} dx$
 $\lim_{x \to \infty} dy/dx = nx^{n-1}$
 $dx = 0$

Hence;
$$dy/dx = nx^{n-1}$$
 if $y = x^n$

Example 3:

Find the derivative of the following with respect to x: (a) x^7 (b) $x^{1/2}$ (c) $5x^2 - 3x$ (d) $-3x^2$ (e) $y = 2x^3 - 3x + 8$ Solution

a. Let
$$y = x^7$$

 $dy/dx = 7 x^{7-1} = 7x^6$

b. Let
$$y = x^{\frac{1}{2}}$$

 $dy/dx = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$

c. Let
$$y = 5x^2 - 3x$$

dy/dx = $10x - 3$

d. Let
$$y = -3x^2$$

 $dy/dx = 2 \times -3x^{2-1} = -6x$

e. Let
$$y = 2x^3 - 3x + 8$$

 $dy/dx = 3 \times 2x^{3-1} - 3 + 0$

$$=6x^2-3$$

Evaluation:

1. If $y=5x^4$, find dy/dx 2. Given that $y=4x^{-1}$ find y^1

General Evaluation

- 1. Find, from first principles, the derivative of $4x^2 2$ with respect to x.
- 2. Find the derivative of the following $a.3x^3 7x^2 9x + 4$ b. $2x^3$ c. 3/x
- **3.** Using idea of difference of two square; simplify $243x^2 48v^2$
- 4. Expand (2x 5)(3x 4)
- 5. If the gradient of $y=2x^2-5$ is -12 find the value of y.

Reading Assignment: NGM for SS 3 Chapter 10 page 82 -88, **Weekend Assignment**

Objective

- Find the derivative of $5x^3$ (a) $10x^2$ (b) $15x^2$ (c) 10x (d) $15x^3$ 1.
- Find dy/dx, if $y = 1/x^3(a) 3/x^4$ (b) $3/x^4$ (c) $4/x^3$ 2. (e) $-4/x^3$
- Find $f^1(x)$, if $f(x) = x^3$ (a) 3x (b) $3x^2$ (c) $\frac{1}{2}x^3$ 3.
- Find the derivative of $1/x(a) 1/x^2$ (b) $-1/x^2$ (c) x 4.
- If $y = -2/3 x^3$. Find dy/dx (a) $4/3 x^2$ (b) $2x^2$ (c) $-2x^2$ (d) -2x5.

Theory

- 1. Find from first principle, the derivative of y = x + 1/x
- 2. Find the derivative of $2x^2 - 2/x^3$

WEEK FIVE

- Differentiation of algebraic functions:
- Basic rules of differentiation such as sum and difference, product rule, quotient rule
- Maximal and minimum application.

Derivative of algebraic functions

Let f, u, v be functions such that

$$f(x) = u(x) + v(x)$$

$$f(x+x) = u(x+x) + v(x+x)$$

$$f(x + x) - f(x) = \{u(x + x) + v(x + x) - v(x + x) - u(x) - v(x)\}$$

= $u(x + x) - u(x) + v(x + x) - v(x)$

$$f(x + x) - f(x) = u(x + x) - u(x) + v(x + x) - v(x)$$

Lim
$$f(x + x) - f(x) = U^{1}(x) + V^{1}(x)$$

if y = u + v and u and v are functions of x, then dy/dx = du/dx + dv/dx

Examples: Find the derivative of the following

1)
$$2x^3 - 5x^2 + 2$$
 2) $3x^2 + 1/x$ 3) $2x^3 + 2x^2 + 1$

$$2)3x^2 + 1/x$$

$$312x^3 + 2x^2 + 1$$

Solution

1. Let
$$y = 2x^3 - 5x^2 + 2$$

 $dy/dx = 6x^2 - 10x$

2. Let
$$y = 3x^2 + 1/x = 3x^2 + x^{-1}$$

 $dy/dx = 6x - x^{-2} = 6x - \underline{1}$

 \mathbf{x}^2

3. Let
$$y = 2x^3 + 2x^2 + 1$$

 $dy/dx = 6x^2 + 4x$

Evaluation: 1. If
$$y = 3x^4 - 2x^3 - 7x + 5$$
. Find dy/dx 2. Find d (8 $x^3 - 5x^2 + 6$)

Function of a function (chain rule)

Suppose that we know that y is a function of u and that u is a function of x, how do we find the derivative of y with respect to x?

Given that y = f(x) and u = h(x), what is dy/dx? dy/dx = , this is called the chain rule

Examples

Find the derivative of the following.(a) $y = (3x^2 - 2)^3$ (b) $y = (1 - 2x^3)$ (c) $5/(6-x^2)^3$ Solution

1.
$$y = (3x^2 - 2)^3$$

Let $u = 3x^2 - 2$
 $y = (3x^2 - 2)^3 => y = u^3$
 $y = u^3$
 $dy/du = 3u^2$
 $du/dx = 6x$

$$dy/dx = = 3u^{2} x 6x$$
$$= 18xu^{2} = 18x(3x^{2} - 2)^{2}$$

2.
$$y = (1 - 2x^3)^{1/2} => (1 - 2x^3)^{1/2}$$

Let $u = 1 - 2x^3$, hence $y = u^{1/2}$
 $dy/dx = = \frac{1}{2} u^{-1/2} x(-6x^2)$
 $= -3x^2 u^{-\frac{1}{2}} = -3x^2$

 $u^{1/2}$

$$\sqrt[4]{\frac{3x^2}{u}} = \sqrt[4]{\frac{-3x^2}{(1-2x^3)}}$$

3.
$$y = \frac{5}{(6 - x^{2})^{3}}$$
Let $u = 6 - x^{2}$

$$y = 5(u)^{-3}$$

$$dy/du = -15u^{-4}$$

$$du/dx = -2x$$

$$dy/dx = dy/du X du/dx = -15u^{-4} x (-2x) = 30x u^{-4} = 30x (6 - x^{2})^{-4}$$

$$= \frac{30x}{}$$

$$(6-x^2)^4$$

Evaluation:

- Given that y = 1 find dy/dx1. $(2x + 3)^4$
- If $y = (3x^2 + 1)^3$, Find dy/dx 2.

Product Rule

We shall consider the derivative of y = uv where u and v are function of x.

Let
$$y = uv$$

Then
$$y + y = (u + u)(v + v)$$

$$= uv + uv + vu + uv$$

$$y = uv + uv + vu + uv - uv$$

$$y = uv + vu + uv$$

$$\underline{y} = u\underline{v} + v\underline{u} + \underline{u}\underline{v}$$

As
$$x => 0$$
, $u => 0$, $v => 0$

As
$$x =>0$$
, $u =>0$, $v =>0$
Lim $y =$ Lim $uv +$ Lim $vu +$ Lim $uv +$ Lim

Examples

Find the derivatives of the following.

(a)
$$y = (3 + 2x) (1 - x)$$

$$y = (3 + 2x) (1 - x)$$
 (b) $y = (1 - 2x + 3x^2) (4 - 5x^2)$

Solution

1.
$$y = (3 + 2x) (1 - x)$$

Let $u = 3 + 2x$ and $v = (1 - x)$
 $du/dx = 2$ and $dv/dx = -1$

$$dv/dx = u \frac{dv}{dx} + v \frac{du}{dx}$$
= (1-x) 2 + (3 + 2x) (-1) = 2 - 2x - 3 - 2x

$$dy/dx = -1 - 4x$$

2.
$$y = (1 - 2x + 3x^2) (4 - 5x^2)$$

Let $u = (1 - 2x + 3x^2)$ and $v = (4 - 5x^2)$
 $du/dx = -2 + 6x$ and $dv/dx = -10x$

$$dy/dx = udv + vdu$$

$$dxdx$$
= $(1 - 2x + 3x^2)(-10x) + (4 - 5x^2)(-2 + 6x)$
= $-10x + 20x^2 - 30x^3 + (-8 + 10x^2 + 24x - 30x^3)$
= $-10x + 20x^2 - 30x^3 - 8 + 10x^2 + 24x - 30x^3$
= $14x + 30x^2 - 60x^3 - 8$

Evaluation

Given that (i)
$$y = (5+3x)(2-x)$$
 (ii) $y = (1+x)(x+2)^{3/2}$, find dy/dx

Quotient Rule:

If
$$y = \underline{u}$$

then;
$$\underline{dy} = v\underline{du} - u\underline{dv}$$

dxdxdx

$$\mathbf{v}^2$$

Examples:

Differentiate the following with respect to x. (a)
$$\underline{x^2 + 1}$$
 (b) $\underline{(x - 1)^2}$ \sqrt{x}

Solution:

1.
$$y = \frac{x^2 + 1}{1 - x^2}$$

Let $u = x^2 + 1$ $du/dx = 2x$
 $v = 1 - x^2$ $dv/dx = -2x$

dy = vdu - udv

$$\begin{array}{l} dx dx \underline{dx} \\ \hline v^2 \\ dy/dx = \underline{(1-x^2)(2x) - (x^2+1)(-2x)} \\ &= \underline{2x-2x^3+2x^3+2x} \\ (1-x^2)^2 \\ \hline dy/dx = \underline{4x} \\ (1-x^2)^2 \\ \hline \underline{2. \quad y = (x-1)^2} \\ \sqrt{x} \\ Let \ u = (x-1)^2 \qquad du/dx = 2(x-1) \\ v = \sqrt{x} \qquad dv/dx = 1/2\sqrt{x} \\ dy/dx = \underline{\sqrt{x} \ 2(x-1) - (x-1)^2 \ 1/2\sqrt{x}} \\ dy/dx = \underline{\sqrt{x} \ 2(x-1) - (x-1)^2 \ 1/2\sqrt{x}} \\ x \end{array}$$

Evaluation: Differentiate with respect to x: (1) $(2x+3)^3 (2)$ \sqrt{x} $\sqrt{(x+1)}$

Applications of differentiation:

There are many applications of differential calculus.

Examples:

1. Find the gradient of the curve $y = x^3 - 5x^2 + 6x - 3$ at the point where x = 3. Solution:

$$Y = x^3 - 5x^2 + 6x - 3$$

$$dy/dx = 3x^2 - 10x + 6$$
where x = 3; dy/dx = 3(3²) - 10(3) + 6
= 27 - 30 + 6
= 3.

2. Find the coordinates of the point on the graph of $y = 5x^2 + 8x - 1$ at which the gradient is -2 Solution:

$$Y = 5x^{2} + 8x - 1$$

$$dy/dx = 10x + 8$$
replace;
$$dy/dx \text{ by } - 2$$

$$10x + 8 = -2$$

$$10x = -2 - 8$$

$$x = -10/10 = -1$$

3. Find the point at which the tangent to the curve $y = x^2 - 4x + 1$ at the point (2, -3) Solution:

$$Y = x^2 - 4x + 1$$

 $dy/dx = 2x - 4$
at point (2, -3): $dy/dx = 2(2) - 4$
 $dy/dx = 0$
tangent to the curve: $y - y1 = dy/dx(x - x1)$

$$y - (-3) = 0 (x-2)$$

 $y + 3 = 0$

Evaluation:

- 1. Find the coordinates of the point on the graph of $y = x^2 + 2x 10$ at which the gradient is 8.
- 2. Find the point on the curve $y = x^3 + 3x^2 9x + 3$ at which the gradient is 15.

Velocity and Acceleration

Velocity: The velocity after t seconds is the rate of change of displacement with respect to time.

Suppose; s = distance and t = time,

Then; Velocity = ds/dt

Acceleration: This is the rate of change of velocity compared with time.

Acceleration = dv/dt

Example:

A moving body goes s metres in t seconds, where $s = 4t^2 - 3t + 5$. Find its velocity after 4 seconds. Show that the acceleration is constant and find its value.

Solution:

$$S = 4t^{2} - 3t + 5$$

$$ds/dt = 8t - 3$$

$$velocity = ds/dt = 8(4) - 3$$

$$= 32 - 3$$

$$= 29$$

Acceleration: dv/dt = 8.

Maxima and Minimal

1. Find the maximum and minimum value of y on the curve $6x - x^2$. Solution:

$$y = 6x - x^{2}$$

$$dy/dx = 6 - 2x$$

$$equate dy/dx = 0$$

$$6 - 2x = 0$$

$$6 = 2x$$

$$X = 3$$

The turning point is (3, 9)

2. Find the maximum and minimum of the function $x^3 - 12x + 2$. Solution:

$$Y = x^{3} - 12x + 2$$

$$dy/dx = 3x^{2} - 12$$

$$3x^{2} - 12 = 0$$

$$3x^{2} = 12$$

$$x^{2} = 12/3$$

$$x^{2} = 4$$

$$x = \pm 2$$
minimum point occur when $d^{2}y/dx^{2} > 0$
maximum point occurs when $d^{2}y/dx^{2} < 0$

$$d^{2}y/dx^{2} = 6x$$

substitute x = 2; $d^2y/dx^2 = 6 \times 2 = 12$

therefore: the function is minimum at point x = 2 and y = -14

substitute x = -2; $d^2y/dx^2 = 6(-2) = -12$

therefore: the function is maximum at point x = -2 and y = 18

Evaluation:

- 1. A particle moves in such a way that after t seconds it has gone s metres, where $s = 5t + 15t^2 t^3$
- 2. Find the maximum and minimum value of y on the curve $4-12x 3x^2$.

General Evaluation

Use product rule to find the derivative of

- 1. $y = x^2 (1 + x)^{\frac{1}{2}}$
- 2. $y = \sqrt{x}(x^2 + 3x 2)^2$
- 3. Find the derivative of $y = (7x^2 5)^3$
- 4. Using completing the square method find t if $s=ut+\underline{1}at^2$

5. If 3 is a root of the equation $x^2 - kx + 42 = 0$ find the value of k and the other root of the equation

READING ASSIGNMENT: NGM for SS 3 Chapter 10 page 90 -101,

WEEKEND ASSIGNMENT OBJECTIVE

1.Differentiate the function $4x^4 + x^3 - 5$ (a) $4x^3 + 3x^2$ (b) $16x^2 + 3x^2$ (c) $16x^3 + 3x^2$ (d) $16x^4 + 3x^2$ 2. Find d^2y/dx^2 of the function $y = 3x^5wrt x$. (a) $15x^3$ (b) $45x^4$ (c) $60x^3$ (d) $3x^5$ (e) $12x^3$ 3. If $f(x) = 3x^2 + 2/x$ find $f^1(x)$ (a) 6x + 2 (b) $6x + 2/x^2$ (c) $6x - 2/x^2$ (d) 6x - 2 4. Find the derivative of $2x^3 - 6x^2$ (a) $6x^2 - 12x$ (b) $6x^2 - 12x$ (c) $2x^2 - 6x$ (d) $8x^2 - 3x$ 5. Find the derivative of $x^3 - 7x^2 + 15x$ (a) $x^2 - 7x + 15$ (b) $3x^2 - 14x + 15$ (c) $3x^2 + 7x + 15$ (d) $3x^2 - 7x + 15$

THEORY

- 1. Differentiate with respect to x. $y^2 + x^2 3xy = 4$
- 2. Find the derivative of $3x^3(x^2 + 4)^2$