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You should read the short and long summaries before reading sections in this document.

2. What is takeoff speed? Why does it matter?
I recommend skipping this section unless you’re interested to hear about ways of
quantifying takeoff speeds that I didn’t end up focusing on.

This section discusses what I mean by AI takeoff speed, why it matters, and how we might
quantify takeoff speed. Ultimately, I think there are multiple reasons to care about takeoff speed
and multiple reasonable ways to quantify it. I introduce some ways of quantifying takeoff speed
that are both decision-relevant and that I can forecast using the framework of this report.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.b7u38ytodi7i
https://drive.google.com/drive/folders/1qVPd8M7Iy2jK1jmXNOKVhG4dGRtkWbL2?usp=sharing
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
https://epochai.org/
https://takeoffspeeds.com/playground.html
https://docs.google.com/document/d/1os_4YOw6Xv33KjX-kR76D3kW1drkWRHKG2caeiEWzNs/edit#heading=h.i1g86skk7hv0
https://docs.google.com/document/d/1os_4YOw6Xv33KjX-kR76D3kW1drkWRHKG2caeiEWzNs/edit#heading=h.mwn9uycjzgyk
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.w93f9oz4dz91
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.io2mfsn29u71
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.v34bnv4lz2vq
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Takeoff speed of AI capabilities need not be the same as takeoff
speed of AI impacts
What question is takeoff speeds trying to answer? One vague version of the question is: How
long will it take to go from significantly capable AI to billions of AGIs1?

If it takes a month then takeoff is fast; if it takes 50 years then takeoff is slow. There are many
ways you could define “significantly capable AI”; I’ll discuss some possibilities below.

If we want to avoid reference to the (arbitrary) startpoint and endpoint we can phrase the
question as: How quickly will AI capabilities improve as AI systems collectively approach and
surpass human intelligence?

This refers to AI capabilities directly rather than AI’s effect on the world so I call it “capabilities
takeoff speed”.

Another version of the takeoff speeds question is: How long will it take to go from AI having a
significant impact on the world to AI having a truly transformative impact on the world?

Again, if this happens in a month then takeoff is fast; if it takes many decades then takeoff is
slow.

We could define “significant impact” in different ways depending on whether we’re interested in
economic impact, unemployment, military power, technological progress, or something else.
And takeoff speed will plausibly differ between these different domains based on how much AI’s
effects are bottlenecked by regulations or scarce physical equipment (more). Again, in the case
of economic impact, I’d define “significant” as “adding ~$5trillion/year to global GDP”.

By “transformative impact” I mean causing a transition comparable to (or more significant than)
the agricultural or industrial revolution, e.g. by significantly increasing (~10X) the rate of
economic growth (more).

This definition refers not just to AI capabilities but to its actual impact on the world; let’s call this
impact takeoff speed.

If capabilities takeoff is fast, then impact takeoff is more likely to be fast. But they can come
apart in either direction.

● Suppose there’s fast capability takeoff, but regulations, safety concerns and other
bottlenecks prevent advanced AI being used in the economy. If these bottlenecks are

1 By AGI I mean an AI system, or a collection of AI systems, that can do virtually all cognitive tasks that a
human can do. By “cognitive task” I mean “any part of the workflow that could in principle be done
remotely or is done by the human brain”. So it includes ~all knowledge work but also many parts of jobs
where you have to be physically present. E.g. for a plumber it would include “processing the visual and
audio inputs relating to the problem, choosing a plan to solve it, and deciding what specific actions to take
second by second”.

https://www.openphilanthropy.org/blog/some-background-our-views-regarding-advanced-artificial-intelligence#Sec1
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removed or overwhelmed gradually over many decades, you could have a slow impact
takeoff.

● Suppose delays to broad adoption get shorter for more advanced AIs. Then impact
takeoff will be faster than capability takeoff. An extreme case of this is where regulations
stop AI have ~any economic impact until misaligned AGI forcibly and suddenly
disempowers humanity.

I think the question of impact takeoff is probably more important than capabilities takeoff, but
harder to forecast as there are more factors that influence it. The framework here is most
reliable for predicting capabilities takeoff. I will report takeoff metrics that relate to both impact
and capabilities, but the impact metrics don’t account for various possible delays. Before I
discuss these metrics precisely, I discuss why takeoff speeds matter.

Some reasons to care about takeoff speeds
Takeoff speed is correlated with a few factors that are strategically important. For example:

● Warning shots. How long before the point of no return do we get clear evidence of AI
risk2? What about clear evidence that AI will be transformative? All things equal, faster
takeoff means we’ll have less time to respond and there will be fewer people paying
attention.

● Time for high-impact alignment work. Before we develop AIs that pose existential risk,
we might develop AIs that are similar but do not pose existential risk. Alignment work on
these systems will probably be particularly impactful for reducing risk, because they'll be
more similar in structure and behavior to the systems that later pose existential risk. All
things equal, faster takeoff means less time to do this high-impact alignment work.

● Concentration of power. Faster takeoff means less time for AI progress to spread
around the world. All things equal, this will lead to fewer relevant AI actors and a higher
chance of an actor getting a decisive strategic advantage3.

● Changes in the strategic landscape. Slower takeoff means more time for the world to
be transformed by pre-AGI systems, e.g. dramatically changing the geopolitical
landscape of the defense-offense balance in cyber. This might favour increasing
longtermist influence in generic ways over making specific plans.

● AI timelines. Holding fixed AGI training requirements, faster takeoff means more time to
AGI because earlier systems do less to accelerate AI development. This has a number
of strategic implications. Indeed, this framework allows us to quantify this tradeoff.

These factors affect how large AI risk is overall and what actions we should take to reduce it.

3 A decisive strategic advantage is “a level of technological and other advantages sufficient to enable it to
achieve complete world domination”, Bostrom (2014), p. 78.

2 In particular, risks that could be existential as AI capabilities improve. E.g. clear evidence of misaligned
power-seeking.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.5ckfv45698rr
https://www.lesswrong.com/posts/JPan54R525D68NoEt/the-date-of-ai-takeover-is-not-the-day-the-ai-takes-over?_ga=2.25163517.639465652.1607850818-1419171175.1600033930
https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/1501227742
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In addition, having a view about takeoff speeds might allow us to make predictions about
precursors to AGI. If we’re right, we gain credibility and confidence in our views; if we’re wrong
we can update our views.

Quantifying takeoff speed
Summary: I use GDP metrics to quantify impact takeoff speed, and consider a few different
ways to quantify capabilities takeoff speed.

Quantifying impact takeoff speed
GDP is a useful impact metric because of its correlation with things like military power,
technological progress, and the total productive capacity of civilization.

I believe sufficiently advanced AI would dramatically accelerate GDP growth. Moreover, I expect
GDP growth to be steady or slow over time absent the development of sufficiently advanced AI
or a small handful of other possible breakthroughs such as some forms of radical biotechnology.
If GDP growth accelerates and we don't observe other compelling causes besides AI
advancement, then I think it will be reasonable to attribute the vast majority of that GDP
acceleration to AI advances, and thus to use GDP growth acceleration as a measure of AI
impact takeoff speed.

With this background, it is natural to identify fast takeoff with a sudden increase in GDP growth
and slow takeoff with a gradual increase in GDP growth.

Paul Christiano operationalises slow takeoff as follows:

There will be a complete 4 year interval in which world output doubles, before the first 1 year
interval in which world output doubles. (Similarly, we’ll see an 8 year doubling before a 2 year
doubling, etc.)

Intuitively, this is slow takeoff because AI has a moderately transformative impact for 8 years
before it begins to have a massively transformative effect.

Paul’s key metric here is the ratio between successive GDP doubling times. E.g. suppose
GDP doubling times are as follows: 24 years (~current rate) → 8 years → 2 years → 1 year. The
ratios in this example are 3, 4, and 2. Paul’s best guess in 2017 was that the ratios would equal
~2. So I call ratios of 4 or more ‘fast takeoff’ and ratios of 2 or less ‘slow takeoff’.

Currently, my best guess is that there are a couple of ratios that are 3 or 4 during the transition,
and then we settle down into ratios slightly less than 2. But it also seems plausible (>20%) that
we get a ratio >8, and also plausible that all the ratios are <2.

https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://sideways-view.com/2018/02/24/takeoff-speeds/
https://sideways-view.com/2017/10/04/hyperbolic-growth/
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How do these ratios compare with those observed historically in global GDP? I calculated these
from David Roodman’s data set.

Year Doubling time (years)
Ratio between successive
doubling times

-5000

-3000 1293

-2000 1014 1.3

-1000 1081 0.9

-500 480 2.3

-200 493 1.0

1100 1055 0.5

1500 539 2.0

1820 223 2.4

1870 83 2.7

1913 33 2.5

1940 31 1.1

1962 26 1.2

1977 15 1.7

2000 23 0.7

2019 19 1.2

The 5 doublings since 1913 all had ratios <2; the four doublings from 1100 - 1913 all had ratios
between 2 and 3. AI impacts found that there was plausibly a ratio of >4 around the agricultural
revolution, where my table begins.

We can also use GDP to define serial time metrics of takeoff speed. The metric I currently use
is: time from 5% GDP growth to 20% GDP growth. 5% is significantly higher than the recent
rate of 3%, so it seems like a good indicator of “crazy stuff is happening”.4 5 20% is fast enough
that I expect humans are struggling to keep up with developments.6

6 For serial time metrics, AI value-add to GPD is a concrete way to define a startpoint. E.g. “AI is adding
$5 trillion / year to global GDP”.

5 We should exclude 5% growth if it’s driven by recovery from a disaster or war here. The growth should
be driven primarily by frontier technological progress.

4 The last time annual growth for one year exceeded 5% was 2006. The last time the 5-year average for
GWP growth exceeded 5% was 1974. Source.

https://docs.google.com/spreadsheets/d/1dgLD6-u1fwwIhRRtZ-aUwcbUpDSJBVAW-u03nOErmqk/edit#gid=0
https://www.openphilanthropy.org/sites/default/files/Modeling-the-human-trajectory.pdf
https://aiimpacts.org/precedents-for-economic-n-year-doubling-before-4n-year-doubling/
https://docs.google.com/spreadsheets/d/16iGZYZLdp4H3RgnCY0Hd_zEavlrox3FBLtwK-htpzW8/edit#gid=998477526
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Which type metric is better? Serial time metrics are easier to understand, but the startpoint and
endpoint are pretty arbitrary. The ratios between successive GDP doubling times is less
arbitrary, but it’s a more abstract quantity and so harder to think about.

It’s worth noting that, like any impact metric, GDP can in principle decouple strongly from AI
capabilities. For example, in the growth model I ultimately use in this report, physical capital can
strongly bottleneck GDP even as the amount of cognitive labour from AIs becomes extremely
large.7 This reflects the idea that certain physical inputs are essential to (e.g.) building a house,
and no amount of cognitive labour can replace them. As a result, going from 100 billion to 1
trillion AGIs might increase GDP by much less than 2X. I do expect this bottleneck dynamic to
apply to some extent. But I think tracking AI capabilities explicitly when they diverge from GDP
impacts is very important, so I primarily emphasise AI capability metrics (discussed below) while
also reporting GDP metrics.

Another limitation of economic metrics is that they are lagging indicators of AI capabilities.
Economic signs may only appear long after dangerous capabilities are developed.8

What about quantifying impact takeoff speed without using GDP? You could consider other
domains, e.g. military power or level of SOTA technology. I haven’t thought about how to
precisely quantify takeoff speed in these domains, but the rough idea is time from “AI makes
significant difference to the domain” to “AI is making abilities in this domain go through the roof”.
Takeoff speed can be different in different domains (more).

Quantifying capability takeoff speed
Metrics of AI capabilities typically measure performance of specific systems at narrow tasks,
e.g. error rate on a specific benchmark or cluster of benchmarks.

For takeoff speeds, though, I’d like a quantity that describes the collective capabilities of all AI
systems across all cognitive tasks. I’m not aware of a way of quantifying this that is
straightforwardly measurable. The quantities I’m using come from the growth modelI use to
estimate the effects of partial AI automation on R&D and GDP, and I think they will have
meaningful analogues in the real world. However, they are mostly not straightforwardly
measurable, at least not today. I sometimes describe these quantities as ‘metrics of takeoff’; but
by this I just mean that they quantify takeoff speed, not that they’re straightforwardly
measurable.

8 Dan Kokajlo critiques GDP metrics of takeoff speed along similar lines.

7 More precisely, if we hold the levels of physical capital and technology fixed and increase cognitive
labour to infinity, GDP only increases by ~4X in any amount of time. It only increases further once the
level of technology, or amount of physical capital, increases. I discuss this further in section 6.

https://paperswithcode.com/sota
https://www.lesswrong.com/posts/aFaKhG86tTrKvtAnT/against-gdp-as-a-metric-for-timelines-and-takeoff-speeds
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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The % of cognitive tasks that AI can readily perform
In this report, I will use "AGI" to refer to an AI system, or collection of systems9, that can readily
perform ~all cognitive tasks.

We can generalise this notion to that of AI that can readily perform x% of cognitive tasks.10

If AI can perform some tasks, but not others, how can we quantify the exact % of tasks it can
perform? To answer this, we need some way to assign a weight to each task that quantifies its
importance. I weight each task by its economic value in 2020, as measured by the total $ that
people earn while performing the task.11 Throughout the report, whenever I refer to the % of
cognitive tasks – or the fraction of cognitive tasks – I am weighting different tasks by
their 2020 economic value. I explain this concept in more detail and discuss its weaknesses in
an appendix.

With this notion at hand, we can define metrics of the form: Years from when AI can readily
perform x% of cognitive tasks to AI that can readily perform y%.

This metric ignores the question: At what cost can AI perform the task? My reason is compute is
already cheap enough that we could run a human brain for ~$10/hour.12 Compute prices will
continue to fall, so I expect that once AI can perform the task it will be able to do so more
cheaply than a human.13

Throughout this report, whenever I say that “AI can perform” a task, I mean that it can readily
perform the task. The phrase “readily” here indicates that i) it would be profitable to do the
engineering and workflow adjustments necessary for AI to perform the task in practice, and ii)
these adjustments could be done within 1 year if organisations made it one of their priorities.

13 Two caveats.
First, if there’s large demand for AI chips when AIs are adding $trillions to the economy, this could drive
prices back up somewhat. I haven’t analysed how significant this effect could be; it will depend on how
quickly chip production can be increased to meet demand. This implies that the supply of computer chips
will be the key bottleneck of how many AIs we run.
Second, it may be that the first time AI is able to perform a valuable economic task it is very expensive to
run, and then the price falls over time. I discuss a model along these lines here. In this case, it is more
meaningful to track when it becomes profitable to actually automate cognitive tasks, as opposed to when
AI can first perform the tasks.

12 You can rent an A100 for $1/hour and it produces ~1e14 FLOP/s. A standard median estimate of
human brain FLOP/s (to the extent that’s a meaningful concept) is 1e15 FLOP/s. That implies you could
run a human brain for $10/hour.

11 More precisely, the weight of task T is proportional to the total $ people earn while performing T. For
each person, this is given by the time they spend on T multiplied by their hourly salary. In mathematical
notation: weight_T = SUM_i($ earned performing T by person i) / SUM_i($ earned by person i).

10 Example coarse-grained tasks include proofreading a document, writing a poem, checking a maths
proof, writing code to perform a specified function, generating a strategy to meet a specified objective,
giving medical advice, etc. Each of these tasks has many subtasks, which may themselves have
subtasks. The tasks in this document should be thought of as the lowest level subtasks, as then we need
not consider cases when AI can partially perform a task by performing some but not all its subtasks.

9 I drop the “or collection of AI systems” henceforth for brevity, even though this framework is most
naturally interpreted as implying that AGI will take the form of many AIs.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.xrfouzges0mp
https://cloud.google.com/compute/gpus-pricing#gpus
https://arxiv.org/pdf/2104.04473.pdf
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That is, if the AI could in principle perform the task if humans did a lot of work restructuring
workflows and generating suitable inputs, but in practice it would take a lot of work for the AI to
do this task in practice, then the AI can not readily perform the task (as I’m using the phrase). If
only a relatively small amount of work is needed, however, then the AI can perform the task.14

The % of cognitive tasks that AI could fully automate
Imagine some AI can perform 50% of cognitive tasks, but there’s only enough runtime compute
to run one such system. In this case, AI could not fully automate 50% of tasks because we can’t
run enough AIs to replace all the human workers.

If AI can readily perform x% of tasks, and there’s enough runtime compute15 for AI to replace all
the human workers in those tasks,16 then I’ll say that AI could readily fully automate x% of tasks.
(I sometimes omit “readily”, but it is always implied.)

With this notion we can define takeoff metrics of the form: Time from AI that could readily
automate x% of cognitive tasks to AI that could readily automate y%.

This is a similar metric to the last subsection, but it relates not only to the capabilities of
individual AIs, but to how many AIs we can run in total.

The metric I mostly focus on in the report is: Time from AI that could readily automate 20% of
cognitive tasks to AI that could readily automate 100%.

How many AGIs can we run?
The Full Takeoff Model (FTM), discussed in the summary, makes assumptions or predictions
about:

● When we’ll train AGI for the first time (AI that can perform 100% of cognitive tasks).
● The FLOP/s to run AGI.

16 For AI to replace all human workers at a task, the new AI output at the task must exceed the previous
human output at that task. For example, suppose humans worldwide write 1 billion emails per day. Then
for AI to replace all human workers at the task of email writing, AIs must be able to write more than 1
billion (similarly productive) emails per day. In the model of automation I use, which I explain below, once
AI output rises a little above this level it becomes profitable for all human workers to work on new tasks
that haven’t yet been automated (e.g. to spend all their time doing things other than emails). The numbers
I report for this metric correspond to this profitability point, so are model dependent.
If previous automation has already concentrated human workers on some cognitive task, then this raises
the bar for replacing all humans at that task. E.g. if automating emails causes humans to spend more time
coding, then you’ll need more AIs to replace humans at coding.

15 But at what price? As discussed above, I expect that once AI can perform the task it will be able to do
so more cheaply than humans. (Though see earlier caveats in a footnote.)

14 Somewhat more precisely, it should take <1 year of engineering and adjusting workflows before AI can
perform the task in practice, and it should be profitable for organisations to make necessary workflow
adjustments.

https://docs.google.com/document/d/1Z7HJ9pHctgDi1XYbgRW9-7J1bxTL98KW1qb7HN7Mv-A/edit#heading=h.am8ngwncddj3
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● How many FLOP/s we can do at each point of time.

This means it can calculate the first year in which we have trained AGI and can run X AGIs, for
any X. I like this as “year when we can run 10 billion AGIs” as an endpoint signifying when
AIs’ collective cognitive abilities significantly exceed the collective cognitive abilities of
humans.17 18

Cognitive output
By “cognitive output” I mean the progress per unit time on software R&D and in other cognitive
domains like maths, strategy, persuasion, etc. The restriction to cognitive domains, to the
exclusion of tasks that require physical labour, captures the idea that disembodied AI will
automate the stuff done by the human brain but won’t (without robotics) automate physical
human labour.

My preferred unit for AI cognitive output, or for AI+human combined cognitive output, is “How
many remote19 human workers would it take to add the same amount of value?” So if AIs +
humans make some software progress in one month, and you’d have needed 1000 human
workers to make the same amount of progress in one month without AI, then the total cognitive
output of AIs + humans is “1000 remote human worker equivalents”.

Notice that in this example I looked at the total cognitive output from both humans and AIs
combined. Until we have AGI, humans and AIs are complementary to each other, so it’s hard to
separate out the cognitive output that’s due to “AI alone”.20 I view it as a benefit of this metric
that it naturally incorporates this complementarity. Another benefit is that it avoids privileging an
arbitrary capability level like ‘AGI’.

We can separate out a notion of the cognitive ‘value add’ of AI by comparing the cognitive
output that would obtain if you only had human workers (with no AIs21) with the actual cognitive
output produced by the combination of humans and AIs. If the latter quantity is twice as high,

21 Or, more precisely, with no AIs developed after 2020. (We already use AI to help us perform cognitive
tasks, and I don’t want to exclude them. I just want to exclude new AIs that automate additional cognitive
tasks.)

20 As a concrete example, let L be the number of humans and C the number of AIs. Suppose cognitive
output is given by L*C. It’s hard to attribute a fraction of this output to humans vs AIs, due to the
complementarity (in this case represented via multiplication).

19 Remote human workers because disembodied AIs won’t be able to do tasks involving physical labor.

18 Do AI’s individual cognitive abilities also exceed those of humans by this point? Not necessarily. The
framework sits most naturally with a comprehensive AI services interpretation of AGI, where no single AI
has abilities as general as an individual human (more). But my personal expectation is that very soon in
calendar time after AIs can collectively do all tasks a human can do, we’ll be able to develop a unified AI
system that exceeds humans at ~all cognitive tasks. So I do think that some AIs’ individual cognitive
abilities will exceed humans’ by this point.

17 I say “significantly” because AGI will have a number of significant cognitive advantages over humans.
To list a few: run faster in serial time, smaller % of AIs in education and retirement, smaller % of time
spent on leisure or sleeping, can use smaller models for easier tasks rather than doing all tasks with a
fixed brain size.

https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
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then the AI’s cognitive value add is 2X. With this in hand, we can define the following takeoff
speed metric: time from AI value add being 2X to it being 10X. This period begins when
cognitive output is twice what it would be absent AI, and ends when it is 10X what it would be
absent AI.22

I explain how the FTM (Full Takeoff Model) calculates cognitive output here.

Impact metrics vs capability metrics
This piece will make forecasts about impact metrics and capability metrics. How much stock
should we place in each?

I have greater trust in the forecasts of capability metrics. Forecasts of impact metrics involve
forecasting capabilities and making substantial additional23 assumptions about how those
capabilities translate into impact. Example assumptions:

● How much does lack of physical equipment or physical labour delay or reduce the
impact of advanced AI? (We discussed this briefly above.)

● How much do regulations delay or reduce the impact of advanced AI?
● How much schlep is involved in integrating advanced AI in the economy?

These additional assumptions will tend to make forecasts of impact metrics more uncertain than
forecasts of capability metrics.

In addition, the correct additional assumptions might differ in different domains. For example,
perhaps lack of physical equipment will significantly bottleneck how much AGI accelerates
technological progress, but won’t prevent AGI from giving its controller a huge military
advantage. Or perhaps regulations will prevent AGI impacting goods and services but not
software R&D. So a second advantage of capability metrics is we can make separate
judgements about how AI capabilities impact multiple different domains.

On the other hand, the capability metrics are less meaningful. In particular, they will be much
harder to measure and track over time, and are at some risk of involving made-up concepts
derived from a growth model but not grounded in reality.

23 To some extent, these additional assumptions also affect forceasts of AI capabilities. The impacts of AI
on GDP and R&D accelerate future capability developments. However, I model the effect on bottlenecks
on this feedback, and don’t expect large delays from regulations and schlep in back-end industries that
will spur further AI development like AI R&D and chip manufacturing.

22 Of course, AI may automate cognitive tasks without being agentic. If AI cognitive value add is 10X, but
AIs do not make plans and are not strategically aware of humans and the levers of power (see Joe
Carlsmith’s draft report on AI risk), this may be much less risky than if AIs do make plans and are
strategically aware.

https://www.lesswrong.com/posts/HduCjmXTBD4xYTegv/draft-report-on-existential-risk-from-power-seeking-ai
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Other metrics of takeoff speed
There are a number of other serial time metrics of takeoff speed that seem plausibly useful. For
example:

● Time from “AI that causes >30% of world leaders to realise that AI will be transformative”
to “AI that gives its controller a decisive strategic advantage”

● Time from “misaligned AI that blatantly seeks power” to “AI that causes existential
catastrophe if it’s misaligned”.

● Time from [weaker AI capability that is strategically significant] to [stronger AI capability
that is strategically significant]

There will be no straightforward way to get predictions about these metrics from my framework.
To do this, we’ll have to translate the AI capabilities that feature in these metrics into the
language of the framework. This means mapping them to the rate of GDP growth, the % of 2020
cognitive tasks that have been automated, the number of AGIs that can be run, [the AI multiplier
on cognitive output], or some other quantity that can be calculated by the model.

Summing up
We can distinguish between capabilities takeoff speed and impact takeoff speed, and have
reasons to care about both. Impact takeoff speed might be more important, and it can be
quantified using GDP metrics that are well grounded. Capabilities takeoff speed might be easier
to predict, and it can be quantified using a few different metrics that are less well grounded. The
Full Takeoff Speeds Model I’ll explain during the next few sections will make predictions about
all the metrics I’ve mentioned.

3. Basic framework for calculating takeoff speed
I recommend skipping this section except that part that estimates the size of the effective
FLOP gap. The rest just recaps Bio Anchors and explains the basic framework for
thinking about takeoff speeds a little more slowly than in the long summary.

This section presents a very basic first-pass framework for thinking about takeoff speeds. It
describes a simple extension you can make to the bio-anchors framework to get an estimate of
takeoff speed.

In short, we first use the biological anchors framework to estimate the FLOP needed to train
AGI. Then we add an additional assumption about the FLOP needed to train some weaker AI.
Lastly, we estimate how quickly we can ramp-up training FLOP between these two points. This
gives us the calendar time from the weaker AI to AGI, one metric of takeoff speed.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
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The rest of this section explains this basic framework in more detail. Later sections expand upon
it by i) analysing how increased AI investment and incremental AI automation might affect the
ramp-up of training FLOP, and ii) modelling the effect of AI automation on economic growth.

Bio anchors recap24

Ajeya Cotra’s biological anchors report (hereafter, "Bio Anchors") articulates a framework that
can be used to estimate when we’ll train AGI,25 via estimating when we’ll have enough compute
and software to do so.26

In particular, it uses analogies with biological systems and trends in ML to estimate the FLOP
required to train AGI using 2020 algorithms. That is, if AI algorithms had frozen at their 2020
levels and a multi-year concerted effort had been made to train AGI, how many FLOP would
have been sufficient to succeed?

The bio-anchors report also estimates how the size of our training runs will change over time.
One tricky element here is algorithmic progress: we can achieve more with each FLOP in 2025
than in 2020. To incorporate this, we can measure the size of training runs in units of
2020-FLOP, meaning “How many FLOP would have been needed to train a system with these
capabilities using 2020 algorithms?” Software progress increases the number of 2020-FLOP
that are available from a fixed budget of FLOP.

The 2020-FLOP used in a training run can be calculated by multiplying together three quantities:
1. $ on training FLOP. How much is spent on the training run?
2. FLOP/$. How many FLOP does each $ buy us? This increases over time due to

hardware progress.
3. Software multiplier. How many times more efficient are today’s algorithms than 2020

algorithms? E.g. if we could train AGI today using half as many FLOP as we’d have
needed in 2020, the software multiplier equals 2.

a. The unit for software is 2020-FLOP per FLOP. I.e. each FLOP today
corresponds to multiple 2020-FLOP because algorithms have improved.

Writing this as an equation:
2020-FLOP = $ on FLOP * FLOP/$ * 2020-FLOP per FLOP

26 Specifically, Bio Anchors estimates when we’ll have enough computation to train one unified AGI
system. This is aggressive because we might actually achieve AGI earlier via many distributed cheaper
systems, but it’s conservative because there are inputs to developing AGI other than computation (e.g.
data).

25 The report actually focuses on forecasting a slightly different target: transformative AI, defined as AI
which increases the rate of economic growth by ~10X. But the same framework can be used for
forecasting AGI, and this use-case will be more useful for our purposes. In what follows, I’ll talk as if the
report was forecasting AGI, to simplify the exposition. The difference will matter later because AGI is
plausibly harder to develop than TAI, and we’ll adjust the report’s output for this fact.

24 Here I give a dense summary of the relevant points; readers without familiarity might want to read a
summary (here or here), listen to part of this podcast, or read the full report.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://www.alignmentforum.org/posts/cxQtz3RP4qsqTkEwL/an-121-forecasting-transformative-ai-timelines-using#The_overall_framework
https://www.cold-takes.com/forecasting-transformative-ai-the-biological-anchors-method-in-a-nutshell/
https://80000hours.org/podcast/episodes/ajeya-cotra-worldview-diversification/#ai-timelines-report-012924
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
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Let’s call the FLOP needed to train AGI using 2020 algorithms the AGI training requirement
(notice that it’s in units of 2020-FLOP). When the 2020-FLOP used in a training run exceeds the
AGI training requirement, bio anchors forecasts that we will train AGI.

Extending bio anchors to estimate one metric of takeoff speed
Bio anchors estimates the training requirements for AGI, measured in 2020-FLOP. If we add an
additional assumption about the training requirements for some weaker AI system, we can
estimate the calendar time between training the weaker system and training AGI via the growth
of the 2020-FLOP used in training runs. This in turn depends on the growth of its three
components: $ on FLOP, FLOP/$ and 2020-FLOP per FLOP.

Concrete example
Let’s go through a concrete example to illustrate this idea.

Suppose bio anchors estimates that the 2020-FLOP AGI training requirement = 1e36.27 I.e. it
would take 1e36 FLOP to train AGI using 2020 algorithms. Then we additionally estimate that
some weaker AI would take 1e30 FLOP to train using 2020 algorithms.

Then the serial time between the weaker AI and AGI is simply the time to increase the
2020-FLOP used in training runs by 6 OOMs.28 How long will this take? It depends on how
quickly the three components of 2020-FLOP grow after we’ve trained the weaker AI. Let’s make
the following assumptions:

1. $ on training FLOP has a growth rate of 30%.
2. FLOP/$ has a growth rate of 40%.
3. 2020-FLOP per FLOP has a growth rate of 40%.

The growth rate of 2020-FLOP used in the largest training run is related to the growth rates of
its components as follows:
g(2020-FLOP) = g($ on FLOP) + g(FLOP/$) + g(2020-FLOP per FLOP)

So the 2020-FLOP used in a training run has a growth rate of 30+40+40 = 110%.29 This implies
that it takes 13 years to increase 2020-FLOP by 6 OOMs.30 So we’d estimate the time from the
weaker AI system to AGI as 13 years.

30 e^(1.1*12.6) = 1 million.

29 Note, this is an instantaneous growth rate, distinct from the annual growth. The former equals e^gt; the
latter equals (1 + g)^t. The benefit of using the former is that you can add growth rates of the components
to get the growth rate of the 2020-FLOP. They’re similar when g < 0.1.

28 OOM = order of magnitude

27 Bio anchors places a probability distribution over the 2020-FLOP AGI training requirement, and I will
ultimately do the same. For now though, I will proceed using point estimates to simplify the exposition.
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Comments on the concrete example
Firstly, the specific endpoint (AGI) and startpoint (some weaker AI) that I used here could be
changed. E.g. you could use the startpoint “misaligned AI that blatantly seeks power” and the
endpoint “AI that causes existential catastrophe if misaligned”.

However, the startpoints and endpoints that we can use are still fairly limited at this stage. They
must both correspond to some 2020-FLOP training requirement for the methodology to work.
This is plausible if they refer to some AI capability level. We can’t yet use startpoints/endpoints
that refer to the number of AIs; e.g. we can’t use the endpoint “can run 10 billion AGIs”.
Endpoints like this have a runtime computation requirement as well as a training requirement
and we’re not yet modelling the available runtime computation.31 Also, we can’t yet use
startpoints/endpoints that refer to GDP growth, because I haven’t introduced the constructs
needed to calculate GDP. Later, with the Full Takeoff Speeds Model, we’ll have the option to use
these additional startpoints and endpoints.

Secondly, it’s worth highlighting the structure of the calculation in the concrete example. It has
two key inputs.

A. The effective FLOP gap between the startpoint and endpoint. In our example this was 6
OOMs. The effective FLOP gap’s precise meaning is: how many more FLOP would it
take to train [endpoint AI] than [startpoint AI], using 2020 algorithms.

a. Note: I sometimes just refer to it as the “FLOP gap” for short rather than
the “effective FLOP gap”, but I always mean to refer to the effective FLOP
gap.

B. The speed crossing the gap, g(2020-FLOP). In our example, 2020-FLOP had a growth
rate of 110%, increasing by ~0.5 OOMs per year. The precise meaning is: what is the
average growth rate of 2020-FLOP between [startpoint AI] and [endpoint AI].

31 In the Full Takeoff Speeds Model, it turns out that the endpoint “can run 10 billion AGIs” typically comes
very quickly (<2 years) after training AGI because AI automation causes hardware and software to
improve extremely rapidly around this time and AGI training compute is so high that you’re not too far off
being able to run 1 billion AGIs by the time you’ve trained AGI. So the endpoint “train AGI” approximates
the endpoint “can run 10 billions AGIs”.
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If we measure the effective FLOP gap in OOMs and measure g(2020-FLOP) in OOMs per year,
we get the simple equation:

serial time to cross FLOP gap = FLOP gap / g(2020-FLOP)
= FLOP gap / [g($ on FLOP) + g(FLOP/$)
+ g(2020-FLOP per FLOP)]

The rest of this section is organised as follows. First I briefly discuss considerations informing
the effective FLOP gap. Then I state my bottom line about g(2020-FLOP) and compare it with
the view implicit in bio-anchors.

Note, the report’s main metric “time from AI that could readily automate 20% of cognitive
tasks to AI that could readily automate 100%” implicitly makes reference both to whether
AI could perform the tasks and to whether we can run enough AIs to replace humans at
the tasks. So at this stage I can only calculate this metric by i) defining “weaker AI” as AI
that can readily perform 20% of tasks, and ii) assuming that there will be enough runtime
compute to automate tasks once AI can readily perform them (which is not true when AGI
training requirements are low).

Evidence about the size of the effective FLOP gap
The choice of effective FLOP gap presupposes some startpoint and some endpoint. For
concreteness I’ll use startpoint = AI that can perform 20% of cognitive tasks, endpoint = AGI (AI
that can perform ~100% of cognitive tasks). Crossing the effective FLOP gap involves going
most of the way in capability space from today’s AI to AGI. This input to takeoff speeds is
second only to AGI training requirements in terms of being very important but very uncertain.
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I think Hans Moravec's "rising tide of AI capacity" visualisation is useful for framing this
discussion (h/t David Schneider-Joseph for this point). Currently AI can only do a small fraction
of cognitive tasks – the areas of the map that are currently underwater. Over time the AI
capabilities improve (the tide rises) and AI can perform more and more tasks. Eventually, AI can
readily perform all cognitive tasks (everything is under water).

Hans Moravec's "rising tide of AI capacity" can help us think about the meaning of the effective FLOP gap

For our purposes, we should imagine the surface area of the landscape to be proportional to the
tasks’ economic value in 2020. (Or, if we’re thinking about R&D automation, proportional to the
task’s share of R&D.) Then the effective FLOP gap tells us how much more effective training
compute we need to cover all the landscape compared to just 20% of it.

There are a few factors that can weakly inform the choice of effective FLOP gap:
● AGI training requirements bound it from above.
● SOTA AI capabilities weakly bound it from below.
● Horizon length suggests it could be pretty big.
● How AI capabilities vary with training FLOP between different domains provides an

estimate.
● How AI capabilities vary with training FLOP within a domain provides a low-end

estimate.
● How animal capabilities vary with brain size provides a low-end estimate.
● How human capabilities vary with brain size provides a low-end estimate.
● Practical barriers to partially automating tasks suggest it could be very small.

I’ll discuss each factor in turn.
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● AGI training requirements. As of today the largest training run is ~3e24 FLOP.32 My
median guess is that AGI training requirements are 1e36 2020-FLOP,33 so my median
effective FLOP gap can be no bigger than 12 OOMs. More generally, shorter AI
timelines lead to a smaller effective FLOP gap.

● SOTA AI capabilities. In my opinion, today’s AI systems are not close to being able to
readily perform 20% of all cognitive tasks done by human workers. (Actually automating
these tasks would add ~$10tr/year to GDP.34)

a. Based on this, and my rough sense for how much progress we’re getting with
each additional OOM (informed by looking at scaling papers and playing around
with GPT-2 and GPT-3), I’d want to put my startpoint above 1e27 2020-FLOP.

b. Another rough-and-ready approach is to naively extrapolate recent trends in AI
value-add and model size. This suggests the startpoint should be >3e28
2020-FLOP.

■ The data I could find suggests AI value-add is doubling roughly every 2
years,35 over which time training runs have increased by ~1 OOM.36 The
largest training run as of July 2022 is ~3e24. If today’s systems could
readily add $500b/year to the economy, that would correspond to
automating ~1% of cognitive tasks.37 If each doubling of value-add
continues to take ~1 OOM, AI won’t automate 20% until >3e28 FLOP.38

c. Overall, I’d want to put my startpoint above 1e27 2020-FLOP and probably
above 1e28 2020-FLOP. But if I condition on AGI requiring (say) 1e30
2020-FLOP then I’d want to make it lower.

● Horizon length.39
a. Suppose we automate some economic tasks using a horizon length of 1 second

but training AGI requires a horizon length of 1 year with the same model size or
bigger. This implies a effective FLOP gap of >7.5 OOMs.40

40 There are 30 million seconds in a year.

39 This concept is from bio anchors. Ajeya defines it as follows: How much data the model must process
(on average) to tell with a given level of confidence whether a perturbation to the model improves
performance or worsens performance.

38 The bound would be higher if I used a number below $500b, or if I included software progress. OTOH,
value-add per OOM of training FLOP may rise.

37 World GDP is ~$100tr, about half of which is paid to human labour. If AI automates 1% of that work,
that’s worth ~$500b/year.

36 Epoch’s piece.

35 E.g. here, here, here, here. I don’t know how reliable these estimates are, or understand their
methodologies.

34 World GDP is ~$100tr, about half of which is paid to human labour. If AI automates 20% of that work,
that’s worth ~$10tr/year.
[This is a bit aggressive, as many tasks have a component of physical labour (though all have some
cognitive component). On the other hand, AI will probably produce more output at those tasks than the
humans they replace (as they’re cheaper to run), increasing their value-add.]

33 The Bio Anchors best-guess median training requirement for TAI is 1e35; I add 1 OOM to account for
AGI being harder than TAI.

32 I believe these were the requirements for PaLM.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://ourworldindata.org/grapher/labor-share-of-gdp?tab=chart&country=NGA~NPL~HRV~OWID_WRL
https://arxiv.org/pdf/2202.05924.pdf
https://medium.com/dataseries/artificial-intelligence-market-size-a99e194c184a
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.globenewswire.com/news-release/2022/04/19/2424179/0/en/Artificial-Intelligence-Market-Size-to-Surpass-Around-US-1-597-1-Bn-By-2030.html
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://ourworldindata.org/grapher/labor-share-of-gdp?tab=chart&country=NGA~NPL~HRV~OWID_WRL
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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b. My median guess would be that, compared to this, the startpoint will require
longer horizons and we will train AGI with shorter horizons. So my extremely
tentative takeaway would be that the effective FLOP gap is >5 OOMs.41

c. I put (even) less weight on this consideration than the others because the
usefulness of the 'horizon length' concept is debatable and I don’t know whether
the startpoint-AI will use a very different horizon length to AGI.

d. If I condition on very large training requirements for AGI, however, I become
more convinced by this consideration. At that point I think AGI requires very long
horizons, but still think that short horizons will produce significant economic
value.

● How AI capabilities vary with training FLOP between different domains. How much
do training FLOP requirements vary across different tasks or domains?

a. AI has strong comparative advantages in some domains relative to others.
Probably, less training FLOP will be needed for automating human work in
domains like these. Indeed, this is how AI can already perform at super-human
level in some domains. There are many mechanisms that can give AI
comparative advantages at some tasks but not others:

■ Some tasks can be performed by AI with “short horizon training”, others
require “long horizon training”.42

■ Some tasks require strong sim2real transfer.
■ Some tasks are more similar to tasks used in AI pre-training.
■ Some tasks have much more available data from demonstrations or

human feedback.
■ Some tasks benefit from memorising lots of information.
■ For some tasks it’s important to “always be on” (no sleep), or to

consistently maintain focus (no getting bored or slacking).
■ For some tasks, it’s much easier to verify that an answer is correct than to

generate the correct answer.
■ People choose to develop specialized AI architectures and training

processes for some tasks but not others.
■ Some tasks require very high levels of reliability (e.g driving vs drafting an

email).
b. GPT-N task performance.

■ Lukas Finnveden has extrapolated the performance of GPT-N on a variety
of benchmarks. You could look at the graphed extrapolations to compare
the (predicted) training FLOP needed to solve different benchmarks. In
the linear extrapolation, the first benchmark exceeds a score of 90% ~4
OOMs before the last benchmark. In the sigmoid extrapolation, the gap is
~5 OOMs. So we’re on ~4-5 OOMs.

42 This concept is from Bio Anchors. Short horizons means that the model only needs to “think” for a few
seconds for each data point; long horizons means the model needs to “think” for months for each data
point and so training requires much more compute.

41 There are ~5 OOMs between a “10 second” horizon length and a “1 month” horizon length.

https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#How_impressive_are_the_benchmarks_
https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#Comparisons_and_limits
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
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● Both extrapolations omit the task with the worst SOTA
performance (ANLI).

● On the other hand, they both include the text-completion task,
which is very similar to GPT’s training task. Omitting this lowers
the estimated effective FLOP gap to ~4 OOMs.

■ As before, this scaling would be smaller using Chinchilla scaling laws, and
perhaps smaller still the scaling law we’re on when we start crossing the
effective FLOP gap. So I’ll reduce that gap to ~3 OOMs.

■ How does the gap for the extrapolated benchmarks compare to the gap
we might see for economically valuable tasks? I expect the latter gap to
be bigger. These benchmarks were selected (in part) for being
appropriately challenging to SOTA LMs, which will narrow the range of
difficulty between them. Economically useful tasks will not have this
selection pressure, and are generally much more varied in general (e.g.
they’re not all language based). I’ll tentatively add another 2 OOMs for
this.

■ So overall I take this consideration to suggest that the effective FLOP gap
is >3 OOMs and use a tentative best-guess of ~5 OOMs.

c. RL vs transformer training FLOP
■ AlphaStar had 139 million parameters43 and took ~2e23 FLOP to train.44

GPT-1 had a similar number of parameters (117 million) but only took
1e19 FLOP to train. That’s a difference of 4 OOMs.

● The difference is probably partially due to AlphaStar having a
longer horizon length, and I discussed horizon length above. But
other factors contribute, like the use of league-based training and
training data being more noisy.

■ I think this is representative of a broader pattern of RL systems having
several OOMs more training FLOP than similarly-sized LMs (where size is
measured in parameter count, or in FLOP per forward pass).

● [Someone could check this by looking at Xland.]
■ If some economically valuable tasks will be automated by transformer

architectures of a certain size but other tasks are only automated by RL
systems of a similar size, then I’d expect the effective FLOP gap to be >4
OOMs.

■ This would combine with other sources of a wide effective FLOP gap.
d. To sum up:

■ AI comparative advantages: suggests that the gap is wide in general.
■ GPT-N: >3 OOMs, ~5 OOMs.
■ RL vs transformer: maybe implies an additional ~4 OOMs.

e. Overall, I interpret this ‘training FLOP differences in different domains’
consideration as suggesting that the effective FLOP gap is >3 OOMs, weakly

44 From eyeballing figure 3 of Compute Trends Across Three Eras of Machine Learning.
43 See page 3 here.

https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2#:~:text=Model%20architecture%20and%20Implementation%20Details%3A%20GPT%2D2%20had%201.5%20billion,%2D1%20(117M%20parameters).
https://arxiv.org/pdf/2202.05924.pdf
https://arxiv.org/pdf/2012.13169.pdf


20

suggesting a best guess of ~5 OOMs, and lending plausibility to amounts as high
as ~8 OOMs.

● How AI capabilities vary with training FLOP within one domain.When you increase
training 2020-FLOP within one domain, how much do capabilities improve? What
increase in training FLOP is needed to cross the human range?

a. GPT-N. I believe GPT-3 required about ~2.5 OOMs more training 2020-FLOP
than GPT-2.45 People familiar with both systems can use the difference to intuit
how much performance improves with more training FLOP. Intuitively, the
difference is pretty big! My extremely rough sense is that once AI can readily
perform 20% of language based tasks, you’d need ~two similar-sized
improvements before it could readily perform all language based tasks,46

suggesting an effective FLOP gap of ~5 OOMs.
■ The difference in training FLOP between GPT-2 and GPT-3 would be

smaller with the new Chinchilla scaling law, and by the time we’re
crossing the effective FLOP gap we may be using better scaling law still.
(For example, certain prompting or fine-tuning or aggregation techniques
may improve how much total performance increases with scale, as
suggested by figure 3 here.) So I’ll put my overall estimate here at ~4
OOMs.

b. Other papers on "scaling laws" could potentially be similarly informative here.
■ The LM-scaling papers I’ve glanced at, seem broadly consistent with the

above, with ~2 OOMs of training FLOP improving the score on large
aggregations of benchmarks (e.g. BIG-Bench, MMLU) by ~10-40%.

c. Go. The difference between an intermediate amateur Go player and the best in
the world is ~2800 Elo.47 Marginal doublings of training FLOP improved
AlphaGo’s Elo by ~300 - 700.48 This implies that ~4 - 9 doublings of training
FLOP are needed to cross the human range, or ~1 - 3 OOMs. I put more weight
on this than the GPT comparison, as the comparison to human abilities is more
grounded.

■ Though given that we’re talking about the effective FLOP gap for
economic value, we should make the startpoint when you can get paid for
your performance. If we measured the difference from “a bit below
professional” to “best in the world”, the Elo gap would be less than half as
big.49 Then the FLOP to cross the range would be ~0.5-1.5 OOMs.

d. So to sum up:

49 The world’s best Elo is 3800, Go’s “professional” range starts at 2700 Elo, while and Elo corresponds to
“advanced amateur”. Using 2400 Elo as the start point would give us a “human range” of 1400 Elo.

48 From figures 3, 4 and 5 of the AGZ paper. See reasoning on this sheet.
47 See this sheet.

46 Obviously, comparing the qualitative capability gap between GPT systems to the gap between
top-performing and low-performing humans is fraught. One worry is that we’re less able to notice
intelligence differences between systems much dumber than us, compared to systems similarly intelligent
to us.

45 This data suggests GPT-3 took ~100X more training FLOP; I’m assuming ~3X algorithmic
improvements on top of that.

https://arxiv.org/pdf/2206.07682.pdf
https://arxiv.org/pdf/2206.07682.pdf
https://arxiv.org/pdf/2202.07785.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/2206.04615.pdf
https://discovery.ucl.ac.uk/id/eprint/10045895/1/agz_unformatted_nature.pdf
https://docs.google.com/spreadsheets/d/184MRogfxoxaWupEV2F1O3kdomAUb-cNY8kvV1RoI0Wg/edit#gid=0
https://docs.google.com/spreadsheets/d/184MRogfxoxaWupEV2F1O3kdomAUb-cNY8kvV1RoI0Wg/edit#gid=1935258151
https://arxiv.org/pdf/2202.05924.pdf
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■ GPT-N scaling: ~4 OOMs
■ Go: ~1 OOM

e. These results underestimate the effective FLOP gap because crossing the
human range in one domain is easier than crossing the range across all
economically valuable tasks. I.e. they ignore the above point of AI having
comparative advantages at some domains over others.

■ This is especially true for Go, which is just one game.
■ It’s only somewhat true for GPT-N, as the full space of cognitive tasks

isn’t that much broader than language-based tasks.
f. So overall I interpret this as suggesting >4 OOMs as a soft lower bound, and ~5

OOMs as a very tentative best guess.
● How animal capabilities vary with brain size.

a. One comparison here is humans vs chimps. Human brains are probably ~3X
bigger than chimp brains (in terms of FLOP/s),50 and there is arguably a large
gap in cognitive abilities. Perhaps humans have an additional ~3X from software
improvements. If you think “chimp → human” is enough to cross the effective
FLOP gap, this implies a effective FLOP gap of ~1 - 2 OOMs.51

b. Rat brains are 2 OOMs smaller than human brains (in terms of synapses and so
FLOP/s). Perhaps accounting for software, the difference is 3 OOMs. It’s not
crazy to me that rats could perform 20% of cognitive tasks if they’d been selected
to do so. This suggests an effective FLOP gap of ~4-6 OOMs.52

c. I find the chimp comparison more plausible.
d. Both approaches ignore AI having comparative advantages at some tasks over

others, so underestimate the gap.
e. Overall, I see this as lending weight to effective FLOP gaps as low as 1 OOM,

and weakly suggesting a best-guess of ~3 OOMs.
● Brain size - IQ correlations within humans. 53

a. There’s a few decent-seeming papers that estimate the correlation between brain
volume and IQ. My conclusion from a few hours looking at these was that a 10%
increase in brain volume might cause a gain of ~4.5 IQ points. More.

53 I’ve largely taken this line of reasoning from this doc by Paul Christiano.

52 Two methods: Method 1 anchors to runtime FLOP/s, method 2 anchors to total lifetime learning FLOP.
Method 1: 3 OOMs bigger brain → 3 OOMs more runtime FLOP/s → 6 OOMs more training FLOP with
Chinchilla scaling.
Method 2: 3 OOMs bigger brain and 1.5 OOM longer childhood → 4.5 OOMs more training FLOP.

51 Two methods: Method 1 anchors to runtime FLOP/s, method 2 anchors to total lifetime learning FLOP.
Method 1: Human runtime FLOP/s is ~10X bigger (including software gains), implying 100X more training
FLOP with Chinchilla scaling.
Method 2: Human lifetime learning uses ~3X more FLOP than chimps as the learn for about the same
length of time. Bump this up to 10X for better software for learning. Then assume training FLOP will be
proportional to lifetime learning FLOP. Method 2 assumes ML training-run scaling will be as good as
hominid life-learning scaling. Hominid scaling might be better because the life-learning algorithm is better
than our training algorithms; it might be worse because it doesn’t scale data optimally with brain size but
we will be able to do this in ML.

50 Chimps have about 3X fewer neurons than humans, and the data in figure 4C of this paper suggests
they have a little over 3X fewer synapses. (Synapses are closer to what we care about for estimating
FLOP/s.)

https://docs.google.com/document/d/1m0HZ4b1X3NQfIz5XCtXTAoSxm8mSx2oTjsoJ1kzXk5g/edit#
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://academic.oup.com/view-large/figure/267080014/bhaa149f4.tif
https://academic.oup.com/cercor/article/30/10/5604/5850230
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b. If we assume that brain volume is proportional to brain FLOP/s, then a 10%
increase in brain FLOP/s causes a gain of 4.5 IQ points.

■ Between primates, it seems like # neurons and # synapses are roughly
proportional to brain volume, confirming this assumption.54

■ It seems that within humans, brain volume is more slightly anti-correlated
with neuron density, implying that a 10% increase in brain FLOP/s could
have a larger effect on IQ.55 For now, I’ll err conservative and leave this
out.

c. In line with the spirit of Bio Anchors, I’ll assume that a 10% increase in AI model
size (measured in FLOP/s) has the same impact on IQ as a 10% increase in
human FLOP/s.56 [I’ll later consider a more aggressive assumption.]

d. So 10% bigger AI model size → ~4.5 IQ points.
e. So a 10X bigger AI model → ~24 10% increases in model size57 → ~110 IQ

points.
f. Let’s assume training FLOP increases with the square of model size.58 Then

100X more training FLOP → 10X bigger model → ~24 10% increases in model
size59 → ~110 IQ points.

g. Intuitively, going IQ 45 → IQ 155 would cross the effective FLOP gap (initially
able to perform <20% of economic tasks → then able to perform ~100%). So this
naively suggests an effective FLOP gap of 2 OOMs.

h. You could plausibly end up with a smaller effective FLOP gap:

59 ln(10)/ln(1.1) = 24.2

58 I.e. Chinchilla scaling. The basic rationale here is double the FLOP/s → double the # parameters →
double the # data points needed for training. Also double the FLOP/s → double the FLOP per data point.
With 2X the data points and 2X FLOP per data point, training FLOP increases 4X.

57 ln(10)/ln(1.1) = 24.2

56 An increase in AI model size might be better than human brain size due to the ability to do more
calculations in series, or because we’ll make small and easy adjustments to AI algorithms to make them
suited to the new scale.

55 Pakkenberg & Gundersen 1997 (N=94) is the only thing I’m aware of studying correlations between
brain volume and neuron or synapse count in humans (thanks to Tegan for sharing). Bottom line: I think
the data naively imply a 10% increase in FLOP/s would add 5.8 IQ points. I may have made a math
mistake though.
Figure 4 shows that brain volume is anti-correlated with neuron density (# neurons per unit volume), so
that an 85% increase in brain volume is only associated with a 61% increase in neuron count. This
implies that each 10% increase in brain volume increases neuron count by 7.7%, with humans. (I.e #
neurons = volume^0.77.) Assuming FLOP/s per neuron is constant, each 10% increase in brain volume
increases FLOP/s by 7.7%. So a 10% increase in FLOP/s would be equivalent to a 13% volume increase
and increase IQ by ~5.8 IQ points. (4.5*1.3=5.8.)
We can sense-check this using the raw correlation between neuron count and brain volume reported in
table 3. The correlation is 0.71. This is broadly consistent with 0.77 from above, as neuron count had
larger variance than brain volume. (E.g. If 1 SD of brain volume was 5% of the mean brain volume, then 1
SD of neuron count was >5% of the mean neuron count.)

54 I expect # synapses to be proportional to FLOP/s. Figure 4A of this paper finds the # synapses per unit
volume is constant. If neurons matter, this paper claims the # neurons is slightly less than proportional to
volume (# neurons = volume^0.9). (Would be interesting to check if these two claims are consistent with
the slight increase in synapses per neuron observed in figure 4C of the first paper.)
This paper claims the number of neurons is proportional to brain volume and

https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-9861(19970728)384:2%3C312::AID-CNE10%3E3.0.CO;2-K
https://academic.oup.com/view-large/figure/267080014/bhaa149f4.tif
https://academic.oup.com/cercor/article/30/10/5604/5850230?login=true
https://www.pnas.org/doi/10.1073/pnas.1201895109#sec-1
https://www.pnas.org/doi/10.1073/pnas.1201895109#sec-1
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■ Assume training compute is proportional to lifetime learning compute.
Humans with bigger brains don’t get more “data” (experience) to learn
from, so a 10X bigger human brain would use only 10X as much compute
to learn. Anchoring to this, we might need to only use 10X as much
training compute, an effective FLOP gap of 1 OOM.60

■ Use a smaller IQ gap. If we used IQ 70 → IQ 125 then the effective FLOP
gap would halve to 1 OOM.

■ Doing both of the above reduces the effective FLOP gap to 0.5 OOMs!
i. Overall, I take the estimate here to be ~1 OOM.
j. Again, a very significant counterpoint is that early AIs will have strong

comparative advantages at some tasks over others. E.g. someone with IQ 45
can’t multiply 7 digits numbers in their heads, and yet we have calculators.

k. Overall, I see this as lending some plausibility to gaps as low as 0.5 OOMs as
well as weakly suggesting a best-guess of ~2-3 OOMs.

● Practical barriers to partially automating tasks.
a. A high-level task like “present on topic X” might have many subtasks like “learn

about X”, “plan the presentation”, “write the presentation”, “check for errors”,
“deliver the presentation”. These subtasks themselves have many further
subtasks (“search for relevant articles”, “extract relevant information from
articles”), and so on.

b. Before AGI, a lot of AI’s economic impact will probably come from partially
automating high-level tasks; i.e. from automating some subtasks but not others.61

c. But partial automation may be difficult in practice, e.g. if it involves integrating AIs
in complex workflows. For example, suppose an AI can write a presentation from
a suitably formatted plan. Using this AI to partially automate “present on topic X”
would require somehow creating a plan in a format suitable for the AI.

d. This could mean that, in practice, it is only when AI is close to being able to fully
automate a high-level task that it does significant amounts of partial automation.

e. In addition, it may be the case that AI is able to fully automate most high-level
tasks at about the same time because they require similar capabilities (or similar
subtasks).

f. Combining the above two bullets, we may automate most high-level tasks at
about the same time and only achieve significant partial automation of high-level
tasks shortly before full automation.62 This implies there might only be a short gap

62 One concrete way to think about this is as follows. Suppose there are 100 tasks on the lowest level.
Each high-level task requires 90 of them, so there’s lots of overlap between high level tasks. But it’s only
possible to partially automate a high-level task once 80 out of its 90 lower level tasks can be automated,
due to practical difficulties with partial automation. Now imagine low-level tasks are automated one by one
in random order. In this toy model, all the high-level tasks will be automated at a similar time (when we’re

61 AI may also allow us to restructure the high-level task entirely so the necessary subtasks change, and
automate some of the new subtasks. It may also allow us to do new kinds of high level tasks.

60 This implicitly assumes human lifetime-learning scaling via increasing brain size is as good as ML
scaling by increasing training FLOP. Lifetime learning might be better because the life-learning algorithm
scales better than ML training algorithms; it might be worse because ML algorithms can scale the amount
of data optimally with training FLOP, unlike lifetime-learning.
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from “begin to significantly automate some high-level tasks” to “fully automate
~all high level tasks”.

g. This all pushes towards a smaller effective FLOP gap, somewhat smaller and
perhaps significantly smaller than we’d have otherwise thought.

h. This effect is significantly increased by the fact that my definition of “AI can
readily perform task X” is “it would be profitable for organisations to do the
engineering and workflow adjustments necessary for AI to perform task X in
practice and they could make these adjustments within 1 year if they prioritised
them”.

■ If it takes many decades to cross the effective FLOP gap, there would be
much more time to rearrange workflows to allow for partial automation.
However, the numbers I’m getting out of the full takeoff speeds framework
suggest we’d cross even a large effective FLOP gap in <20 years.

This table summarises my very tentative takeaways from each factor.

Factor How it informs the
effective FLOP
gap

My tentative takeaway
for the effective FLOP
gap

How much relative weight I
place on each
consideration (1-5)

AGI training
requirements

Constrains the
endpoint

Low AGI training
requirements bound the
effective FLOP gap
from above.

5

SOTA AI capabilities Constrains the
startpoint

3

Horizon length Directly informs
choice of effective
FLOP gap

>5 OOMs 2 (more if training
requirements are large)

How AI capabilities
vary with training
FLOP between
different domains

Directly informs
choice of effective
FLOP gap.

>3 OOMs
~5 OOMs (best guess)
~8 OOMs is plausible

4

How AI capabilities
vary with training
FLOP within a domain

Directly informs
choice of effective
FLOP gap.

>4 OOMs
~5 OOMs

3

How animal
capabilities vary with
brain size

Directly informs
choice of effective
FLOP gap

~1 OOM is plausible
~3 OOM best-guess

2

How human
capabilities vary with

Directly informs
choice of effective

~0.5 OOM is plausible
~2-3 OOM best-guess

3

close automating all 100 low-level tasks) and each partial automation of a high-level task only happens
shortly before full automation.
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brain size FLOP gap

Practical barriers to
partially automating
tasks

Argument for a
small effective
FLOP gap

Effective FLOP gap
smaller

4

Overall, before taking into account AGI training requirements my best guess for the effective
FLOP gap is ~4 OOMs,63 but I wouldn’t be surprised by 1 OOMs or 8 OOMs.

If I condition on low AGI training requirements of 1e30 2020-FLOP the first two factors bite hard
and my best guess is ~2-3 OOMs; if I condition on large AGI training requirements of >=1e38
2020-FLOP the “horizon length” factor and “How AI capabilities vary with training FLOP
between different domains” comes into play more and my best guess is ~5-6.

What bio-anchors says about speed crossing effective FLOP gap
The effective FLOP gap is measured in 2020-FLOP. The bio anchors report projects its three
components over time. In Ajeya’s best guess sheet their growth rates are as follows:

1. $ on FLOP for a training run initially doubles every 2.5 years (growth rate 28%) until it
reaches 1% of US GDP. Then its growth rate is 3%.

2. FLOP/$ doubles every 2.5 years (growth rate 28%) until it reaches a maximum.64

3. 2020-FLOP per FLOP doubles every 2-3 years (growth rate ~28%) until it reaches a
maximum.65

This implies that g(2020-FLOP in the largest training run) is initially ~84%66 and then slows
down to ~59%67. This corresponds to 0.36 OOMs per year initially followed by 0.26 OOMs per
year. At the faster pace, it would take 11 years68 to cross an effective FLOP gap of 4 OOMs; at
the slower pace it would take 15 years.69

Summing up and looking ahead
I’ve introduced a first-pass framework for calculating some metrics of takeoff speed. At the
moment, it can calculate the calendar time between training some weaker AI and some stronger
AI; it cannot calculate metrics relating to the number of AIs or their effects on GDP.

69 4/0.26 = 15
68 4/0.36 = 11
67 3 + 28 + 28 = 59
66 28 * 3 = 84

65 The precise doubling time depends on the biological anchor. For medium and long horizon anchors it is
2 years, for short horizon anchors it is 3 years.

64 The growth rate slows somewhat when the maximum is near.
63 One thing informing this is calculating a weighted average using an adjusted version of the above table.

https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
https://docs.google.com/spreadsheets/d/1_vrVsMiavZiuoD7oTx4kRhE8IEM7Xxgp0L9bU4_N-l8/edit#gid=0
https://docs.google.com/spreadsheets/d/1750IJMfCJd88gnhXiUKm3NwVs9Ir4lesOwJF8bAfFpc/edit#gid=0
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In this framework, the takeoff speed depends on the size of the effective FLOP gap and our
speed crossing it. Our speed crossing it is given by the equation g(2020-FLOP) = g($ on FLOP)
+ g(FLOP/$) + g(2020-FLOP per FLOP).

The next few sections extend this basic model. Section 4 estimates g(2020-FLOP) in the run-up
to AGI, based on the effect of fast rising AI investments. Section 5 models the effect of
incremental AI automation in the run-up to AGI. The infrastructure introduced here allows us to
calculate metrics based on the number of AIs and on their effects on GDP. Section 6 discusses
bottlenecks. Later sections perform sensitivity analyses, discuss its many limitations, and come
to an all-things-considered bottom line.

4. Rising AI investments
I would treat this section as providing detailed parameter estimates for important inputs
to the Full Takeoff Model. In particular, it estimates the pace at which human investments
on the largest AI training run, hardware R&D and software R&D will grow. It also
estimates the returns to hardware and software R&D. It then infers how fast takeoff will
be from human investment alone, essentially calibrating this toy model.

Summary
I believe pre-AGI systems have the potential to increase GDP by $10s trillions and probably
$100s trillions per year. Given this, and the fact that AI investments are currently in the $10s
billions (sources below), I expect human investments in AI to grow very rapidly after key actors
“wake up” to the potential economic and strategic70 value of AI. While governments and chip
manufacturers and investors are aware that AI is strategically important, I claim their actions
implicitly significantly underestimate its transformative potential.

This section analyses the effect of this fast-rising investment on the three components of
2020-FLOP.

The numbers in this section are best characterised as “wild guesses informed by weakly
relevant empirical data”. As such, the uncertainties are very high. That said, here are my
tentative central estimates.71 After “wake up” I guess that:

● $ on FLOP in the largest training run will initially grow at ~97%, and then later at
~22%

○ $ on FLOP globally will grow at ~22%, based on how quickly I guess we’ll be
able to expand chip production after “wake up”.

71 For now I’m leaving these all at 2 significant figures so I don’t lose information about the centres of my
subjective distributions, but 1 significant figure would be much more appropriate given the magnitude of
the uncertainties involved.

70 e.g. via military and security applications.

https://docs.google.com/spreadsheets/d/1bWqaGGti-ILpDA7G0I9kNjBmHVrkfqgS9TkHanOFYxU/edit#gid=0
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○ % global FLOP on the largest training run will grow at ~75%, and have 1 - 3
OOMs room to grow in total.

● FLOP/$ will eventually grow at up to ~88% (recently ~25%), driven by real $ hardware
investment growing at ~17% (recently 5%). But it will take many years before it grows
this quickly, gradually accelerating from its recent pace of doubling every ~3 years.

● 2020-FLOP per FLOP will grow at ~31%, driven by real $ software investment growing
at ~25% (recently ~20%).

This section often refers to growth rates. If you prefer thinking in terms of doubling times, use
this converter.

Background - “waking up” to advanced AI’s economic potential
I believe AGI would drive explosive economic growth - Gross World Product (GWP) growing at
>= 30%/year. I think less powerful AI could drive multiple doublings of GWP. Nominal GWP is
$85tr, and so doubling GWP even once involves adding ~$80tr to the global economy (starting
from now). In other words, on my view, pre-AGI systems have the potential to generate many
$10s or $100s of trillions per year.

Annual investments into hardware and software for AI development are 2-4 OOMs smaller:
● All hardware. Total semiconductor industry revenues are $550 billion; semiconductor

R&D is ~$70 billion and semiconductor capex was ~$130 billion.
● AI hardware. The size of the AI chip market is probably ~$20 billion;72 AI targeted chip

R&D is maybe a few billion $.73

● AI software. I’d guess annual spending on software workers for SOTA AI is $10-100
billion.74

I haven’t dug into these numbers and this is important further work.

I believe that before AGI is developed, many key actors75 will “wake up” to the potential for
advanced AI to generate $10s trillions per year. At the very latest, this will happen when pre-AGI
systems actually produce this much value; probably it will happen much earlier, as the potential
to automate large swathes of cognitive labour becomes apparent from impressive demos.

Once this “wake up” occurs, I expect investments in AI to scale up as quickly as possible until
they are worth $ trillions per year.

75 Governments of powerful nations, leaders of large tech companies, militaries.
74 DeepMind annual spending is ~$1b. I’d guess total AI spend is 10 - 100X this.

73 NVIDIA R&D in 2021 was ~$4 billion, and they’re estimated to be 80% of the market share for AI chips.
I’m not sure how much of the $4 billion was spent on R&D for AI chips vs other R&D.

72 See footnote 48 of this CSET report; also informed by an unpublished memo by a CSET researcher.

https://docs.google.com/spreadsheets/d/11WLXLpYeVCVtA_hcP7LOAJrBwQGcAfCtICkEmNTW4xQ/edit#gid=0
https://www.openphilanthropy.org/research/could-advanced-ai-drive-explosive-economic-growth/
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/
https://www.onlinecomponents.com/en/blogpost/2021-semiconductor-rd-spend-to-rise-4-357/
https://www.statista.com/statistics/864897/worldwide-capital-spending-in-the-semiconductor-industry/
https://www.gwern.net/docs/reinforcement-learning/deepmind/2021-deepmind-fullaccounts.pdf
https://www.statista.com/statistics/988048/nvidia-research-and-development-expenses/
https://omdia.tech.informa.com/pr/2021-aug/nvidia-maintains-dominant-position-in-2020-market-for-ai-processors-for-cloud-and-data-center
https://cset.georgetown.edu/wp-content/uploads/AI-Chips%E2%80%94What-They-Are-and-Why-They-Matter.pdf
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This section analyses the consequences of this fast-rising investment for the growth of
2020-FLOP used in the largest training run, g(2020-FLOP). I consider each of its three
components separately: $ on FLOP, FLOP/$, and 2020-FLOP per FLOP. First, though, two
sections about how I’m thinking about the dynamics of investment ramp up once the “wake up”
has occurred.

In what follows, I’ll assume that we have had “wake up” by the time we start crossing the
effective FLOP gap. This need not be true. But for my startpoint of “automate 20% of cognitive
tasks”, I think it’s very likely. Automating 20% of cognitive tasks, on a naive calculation, would
increase GDP by 25% which is ~$20 trillions.76

$ on FLOP for the largest training run
I break this component down into two subcomponents:

$ on FLOP for the largest training run = $ on FLOP globally * fraction of global FLOP on the
largest training run

Let’s discuss each in turn.

$ on FLOP globally
I believe that, after “wake up”, the total amount of global FLOP will be bottlenecked by how
quickly we’re able to design better chips and manufacture them rather than by willingness to
pay.77

For this reason, I’m thinking primarily in terms of “how quickly can the world overcome
production bottlenecks to produce more FLOP” rather than “how quickly will people increase
their $ spending on FLOP”. In line with this, and as a part of a toy simplification discussed in this
appendix, I’m interpreting “$ on FLOP globally” as meaning something like “number of chips
globally”. Analogously, I’m interpreting FLOP/$ as “FLOP per chip”. This means, among other
things, that I’m ignoring the fact that after “wake up” rising demand will increase the price of
chips of a fixed quality.78

78 See more.
77 I say more about this in an appendix.

76 If the only effect [of automating 20% of cognitive tasks ] is to concentrate human workers on the
remaining 80% of tasks, you’ll have 25% more workers per task on that remaining 80%. (100/80 = 1.25.)
So the effective labour supply is 25% bigger; as a result you’ll accumulate 25% more capital and so GDP
will increase 25%. (Here I make the standard assumption there are constant returns to labour and capital
in combination.) This bottom line is too high in ignoring the non-cognitive labour that is not automated; this
might reduce it by 2X. However, it is too low in ignoring the benefits of improving performance and
throughput on the automated cognitive tasks, which could increase it by 2X.
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How fast will the world be able to ramp up production of chips, when it’s doing so (roughly
speaking) as quickly as possible?79 This is a thorny empirical question, which deserves much
more attention than I’ve given it. This table summarises some weakly relevant quantities:

Quantity Growth rate80 Comment on relevance to g($ on on
FLOP globally) after “wake up”

Semiconductor revenue
growth.

6 - 18% Demand will be much higher after “wake
up”.

TSMC revenue growth. 14 - 29% Demand will be much higher after “wake
up”. TSMC can potentially steal experts
from rival companies.

Growth of munitions
production at war time.

20 - 45% Semiconductor supply chain is much more
complex than munitions.

Time to build a fab.

(Assumes that this equals
the doubling time in the
number of fabs.)

14 - 35% My assumption about doubling times
seems aggressive.

In a little more detail:
● Semiconductor revenue growth.

○ This grew at a rate of 6% from 2012-20 and a rate of 18% from 2018-20.
○ The higher rate might be a better indicator of the maximum capacity for growth,

and thus of the growth after “wake up”. On the other hand, it could reflect a
temporary effect or a spike in demand (that wasn’t reflected in an increase in
supply).

○ My takeaway is a very weak pull to numbers in the ballpark 5%-20%.
● TSMC revenue growth.

○ Semiconductor revenue growth is constrained by demand. This is less true for an
individual corporation like TSMC that can take market share from its rivals by
growing its own output. So TSMC’s growth may mirror growth after “wake up” in
that neither is constrained by demand.

80 Reminder: the growth rates here and throughout this report are instantaneous growth rates, not
per-year growth figures. For example, if the instantaneous growth rate is 40% then the increase in one
year is e^0.4 = 1.49X, which corresponds to a per-year growth of 49%.

79 To simplify the main text, I elide the distinction between the annual production of FLOP, and the total
stock of FLOP. Mathematically, it turns out that if the former grows at a constant rate, so does the latter.
So here I estimate the growth rate of the former and use this as a proxy for the latter. However, this can
lead us astray: if the growth rate of the former increases, there is a lag before the growth rate of the latter
increases in step. So this distinction is included in the Full Takeoff Model (FTM), so is incorporated in the
results of the sensitivity analysis in section 8. The effect is to make takeoff slightly slower.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
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○ This grew at 14% from 2011-21 and 29% from 2019-21.
○ Its capital expenditures will grow at 35% from 2018-2022. This suggests the fast

revenue growth is not mainly “more demand leads to higher prices for the same
amount of real output”.

○ On the other hand its number of employees only grew at 8% from 2009-2020 and
at the same rate from 2018-2020. I’d be surprised if you could sustain 30%
growth in output for very long without growing your employees faster than this.

○ TSMC is potentially able to hire talent from other companies to help it scale,
which may make these numbers too high. On the other hand, after “wake up”
there will be (much) more willingness to pay and so I expect expansion efforts to
be more aggressive even than TSMC’s recent expansion.

○ My takeaway is a weak pull towards numbers in the ballpark 15-30%. I find
this more informative than the semiconductor numbers.

● Growth of munitions production at war time.
○ This is an example of “growth of a specific industry’s output when there is very

large demand”.
○ I looked at munitions output for countries involved in WW2. Growth rates were

mostly between 20% and 45%, with the US as high as 80% (though from a much
lower base as a fraction of their GDP).

○ I’d expect it to be harder to grow semiconductor output because its supply chain
is notoriously complicated, probably much more so than munitions. E.g. this
growth involved a lot of refitting existing factories to make munitions, which won’t
be possible for cutting edge computer chips.

○ My takeaway is a weak pull towards numbers in the 20 - 30% range.
● Time to build a fab.

○ From a quick google, estimates vary from 2 - 5 years.81

○ If this is also the doubling time for the number of fabs after “wake up”,82 that
implies a growth rate of 14% - 35%. The assumption that the doubling time for
fabs is the time it takes to build them feels aggressive to me.

○ My takeaway is a weak pull towards numbers in the 10 - 25% range.
● Growth of the AI chip market. It’s growing at a rate of ~30%. Naively, you’d expect

growth to slow after it becomes a majority of semiconductors, but maybe the demand
after “wake up” will allow it to continue at its current pace. Not convincing to me as its
current growth is probably enabled by displacing production of other chips rather than
creating additional production capacity.

I find the first quantity least informative, and the last three quantities similarly (un)informative as
each other. My best-guess central estimate here is a growth rate (for $ on FLOP globally) of
~22%.83 I’d be surprised if the true figure was <10% or >40%. <10%, as well as falling outside

83 Here’s how I arrived at this number. For the last three quantities my takeaway was a weak pull towards
the ranges 15-30%, 20-30%, and 10-25%. Taking the average of the midpoint of each range gives (22.5 +
25 + 17.5)/3 = 22.

82 The toy model here is that we’re able to leverage the expertise of each existing fab to build another
one, and meanwhile train people up to work there.

81 This website says >2 years; this one says 3-5 years; this discusses an example that took 2.5 years.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=967246273
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=967246273
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1569027567
https://www.dpr.com/assets/news/2002-06-01-semiconducotr-mag.pdf
https://www.extremetech.com/computing/322695-why-we-cant-build-our-way-out-of-the-semiconductor-shortage
https://semiwiki.com/semiconductor-manufacturers/tsmc/2212-how-long-does-it-take-to-go-from-a-muddy-field-to-full-28nm-capacity/
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the range of the last three quantities, just feels very low for a world that’s trying its best to
expand chip production. >40% implies a production doubling time of <21 months, which seems
very quick given the staggering complexity of the production process and the requirement for
workers with specialized skills.

When will this growth in $ on FLOP globally top out? The Full Takeoff Speeds Model currently
assumes it continues until we’re spending 10% GWP annually on FLOP, ~$10 trillion today. Why
30%? Currently ~60% of GDP is paid to human wages; when AI plays a similar role to human
brains we might pay a comparable % of GDP to rent chips to run AIs on. (I reduce the 60% to
10% to account for other costs of running AI systems and the possibility that we pay less for
running AIs than we currently pay to human wages, e.g. due to being bottlenecked by
non-cognitive inputs to production.)84

Ok, I’ve explained how I’m thinking about the first component of $ on FLOP for the largest
training run; now let’s discuss the second component.

Fraction of global FLOP on the largest training run
In my mind there are two important sub-questions here. First, how much room will there be in
total to scale up the fraction of global FLOP used on the largest training run? This determines
how many OOMs of the effective FLOP gap we can cross without even increasing the number
of chips in the world.

Second, how quickly will we be able to scale up in this way? This determines how quickly we’ll
cover those OOMs.

If there’s many OOMs here, and we can cover them quickly, this could drive a very fast takeoff.

How much room to scale up the fraction of global FLOP used on a training run?
Drew Lohn from CSET has contracted with us and spent ~10 hours estimating the amount of
FLOP currently available globally. Measured in terms of the FLOP we could perform by running
the chips non-stop for a year for perfect utilisation, he estimates ~2e28 FLOP from discrete
GPUs,85 ~4e28 FLOP from discrete+integrated GPUs, and ~2e29 if you include the large
numbers of lower performance CPUs used in (e.g.) phones.86 In my view, these numbers are
very uncertain and could easily be wrong by an OOM.

86 Drew Lohn actually estimated FLOP/s from the chips produced annually. I obtained these numbers by
assuming the global stock of chips is 2X annual production.

85 As opposed to integrated GPUs, which are incorporated as part of a device like a laptop.
84 In practice, in the Full Takeoff Model we typically get AGI before spending 10% GWP on FLOP.
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I think a realistic maximum for the fraction of global FLOP that could be used in the largest
training run is probably ~10%.87 That could involve, for example, using 30% of the world’s
compute in a training run that lasts for 4 months. This already feels somewhat aggressive, but
there will be economic incentives to combine compute together in big training runs and online
learning will be a significant factor. Using 10%, the realistic maximum for FLOP used in the
largest training run is currently 2e27 - 2e28 FLOP.

I believe the largest publicly available training run as of July 2022 is ~2e24,88 implying that the
room for scale up is currently ~3 - 4 OOMs.

Of course, this quantity will change over time. I think the room for scale up will reduce over the
next decade. Here’s an extremely rough estimate. Extrapolations of growth of the AI chip market
imply growth of 15X by 2030; but the total quantity of global FLOP will grow by less, let’s say
~5X.89 Meanwhile, I expect the $ spent on the largest training run to increase by ~400X in that
time.90 This implies that the room to scale will fall by ~2 OOMs to ~1 - 2 OOMs by 2030.91 For
now, the Full Takeoff Speeds Model is assuming that this won’t change after 2030 until “wake
up”.92

For our purposes – estimating the time it will take to cross the effective FLOP gap – what
matters is how much room for scale up will remain once we reach the startpoint. If we reach the
startpoint around or after 2030, I expect ~1 - 2 OOMs room for scale. If we reach the startpoint
before 2030, I expect somewhere between that and the current room for scale up (~3 - 4
OOMs); I’ll call it ~1 - 3 OOMs.

When will we reach the startpoint? The startpoint is measured in 2020-FLOP used for a training
run. A $1b training run in 2030 would use ~2e29 FLOP, based on the bio-anchors extrapolations
of FLOP/$ and 2020-FLOP per FLOP.93 So people with startpoints lower than 2e29 2020-FLOP
should expect us to reach the startpoint before 2030.

Startpoint, 2020-FLOP Reach before 2030? Room left for scale up when we
reach the startpoint

93 See calc.

92 I.e. it assumes that after 2030 training runs will scale up at the same pace as global FLOP until “wake
up”.

91 In the FTM the median room for scale in 2030 is ~1 OOM because it uses the “discrete GPU” category
as its median.

90 It’s estimated that PaLM cost ~$10m to train. My median guess is that the largest 2030 spend is ~$4b,
in line with Bio Anchors’ projections. That’s a 400X increase. (I believe AI companies can buy FLOP ~3x
cheaper than if I were to rent GPUs on the cloud, so in practice it may cost them more like ~$1b.)

89 The 5X is for $ on “discrete GPUs”, which can still grow significantly as a fraction of fab production. If
we used the broader category of all GPUs and CPUs, I’d expect lower growth.

88 I believe these were the requirements for PaLM.

87 This, together with my earlier assumption that we might ultimately spend 30% GWP on FLOP, implies
that we’d spend 3% GWP on FLOP for the largest training run. This is a lot; Bio Anchors caps this at
0.25%. But remember that an AGI training run will be happening in a world where AI systems are already
generating $10s trillion per year.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://docs.google.com/spreadsheets/d/1yobQZCnqmSLpP0gEeJRIpl3sN7NUoSjwAJON-jCemtk/edit#gid=0
https://blog.heim.xyz/palm-training-cost/
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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<2e29 2020-FLOP Yes 1 - 3 OOMs

>2e29 2020-FLOP No 1 - 2 OOMs

How quickly will we increase the fraction of FLOP used on a training run?
A naive approach here is to anchor off the scale up over the last decade. I roughly estimate that,
in 2012-2018, the fraction of AI chips used in a training run grew at a rate of ~150%.94 That’s an
OOM every 18 months.95 If we scale similarly fast after “wake up”, we’ll reach the maximum in
just a few years.

However, I believe that the engineering barriers to further scaling will be much more significant
than in the past, e.g. in building the infrastructure for training to be efficiently distributed over
many chips in parallel. I don’t know how long these problems will take to overcome; this is an
area where further empirical research is needed.

Another big uncertainty is how hard it will be to adjust manufacturing processes to produce AI
specialised chips rather than other chips. I’d guess that this will be easier for discrete GPUs
than for CPUs.

My current wild guess is that after “wake up” enough effort will go towards this that we will scale
up at a pace of an OOM every ~2 years. That amounts to a growth rate in the fraction of
chips on the largest training run of ~110%.96 But it’s conceivable to me that we will do 2
OOMs in one year with sufficient effort (~450%), and conceivable that we can only do an OOM
every 4 years (~55%).

The strategic importance of scale up
This dynamic of scale up could drive an extremely fast takeoff. If the effective FLOP gap is small
(<=2 OOMs), room for scale up is large (>=2 OOMs) and scale up happens quickly, we may
cross the effective FLOP gap extremely quickly. Concretely, this might look like one big actor
making a deal with TSMC or NVIDIA to buy the majority of their output for a year, using this to
100X the largest training run so far, and thereby blasting through the OOMs for FLOP around
which AI capabilities are most concentrated.

There’s a counter-intuitive implication here. One sure-fire way to avoid this scenario is to scale
up training runs before we reach the startpoint (before AIs become really capable). That way
there’s no room left to scale when we hit the startpoint. Of course, there are considerations

96 e^(1.1*2) = 9.
95 e^(150%*1.5) = 9.5.

94 In 2012 - 2018 training FLOP increased by 300,000X, corresponding to a growth rate of 210%.
exp(2.1*6) = ~300,000. To get the growth in the fraction of FLOP we need to subtract out the growth of
total FLOP. Let’s subtract 30% for growth of FLOP/$ and 30% from growth in $ on FLOP, leaving 150%.
[Do this again with Jaime’s numbers for the longer period?]

https://openai.com/blog/ai-and-compute/
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which argue in the opposite direction,97 so this doesn’t imply that we should in fact scale up
training runs today.

Summing up $ on FLOP for a training run
There are two sources of growth for this quantity: increasing the $ on FLOP globally98 and
increasing the fraction of FLOP on a training run. Mathematically:
g($ on FLOP for a training run) = g($ on FLOP globally) + g(fraction of FLOP on a training run)

My very rough best guesses are:
● g($ on FLOP globally) = ~22%, probably between ~10% and ~40%.
● g(fraction of FLOP on a training run) = ~75%, with room for 1 - 4 OOMs of growth here in

total (more likely towards the lower end).
● So g($ on FLOP for a training run) is initially ~97% and later ~22%.

This concludes the discussion of how rising AI investment after “wake up” might affect $ on
FLOP;99 the next section analyses the same question for FLOP/$.

FLOP/$
How might rising AI investments after “wake up” affect FLOP/$?100 The most salient mechanism
is that they increase R&D efforts towards making better chips and increasing FLOP/$. In 2000 -
2020, real $ inputs to hardware R&D have grown slowly at ~4% a year. Faster input growth after
“wake up” should accelerate growth of FLOP/$.

How can we estimate the size of this effect? My approach is to:
1. Use historical data to fit an economic model relating hardware R&D inputs to increases

in FLOP/$. The fitted model implies that each doubling of cumulative inputs leads to
5.2 doublings in FLOP/$.

2. Forecast how quickly inputs will grow after “wake up”.
a. I guess that annual R&D inputs might grow at a rate of 17%.
b. If cumulative inputs grew at 17%, the model implies that FLOP/$ will grow at 5.2

* 17% = 88%, ~9 month doubling.
c. But, importantly, I’m currently forecasting that cumulative inputs will initially grow

at their current pace of ~4%, and that their growth rate will gradually increase to

100 Remember I’m ignoring the possibility that compute prices are significantly bid up, and using a
simplification in which all increases in FLOP/$ are due to hardware R&D (and all increases in $ on FLOP
and due to scaling up production of chips).

99 I compare my $ on FLOP forecasts with those from Bio Anchors in this appendix.
98 As mentioned above, I’m excluding the effect of “bidding up the price of compute”.

97 For example, scaling up training runs today might cause “wake up” and thus bring AI timelines forward
by many years, reducing time for safety work, movement building, and other preparations.

https://docs.google.com/spreadsheets/d/1bGbzR0c3TqsRYTWS3s6Bysgh9ZOuKS1w6qH1SOI11iE/edit#gid=186138651
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17%. This implies growth in FLOP/$ will gradually increase from its recent rate of
doubling every ~3 years.

I’ll discuss each step in turn.

Economic model relating hardware R&D inputs to outputs
I’m using what economists typically consider to be the best model of R&D - the
semi-endogenous growth model (SEG).101 Its distinctive advantage, compared to the
alternatives, is that it quantifies the extent to which ideas are getting harder to find, or the extent
to which there are diminishing returns to doing more research.102

One way to understand the core of the model is as saying:103

Each time cumulative inputs double, the output metric doubles r times

So for each x% increase in cumulative R&D inputs, the output metric will increase by r*x%.104

The inputs could be measured in $ or in (quality-adjusted) researcher-years; the output metric
can similarly vary.

Estimating r for hardware
What happens when we fit a SEG model to this data on hardware inputs and outputs? I did this,
taking the inputs to be real $ invested in semiconductor R&D105 and the output to be measured
FLOP/$.106

106 I got my FLOP/$ from the Bio Anchors appendix, top of p.29. I read off FLOP/$ values for 1970, 2008
and 2018, see rightmost columns here. (Note, this data doubles-up as data on the growth of FLOP/s per

105 I got my dollar input data from Are ideas getting harder to find. I took their numbers for nominal $
hardware investment, using their category ‘PatentNarrow (include equipment)’. I extend their data after
2015 based on recent growth in R&D inputs (rows 41 - 46). Then I adjust these nominal $ inputs for
inflation. See calcs here.

104 Then in what sense are “ideas are getting harder to find”? Somewhat confusingly, economists define
“one idea” as a 1% increase in the output metric. Early R&D models implied that every such increase
would require the same absolute increase in cumulative inputs. But this model implies that the cumulative
input increase required grows over time. The smaller r, the more effort must increase from one idea to the
next. More precisely, compare the effort needed to double the output metric on two consecutive occasions
(e.g. increasing it from 5 to 10, and from 10 to 20). The effort for the second doubling is greater by a
factor of 2^(1/r).

103 How does this relate to the standard presentation of the theory in terms of the stepping on toes
parameter lambda and the fishing out parameter phi? r = 1 / (1 - phi). If lambda < 1 then we should adjust
our description of what the core of the model to ‘For each x% increase in cumulative effective R&D
inputs, the output metric will increase by r*x%’, and add that the effective input in each year is
input^lambda.

102 As such, it’s the model used in the famous paper by that name.

101 To my mind most of the alternatives are pretty implausible, so being “the best” means something like
“being broadly consistent with the empirical evidence and not having significant noticeable flaws” rather
than being well confirmed.

https://docs.google.com/document/d/1qjgBkoHO_kDuUYqy_Vws0fpf-dG5pTU4b8Uej6ff2Fg/edit#heading=h.xi6z3buznjb7
https://docs.google.com/spreadsheets/d/1bGbzR0c3TqsRYTWS3s6Bysgh9ZOuKS1w6qH1SOI11iE/edit#gid=0
https://web.stanford.edu/~chadj/IdeaPF.pdf
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://docs.google.com/spreadsheets/d/1bGbzR0c3TqsRYTWS3s6Bysgh9ZOuKS1w6qH1SOI11iE/edit#gid=186138651
https://web.stanford.edu/~chadj/IdeaPF.pdf
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The following table summarises the calculation:

Time period g(cumulative inputs) g(FLOP/$) Estimated hardware
returns, r

1970 - 2018 7.9% 53% 6.7

1970 - 2008 8.5% 61% 7.1

2008 - 2018 5.4% 23% 4.3

2006 - 2022 (GPUs) 5.4% 28% 5.2

If you prefer thinking in terms of doubling times rather than growth rates, use this converter.

The calculation is simple. For each time period, r = g(FLOP/$) / g(cumulative inputs).

So the data suggest that returns to hardware R&D were very good from 1970 - 2008, with each
doubling of cumulative inputs leading to 7 doublings for FLOP/$. Returns have been less good
recently, with each doubling of inputs driving a little over 4 doublings of FLOP/$. Though if you
focus on GPUs, returns look a little better.

I’ll take the GPU figure, 5.2 as my median estimate of the current value of r. It could be higher if
there’s a reversion to the longer-run historical returns, or it could be lower if returns are worse
today than in the period 2008-2018. Additionally, the Full Takeoff Speeds Model assumes that r
decreases towards 0 as FLOP/$ approaches physical limits.

(There is a subtlety in accounting for the stepping on toes effect, where doubling the real $
investment in a given year less than doubles the progress that year due to barriers to
parallelising research. I discuss this in an appendix.)

How quickly might hardware R&D inputs grow after “wake up”?
How quickly could we grow real $ inputs to R&D when we’re trying very hard after “wake up”?107

This is another input where the best I have been able to do is point to weakly relevant empirical
trends. Here are some:108

● Growth of US federal R&D around WW2.
○ The US made a notable effort to expand R&D during and after WW2, so may be

an indicator of how quickly R&D efforts can be expanded.

108 All figures give the growth of real $ inputs unless stated otherwise in a footnote.

107 I’m explicitly not including the $ value of AI systems used to do hardware R&D in this section. That is,
I’m forecasting the growth in the real inputs of human labour and non-AI capital. The next section gives a
separate treatment of the effect of incremental AI automation on the pace of R&D progress.

$, as the appendix applies a constant conversion factor from FLOP/s to FLOP, assuming chips are
deprecated after 2 years). For GPU FLOP/$, I got data from Epoch’s analysis.

https://docs.google.com/spreadsheets/d/11WLXLpYeVCVtA_hcP7LOAJrBwQGcAfCtICkEmNTW4xQ/edit#gid=0
https://www.lesswrong.com/posts/c6KFvQcZggQKZzxr9/trends-in-gpu-price-performance
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○ Examples:
■ Defense R&D grew at 15% from 1950 to 1962.
■ Civilian R&D (which includes many sectors) grew at 17% from 1950 to

1966, though probably total R&D grew more slowly than this.
■ Space R&D grew at 36% from 1954 to 1966, though from a small base.
■ Total federal R&D grew at 11% from 1937 - 1953 (I think this number is

sketchy).
○ I think the financial incentive for hardware R&D will be greater after “wake up”,

but it will be growing from a higher base. My takeaway is a weak anchor to
10-30%.

● Historical growth of semiconductor R&D inputs.
○ These grew at 10% initially, and this growth rate has gradually declined over time

(see above).
○ Again, the incentive to grow R&D will be much greater after “wake up”, but it will

be growing from a much larger base. I’m not sure how these net out.
● Historical growth rate for other areas of R&D.

○ Are Ideas Getting Harder to Find contains estimates of the growth of inputs for a
number of fields; numbers range from 2% to 10%.109

○ I’d expect hardware inputs to grow at or above the higher end of this after “wake
up”.

● Recent growth of R&D in hardware companies whose revenues are growing
quickly.

○ These provide evidence about how quickly hardware companies grow R&D when
there is lots of demand for their output.

○ Examples:
■ ASML R&D grew at 17% from 2016 - 2021.
■ NVIDIA R&D grew at 19% from 2016 - 2021, and 14% from 2005 - 2021.
■ TSMC R&D is growing at 4 - 5%. (Their capital costs are growing much

more quickly than this.)
○ My takeaway is a weak anchor to ~20%, as the demand will be higher still after

“wake up”.
● Growth of R&D relating to covid-19.

○ From January 2020 to June 2020, the number papers published related to covid
grew by almost 2 OOMs.110

○ While I doubt the new authors were adding nearly as much value as existing
experts, and the initial base is clearly much smaller for covid, this was an update
for me towards scientists’ ability and willingness to pivot to new fields.

● [Any other ways ppl think of to inform a guess at this?]

110 See the “Sell it” section of this Matt Clancy substack post.

109 The growth rate of real $ are probably slightly higher, as the paper uses a different measure of inputs.
Its units are “salary of a high-skilled worker”, and I think a “high-skilled worker” is operationalised as a
graduate. So if graduate salaries have gone up in real terms, the paper’s growth rates will underestimate
growth as measured in real $.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1190077077
https://web.stanford.edu/~chadj/IdeaPF.pdf
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=513612130
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1423870254
https://www.taiwannews.com.tw/en/news/3954592
https://mattsclancy.substack.com/p/building-a-new-research-field?token=eyJ1c2VyX2lkIjozMjM5Mjc4NywicG9zdF9pZCI6NDY3MTU1MzUsIl8iOiJvNXNkOSIsImlhdCI6MTY0MjIxOTYwOSwiZXhwIjoxNjQyMjIzMjA5LCJpc3MiOiJwdWItMjI1NzQiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-TNae_6wGN5Cb5yJTd9YFpTYmJgaks9RAEh2ZPqlSzs
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My best-guess central estimate here is an input doubling time of ~3.5 years, which is a growth
rate of ~17%. This is a little higher than the trends above, but I expect there to be huge demand
once $ trillion training runs are on the table,111 and sufficient numbers of high-skill people who
can add value (e.g. who currently work in finance, physics, other areas of materials science) for
the field to double every 3 - 4 years. I’d be surprised if this <8% as 8% is not unusual for the
growth of R&D fields. Similarly I’d be surprised by >35% because i) even space R&D did not
grow faster than this from a small base in the 1950s, and ii) doubling the semiconductor R&D
field in just 2 years (35% growth) feels like a pretty tall order.

When will this growth top out? The Full Takeoff Speeds Model currently assumes it continues
until we’re investing 3% GWP annually, ~$2.5 trillion today. That’s ~35X larger than today’s
figure of $70b, allowing for ~20 years of 17% growth.

Why a ceiling of $2.5 trillion? One anchor is that annual semiconductor revenues today are
~$550b while R&D is ~$70b: a ratio of six. If annual semiconductor revenues are growing
towards being worth $30tr, as I assume above, then that same ratio implies that R&D should be
growing towards $5tr. I’m reducing that to $2.5trillion because total global R&D spend today is
only ~$2 trillion.

Growth of FLOP/$ after “wake up”
If cumulative inputs grow at 17%, and r = 5.2, FLOP/$ will grow at 5.2 * 17% = 88%. That’s
roughly a 9-month doubling.

There is an important caveat. There is a difference between annual and cumulative inputs. If
annual inputs suddenly start growing at 17% (rather than their current ~5%), there is a lag
before cumulative inputs grow at the new faster rate.112 So if faster growth of annual R&D
inputs coincides with the startpoint, there will be a >10 year lag before FLOP/$ grows at
the new quicker rate.

This dynamic – the distinction between annual and cumulative inputs – is modelled explicitly in
the Full Takeoff Model (FTM).

I worry the FTM is conservative for modelling the response to “wake up” merely via a faster
growth rate in annual hardware R&D spending, rather than also including a one-time jump in
spending. A one-time jump would reduce the lag before FLOP/$ grows at the new quicker rate,
and could significantly reduce the time crossing the effective FLOP gap.

112 In fact, the growth rate of cumulative inputs gradually increases from the old growth rate of annual
inputs to the new growth rate of annual inputs. Also, it turns out a larger “stepping on toes” effect causes
a longer lag before output grows at the new pace, see more here.

111 If you’re going to spend $1 trillion on FLOP for a training run, it’s worth spending $500 billion on R&D to
double FLOP/$. Current semiconductor R&D is only $70 billion.
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This concludes the discussion of how AI investments after “wake up” might affect trends in
FLOP/$. Now I turn to how they might affect 2020-FLOP per FLOP.

How big is the relevant bucket of hardware R&D?
The Full Takeoff Model (FTM) uses ~$80b as the hardware R&D spend in 2022, the figure for
semiconductor R&D spend.

But you might choose to use a larger figure if you include the potentially-larger buckets of
computing and electronics or materials science.113 The logic for inclusion would be that, in the
long run, semiconductor R&D progress is reliant in progress in these broader areas. Using a
This would leave less room for investment to hardware R&D to grow before reaching a cap; it
might also change the historical growth rates of R&D spending.

Alternatively, you might choose to use a smaller figure if you restrict to hardware R&D
specifically targeted at improving chip design for AI use-cases. This would leave more room for
R&D spending to grow, and probably imply recent historical growth of R&D spending was
higher.

In reality, the smaller bucket is probably more relevant over shorter timescales (where existing
node sizes can be specialised for AI algorithms) but the larger bucket will become increasingly
relevant over longer time periods (where entirely new computing paradigms must be invented).
This means the FTM might underestimate R&D progress in the short term but overestimate
progress in the long term.

This model implies that hardware progress will continue to slow down
before “wake up”
The above data show that growth of FLOP/$ has slowed over time. The semi endogenous
growth model I’m using predicts some but not all of that slowdown, because the growth of
cumulative hardware inputs has also slowed over time (but not by as much). This gives us some
reason to prefer it to a simple trend extrapolation.

But, in the near term, it seems like the growth of cumulative R&D hardware inputs will continue
to slow.114 So the semi endogenous growth model predicts that the growth of FLOP/$ will
continue to slow during the 2020s. In fact, it predicts its current growth rate is lower than its

114 Why? Historically, annual R&D inputs grew quickly at a rate of ~10%. Recently, they’ve grown slower,
at a rate of ~4%. As a result, cumulative R&D inputs have gradually been growing more slowly over time,
with their growth rate moving gradually down from 10% towards 4%, currently at ~6%. If annual R&D
inputs continue to grow at ~5% (as I’m forecasting before “wake up”), then the growth of cumulative R&D
inputs will continue to slow from 5% to 4%.

113 This chart puts Computing and Electronics at ~20% of global R&D spend, which would be 0.2*$2tr =
$400b.

https://www.icinsights.com/news/bulletins/Industry-RD-Spending-To-Rise-9-After-Hitting-Record-In-2021/
https://www.statista.com/statistics/270233/percentage-of-global-rundd-spending-by-industry/
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recent average (i.e. the averages reported in the table above) because the current growth of
cumulative inputs is lower than the recent average growth rate.

If I had used a smaller bucket of R&D, restricted to designing AI-specialised chips, this model
might have the opposite conclusion. Plausibly, the cumulative hardware inputs in this narrower
bucket will grow more quickly in the near future than the recent past. This is another way in
which the FLOP/$ forecast of this model could be considered to be conservative.

But aren’t we approaching the physical limits of the current paradigm?
It was beyond the scope of this report to do an investigation into the details of how long
progress could continue within the current hardware paradigm, and how promising new
paradigms are. Instead this report takes a zoomed out “outside view” approach to forecasting
hardware progress, extrapolating the observed relationship between inputs and outputs.

Would investigating the details of the current paradigm imply that this report overestimates
future hardware progress? Plausibly, but it’s not obvious to me.

● As mentioned above, the report assumes that hardware innovations are getting harder to
find, with more research effort required for each successive doubling of FLOP/$. This
captures the intuition that progress will become more difficult as we approach the end of
the current paradigm.

● In addition, the FTM assumes that the rate at which hardware innovations become
harder to find itself increases. The returns diminish increasingly steeply as we make
more hardware progress. Mathematically, this corresponds to reducing r as FLOP/$
increases. This is an additional conservative adjustment to naive trend extrapolation.

● It’s possible that the rate of progress will be faster in a new paradigm, rather than slower.

2020-FLOP per FLOP
The approach here is the same as in the last section. This time I use inputs to software R&D
rather than hardware, and measure output as 2020-FLOP per FLOP rather than FLOP/$.

In particular I:
1. Use historical data to calibrate an economic model relating cumulative inputs to output.

a. This time the data is significantly more uncertain, especially the output data.
b. Ultimately I assume that each doubling of software inputs drives ~1.25

doublings of 2020-FLOP per FLOP.
2. Forecast how quickly inputs will grow after “wake up”. I guess that these will grow at

~25%, slightly faster than their recent rate of 20%. This implies that 2020-FLOP per
FLOP will also grow at ~31%.115

115 1.25 * 25% = 31%.
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Economic model relating software inputs to outputs
As last time, the core of the model can be expressed as:

For each x% increase in cumulative R&D inputs, the output metric will increase by r*x%.

Our inputs are real $ invested in software R&D; our output metric is 2020-FLOP per FLOP.

The data for software inputs and outputs is not comparably good as for hardware. On the input
side, the best I know of are the numbers from Tamay Besiroglu’s dissertation. He uses data on
the number of authors of papers in three subfields of ML as a proxy for the number of
researchers. After some adjustments, we end up with following estimates:116

ML subfield Growth in the annual inputs to software
R&D, 2012 - 2020

Computer vision 20%

Natural language processing 36%

Graphs 42%

My guess is that the real growth of inputs in this period is lower, mostly because these growth
rates seem very high and I think this estimate is very uncertain.117 (If these numbers are correct,
it suggests I’ve been too conservative with my estimates earlier in this section.)

On the output side, the ideal situation would be to have trustworthy estimates of how many
FLOP would be needed to train AGI at different points in time. This would be a direct estimate of
the growth in 2020-FLOP per FLOP.

In actual fact, the best I’m aware of is to track the training compute needed to achieve a fixed
score on a specific benchmark over time. The best example of this type of analysis that I know
for AI is AI and Efficiency, which finds that runtime compute needed for a fixed performance on
AlexNet halved every 16 months (growth rate of 52%) between 2012 and 2020.118

118 I discuss non-AI software trends here.

117 Uncertain for at least two reasons. Firstly, I don’t expect the “number of distinct authors” to correlate
perfectly with “number of full time researchers”. Secondly, the attempt to adjust for the quality of the
researchers seems unconvincing: they multiply by the salary of the researcher’s country but I’d expect
that within each country the new researchers are mostly young.
In addition to the numbers looking high and being uncertain, there’s another reason I think the true growth
is probably lower. The growth rate of cumulative inputs will be lower than the growth rate of annual inputs,
assuming that growth of annual inputs was slower before 2012. And it’s growth of cumulative inputs that
matters for this economic model linking R&D inputs to outputs.

116 Tamay multiplies (an estimate of) the number of paper authors from each country by the average
salary of scientists in that country, measured in nominal $. I adjust these numbers downwards somewhat
to account for inflation. So the R&D inputs in the table are measured in real $. See my calcs here.

https://github.com/Besiroglu/webpage/blob/3682ccac6fc92378934c24b0c08a64bcca1793e6/papers/AreModels.pdf
https://openai.com/blog/ai-and-efficiency/
https://docs.google.com/spreadsheets/d/1qmiomnNLpjcWSaeT54KC1PH1hfi_jUFIkWszxJGVU5w/edit#gid=0
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I believe that other benchmarks show similar or faster rates of software progress (with
doubling times of 1 - 2 years) when this has been measured.119

Estimating r for software
If we naively combine the g(2020-FLOP per FLOP) = 52% estimate from AI and Efficiency with
Tamay’s estimate of the growth rate of real $ inputs to computer vision, we get r = 52%/20% =
~2.5. In other words, each doubling of cumulative investment doubles the efficiency of
algorithms 2.5 times.

If we use this as our central estimate we are assuming that the software progress on ImageNet
will match that on AGI (in expectation). But in Bio Anchors, Ajeya writes:

“... researchers have strong feedback loops on ImageNet, and I would expect them to be
less efficient at reducing computation costs for something which has never been done
before, such as “training a transformative model.”

Another reason for the same adjustment is that we might imagine AGI software progress is the
average of all areas of AI, and that the areas where we’re measuring progress have faster
progress than the areas we’re not interested in measuring. On the other hand, some algorithmic
progress seems to reduce the compute needed large training runs more than the compute to
smaller training run, suggesting the compute needed to train AGI may be falling more quickly
than that for ImageNet.

Ultimately, I follow Bio Anchors and assume ~half the rate of software progress as observed in
ImageNet.120 For now I will remain consistent with Bio Anchors and make an equivalent
adjustment. This halves my estimate to r = 1.25.

Using r = 2.5 would bring forward AGI timelines by ~3 years as well as making takeoff faster. In
the Monte Carlo I use large uncertainty bounds for this parameter: 0.8 - 5.

How quickly might software R&D inputs grow after “wake up”?
I don’t have much to add here to the analogous section for hardware. In that case, my central
estimate was 17%. I want to use a higher number here, for two reasons:

1. The AI software sector is growing from a smaller base. I guessed AI software spend is
~$10-20 billion, vs $70 billion for semiconductor R&D.

120 She replaces the observed 16 doubling time with a 2 - 3 year (i.e. ~30 month) doubling time.

119 For example, table 2 of OpenAI’s paper shows similar or faster software gains on other select tasks as
on ImageNet, and people I’ve spoken to suggest recent progress on language models has been faster
than the ImageNet progress.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.x1lgibjdeh01
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=10
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2. The AI software sector is apparently already growing faster than 17%: the numbers
above range from 20% to 42%. I expect that after “wake up” inputs to software will grow
as fast or faster as it is currently, based on the huge demand.

a. I’m going to anchor to the 20%, rather than the 42%, because I used the 20% to
estimate r.121

Based on the above, my central estimate here is that real $ invested in software R&D will
grow at a rate of ~25%. For similar reasons to above, I’d be surprised if this is <15% or >40%.

This implies a central estimate of g(2020-FLOP per FLOP) = 1.25 * 25% = 31%. This is very
similar to the Bio Anchors extrapolation of ~28%; just a touch higher as I expect inputs to grow
somewhat faster than they are currently.

Summing up

122

This section analysed the effect of fast-rising AI investments on the speed crossing the effective
FLOP gap, summarised in the diagram above. This has implications for takeoff speeds and for
timelines.

The next section analyses the effect of incremental AI automation on speed crossing the
effective FLOP gap. In doing so, it introduces the theoretical machinery for calculating new
metrics for takeoff speed that relate to the number of AIs and their effects on GDP.

122 Link to diagram.

121 If I’d used the 42% to estimate r, I’d probably be using a lower value for r. (Though it’s possible that
software progress has simply been twice as fast in Graphs than in Computer Vision.)

https://docs.google.com/presentation/d/1nefLcXMoDqlvKF14cqdLXxy6qy5tX84-fRwCQuy03dA/edit#slide=id.g144b9cc1aa1_0_0
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5. AI automation
I think this section of the long summary summarises the important takeaways from
sections 5 and 6 in a just few pages. I’d only read this section if you really want to
understand the math behind the automation models I’m using further, but aren’t familiar
enough with growth economics already to read the mathematical description of the Full
Takeoff Model.

Summary
This section analyses the effect of incremental AI automation on takeoff speeds.

By “incremental” I just mean that I model AI automation as a continuous process of automating
more and more tasks, without any discrete “jumps” in which AI suddenly automates lots of
cognitive tasks in one fell swoop. I do not mean to imply that this process happens slowly; in
fact it may happen very quickly. The speed depends on the size of the effective FLOP gap and
how quickly we cross it.

As a recap, the two key inputs to takeoff speed are the effective FLOP gap (measured in
2020-FLOP) and our speed crossing the effective FLOP gap, g(2020-FLOP). Section 3
described this framework and laid out evidence informing the effective FLOP gap, and section 4
analysed the effect of rising AI investment on g(2020-FLOP).

This section analyses the effect of AI automation on g(2020-FLOP). As in section 4, I’ll analyse
each of the three components of 2020-FLOP separately. This time I’ll take them in reverse
order: 2020-FLOP per FLOP, then FLOP/$, and finally $ on FLOP.

For each component, I will use a certain economic model to analyse the effect of AI
automation.123 In this section I use a simple version of the model which excludes certain
bottlenecks.124 Bottlenecks are discussed in section 6.

Then I’ll explain how we can calculate some additional metrics of takeoff speeds using our
model of AI automation. In particular, metrics relating to the number of AIs and their effects on
GDP.

The key takeaways from all this are:
● AI automation causes growth of the three components to accelerate continuously. By the

time we reach full automation of cognitive labour (AGI), they can double in months or
faster.

124 This is the Cobb Douglas version of the task-based model.
123 I’ll use a task-based model, and explain it below.

https://docs.google.com/document/d/1Z7HJ9pHctgDi1XYbgRW9-7J1bxTL98KW1qb7HN7Mv-A/edit#heading=h.io269vaujkvz
https://takeoffspeeds.com/description.html
https://takeoffspeeds.com/description.html
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○ This includes a feedback loop where more 2020-FLOP leads to training better
AIs and running more AIs, which in turn allows us to produce more 2020-FLOP.

● Initially, when a small fraction of cognitive tasks have been automated, AI automation
has a small effect on the growth of the three components compared to the rising
investment discussed in section 4.

○ The effect on FLOP/$ and software becomes significant, relative to rising human
investment, when ~25% of cognitive tasks have been automated.

○ The effect on $ on FLOP becomes significant when ~45% of cognitive tasks have
been automated.

○ This doesn’t account for bottlenecks, which would increase these percentages
somewhat.

● Unfortunately, I’m not aware of a simple, analytically tractable way to calculate overall
takeoff speed metrics given the feedback loops involved here. My approach instead is to
simulate the model and do a sensitivity analysis, which I’ll present in section 7.

This section is more technical than other sections. Many readers will prefer to skip to the next
section.

2020-FLOP per FLOP
2020-FLOP per FLOP, my operationalism of the quality of AI algorithms, increases because of
software research. I’m going to model incremental AI automation as a continuous transition from
“world 1”, where humans do ~all the software R&D, to “world 2”, where AIs do ~all the software
R&D. First I’ll discuss the dynamics of world 1; then those of world 2. Lastly I’ll explain how I’m
modelling the transition between the two.

World 1
We’re currently in a world where software research is overwhelmingly done by human workers.
Let’s call this world 1. In section 4, I forecasted how quickly these human inputs to software
R&D might grow after “wake up”, and what effect this might have on 2020-FLOP per FLOP.125

125 I guessed that each doubling of cumulative software R&D inputs would cause 2020-FLOP per FLOP to
double 1.25 times. I measured in the inputs as real $ spent on R&D.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.w93f9oz4dz91
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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World 2
Once we have billions of AGIs – remembering that AGI is AI that can automate 100% of
cognitive tasks – we’ll be in a world where software research is overwhelmingly done by AIs.
Let’s call this world 2.

Ultimately, we’ll model the transition from world 1 to world 2 by assuming progress is driven by a
combination of AI and humans.
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Before this, let’s think about what will happen to the level of software world 2?

We can understand this dynamic by answering two questions:
1. How long does the first doubling of software (i.e. 2020-FLOP per FLOP) take in world 2?
2. How do the lengths of the software doublings change over time in world 2?

How long is the first software doubling?
The answer to the first question depends on i) how many human researcher-years are needed
to double software when we first get AGI, and ii) how many AGIs you can run (where each AGI
is as productive as a human per day).126

Here’s a very rough estimate of (i). If there are 20,000 high-quality human researchers on
software today127 and software doubles every ~2 years128 then it currently takes 40,000
researcher years to double 2020-FLOP per FLOP. Let’s assume this is ~100X higher by the time
we get AGI due to diminishing returns from the research that happens before then.129 That
implies ~4 million researcher-years to double software when we get AGI.

129 100X corresponds to cumulative research inputs growing by 100X by the time we develop AGI, which
could be from growing 23% per year for 20 years before we develop AGI. e^(0.23*20) = 100. I’m using a
model in which the effort needed to double software is proportional to the total cumulative input so far.

128 In the ImageNet example, 2020-FLOP per FLOP doubled every 16 months.

127 DeepMind has 1000 employees, and I earlier assumed that total AI software input was 20X that of
DeepMind. (The 20X is a guess, and someone could probably easily get a better number.) Facts that are
potentially relevant to a more careful estimate: 200 new AI PhDs in 2020; 80,000 AI journal publications in
2020.

126 A more precise formulation of (ii) is: how many human workers you’d need to make the same software
progress per day as the collection of AIs you can run. This formulation reflects the fact that there may be
a variety of different AIs doing different software tasks, rather than just AGIs doing all of them. (Indeed,
this is what happens in the Full Takeoff Model!)

https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-4.pdf
https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-1.pdf
https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-1.pdf
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To estimate (ii), suppose you trained AGI with 1e32 2020-FLOP, the training run took 4 months,
afterwards you used 10% of your training compute to run AGIs doing software research, and
running an AGI required 1e16 2020-FLOP/s.130 With these conservative assumptions,131 you’ll
have 100 million AGIs doing software research and so the first software doubling will take ~1
months.

Our estimate here could easily have been more aggressive:
● If instead AGI requires 1e36 2020-FLOP to train but has the same runtime requirements

(e.g. due to a long horizons), the first software doubling will be OOMs quicker as we’ll
have more 2020-FLOP to run AGIs.

● If AGI has significant “one-off” productivity advantages over humans for R&D (run faster
in serial time, no sleep or leisure, better motivation and coordination, all AGIs are copies
of the most productive AGI) then this will speed up software progress. My current
guesstimate of these advantages for R&D is ~60X.

A more aggressive estimate of 10X naively implies software doubling in a couple of weeks,
though at that point bottlenecks from computational experiments become salient.

The point here is not to trust these exact numbers.132 It is to see the way in which the time for
the first software doubling depends on the AGI’s training compute, AGI’s runtime compute, and
the amount of software research that has happened before AGI. It is secondly to make plausible
the idea that the initial software doubling in world 2 could happen in months or much less.

How do the lengths of the software doublings change over time?
In world 2, the annual inputs to software R&D are proportional to the 2020-FLOP used for this
purpose.133 This means that there is a very direct feedback loop between the inputs and outputs
of software research, unlike today. Doubling the software R&D output metric also doubles the
input to software research.

133 We can in principle distinguish between 2020-FLOP for training AGI (my main focus thus far in the
report) and the 2020-FLOP for running AGI. It is possible that they grow at different rates, e.g. if a new
algorithm reduces training FLOP but not runtime FLOP. For our present purposes, it is the runtime
2020-FLOP that concerns us. For ease of exposition, I won’t explicitly distinguish between these two
unless it is relevant. [Describe what Full Takeoff Model does here. TODO]

132 In fact, the first doubling time depends on many interacting factors (like “how much will returns to
software research have diminished by the time we get to AGI?”) and is hard to estimate analytically.
Ultimately, I get around this by simulating the system and doing a sensitivity; software doubling times are
almost always extremely fast (<6 months) by the time we have AGI, even if there isn’t a “software
singularity” (discussed below). But the simulation omits bottlenecks from computational experiments.

131 Small training 2020-FLOP for AGI; a large runtime compute for AGI; only 10% of compute on software
work; ignores the fact that inference is more efficient than training; ignores the possibility of AIs perform
some tasks much more compute efficiently than human brains (e.g. like calculators are OOMs more
compute efficient than human brains at arithmetic, or facial recognition systems are OOMs more efficient
at recognising faces, or GPT-3 is OOMs more compute efficient at writing poems).

130 I.e. 1e16 2020-FLOP are needed to do as much quality-adjusted cognitive labour as a human does in
1 second.

https://docs.google.com/spreadsheets/d/1_8NgvrbGYYr8rw4ZxmEGF9G170crqMxaColHS1ner2g/edit#gid=0
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
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The feedback loop is:

Better software → more 2020-FLOP → more software R&D → better software

It turns out that, with this feedback loop, there are two broad possibilities.

1. Software singularity - quicker and quicker doublings. If returns to software R&D exceed a
certain threshold, the feedback loop is so powerful that there’s a “software only singularity”. The
level of software, quantified here as 2020-FLOP per FLOP, grows faster and faster, theoretically
going to infinity in finite time. And this happens even using a fixed quantity of physical FLOP to
run the AIs. In practice, of course, the software returns become worse before we go to infinity
and we move to the second possibility.

2. Software fizzle - slower and slower doublings. If returns to software R&D are below a
certain threshold, the level of software grows more and more slowly over time,134 assuming a
fixed quantity of physical FLOP. (If the amount of physical FLOP is in fact growing increasingly
quickly, then the level of software can do the same. But software progress is reliant on the
growth of physical FLOP.)

Which possibility will obtain? It turns out that there is a software singularity just if r > 1, where r
is defined as in section 4:

For each doubling of cumulative R&D inputs, the output metric will double r times.

134 There is technically a “knife edge” third possibility where software grows at a constant exponential rate,
if software returns are exactly equal to the threshold. I’m setting this aside because it’s a knife edge
result.



50

r > 1 means that doubling cumulative software inputs causes 2020-FLOP per FLOP to more
than double.135 I argue that this is plausible here, considering various estimates of r and the fact
that r will likely fall over time.

What are the implications of a software singularity for takeoff? In short, it would not guarantee a
fast takeoff in every important metric, but it would make takeoff faster.

● Make takeoff faster. A software singularity would lead to very fast software progress as
we approach AGI, significantly accelerating software growth. This means we cross the
effective FLOP gap more quickly and AI capabilities improve more quickly immediately
after AGI. This progress in AI capabilities wouldn’t be bottlenecked by the need to print
new chips.

● Increase the peak capabilities reached shortly after AGI. If there’s a software
singularity, AI software could rapidly grow by many OOMs and approach physical limits
in the months after AGI, without needing to wait on the design and production of new AI
chips. This has implications for how a small calendar lead in developing AGI could
translate into a total capabilities advantage shortly after developing AGI.

● No guarantee of fast takeoff. During a software singularity, each doubling of software
need only happen slightly faster than the previous doubling. In fact, only under extreme
assumptions does each doubling happen twice as quickly as the last.136 This means that
on a metric of takeoff speed in terms of the ratio between successive software doubling
times, world 2 does not involve a fast takeoff even if there’s a software singularity. That
said, a fairly rapid transition from world 1 to world 2 would be more likely to drive a fast
takeoff if there’s a software singularity.

I’ve just discussed the internal dynamics of 2020-FLOP per FLOP in world 2 in their implications
for takeoff speed; I analysed the dynamics of world 1 in section 4; now I describe a model of a
gradual transition from world 1 to world 2.

136 I analyse this dynamic more in appendix TODO.

135 Why is this the condition for software singularity? Suppose that you initially have 1000 AGIs doing
software work. Let’s say it takes them 1 year to double cumulative software inputs. By this time,
2020-FLOP per FLOP has increased by a factor of 2^r. (This follows straight from the definition of r.) If r >
1 then 2020-FLOP per FLOP has more than doubled, and so your software research input has more than
doubled to >2000 AGIs. How long will it take you to double cumulative inputs a second time? If your
population of AGIs were still 1000, it would take you twice as long (each doubling of cumulative inputs
takes twice as much effort as the previous doubling). But because you now have >2000 AGIs, it will take
you less long and you’ll double cumulative inputs in less than a year. This means the growth rate of
cumulative inputs is increasing. g(output) = r * g(cumulative inputs), so the growth rate of output is also
increasing.

How does introducing a “stepping on toes” assumption change this analysis? Not much. Stepping on toes
is expressed mathematically as I = C^lambda, lambda < 1. In this case, the condition for software
singularity becomes r*lambda > 1. If we held our estimate of r fixed, then a software singularity would be
less likely. However, consistency with the historical data requires us to raise our estimate of r to exactly
compensate if we lower the value of lambda. This is because the historical data constrain r*lambda
directly. For example, in section 4 I said the data suggested r = 2.5. But if I’d accounted for stepping on
toes, I’d have instead said that the data suggests r*lambda = 2.5. The implication of the historical data for
the software singularity is unchanged. In both cases the singularity happens just if the quantity > 1, and
the historical data suggest the quantity equals 2.5.
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Transition from world 1 to world 2
We can represent the annual inputs to software research mathematically in worlds 1 and 2.

In world 1, the annual inputs to software research are given by:
(1)𝐼

𝑆
 =  𝐿

𝑆

where LS is the number of human software workers.137 138

In world 2, the annual inputs to software research are given by:
(2)𝐼

𝑆
 =  𝐶

𝑆

where CS is the quantity of 2020-FLOP used by AI systems for software R&D. (We will continue
to use the same economic model to predict how the annual inputs will affect the output metric,𝐼

𝑆
 

2020-FLOP per FLOP.)

How can we model the move from world 1 to world 2? The best approach I know of here is the
task based model.139 This model supposes that software R&D involves a large number of
distinct cognitive tasks.140 Total R&D input depends on the inputs to each task.141

141 This mathematical footnote is not needed to understand what follows. This section uses the Cobb
Douglas version of the task-based model, which is simple and doesn’t include bottlenecks. In that model,

140 In the model these tasks are fixed over time. However, in the version that incorporates bottlenecks
(that I’ll introduce next section), the relative importance of these tasks does change over time. In
particular, if we automate a task our output on that task increases and so the task becomes less
important. The result is that the non-automated tasks grow in importance. This matches the recent trend
of hard-to-automate sectors like education and healthcare growing as a fraction of GDP while
automatable sectors like agriculture fall as a share of GDP. Also, the growing importance of
non-automated tasks can represent the possibility that entirely new tasks are introduced that AI cannot
(initially) perform. In our model, we’ll think of these new tasks as new applications of existing tasks that AI
couldn’t perform.

139 During my previous investigation into whether AI could drive explosive growth I didn’t come across
anything more promising despite studying most mainstream growth models and most growth models of
transformative AI (e.g. this review). This model also seems to be favoured by economists studying the
economic implications of advanced AI, e.g. Aghion et al. (2017) and Hanson (2001). Some advantages of
this model are: quantifying what % of the way from world 1 to world 2 we’ve travelled at each point in time
and quantifying the effect of this on software R&D, allowing flexible incorporation of the degree of
bottlenecking between different tasks (which I’ll use in section 6); being fairly intuitive to explain. With
bottlenecks, the model looks like (see section 9.2) it can explain a good chunk of the growth of the last
150 years as resulting from automation. Thus we are using a model in which future AI automation is a
continuation (and significant acceleration) of past automation (which for the first time ever leads to full
automation).

138 If we want to account for the “stepping on toes” effect we could instead write I = L^lambda. I won’t do
this for simplicity of exposition, but will note in footnotes or appendices when the stepping on toes effect
would meaningfully change the dynamics.

137 This is slightly different from section 4 where I measured software inputs in units of real $. In this
section it will be simpler to talk in terms of # researchers, rather than real $. We can relate these two input
metrics by estimating the annual rise in real salaries during this period, which I'll assume is 2%. Real $
inputs should grow 2% quicker than # researchers. For example, I estimated that real $ inputs to software
would grow at 25%, and this would correspond to 23% growth in # researchers.

https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://docs.google.com/document/d/1XCn4Pk44evZEjbmPD-zKlj26Z_bhf0ABeWVID_4L5sg/edit#
https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
https://mason.gmu.edu/~rhanson/aigrow.pdf
https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
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In world 1 humans do ~all the tasks142 and, when you do the maths of the task based model, this
results in equation (1). In world 2 AIs do all the tasks and this results in equation (2). We model
intermediate worlds as ones where AI performs a fraction f of tasks, 0 < f < 1.143 It turns out that,
in the Cobb Douglas version of the task-based model (that excludes certain bottlenecks)144, total
R&D input is given (up to an unimportant constant) by:

(3)𝐼
𝑆
 =  𝐿

𝑆
(1−𝑓) * 𝐶

𝑆
𝑓

Notice that when f = 0 this becomes equation (1) and when f = 1 it becomes equation (2). As we
continuously automate a greater fraction of tasks, the exponent on C increases gradually from 0
to 1.

(The Full Takeoff Model assumes a constant fraction of tasks are performed by physical
compute – physical FLOP. I omit this here for simplicity.)

How should we model the process by which tasks are incrementally automated? There are two
components here:

1. When will we develop AI that can perform various cognitive tasks?
2. When do you have enough runtime compute to actually automate various tasks?

144 This section analyses the implications of the Cobb Douglas version of the task-based model because it
is (relatively) simple to understand and tractable to analyse analytically. The Cobb Douglas version
excludes certain bottlenecks, some of which are included in the CES version of the task-based model. I’ll
flag when results from the Cobb Douglas version might not carry over to the CES version. I discuss the
CES version, and bottlenecks more broadly, in section 6.

143 The model implies that an equal fraction of output is paid to each task in 2021. This means that the
‘fraction of tasks’ in the model matches my earlier definition of the “% of cognitive tasks”, where I
weighted each task by the salary-weighted time spent on it in 2021. (I am assuming that all tasks
performed by software workers are cognitive – as opposed to partly-physical tasks like “building a table” –
and so can all ultimately be performed by AI.)

142 Is it really true that human workers do all the tasks necessary for software development today?
Perhaps conducting AI experiments is a crucial part of the process, and this “task” is already performed
by computers. I discuss this in appendix TODO.
In the Full Takeoff Model, I actually assume that, even if AI experiments are not part of software
development, initially a small percentage of software tasks are performed by 2020-FLOP. I am thinking
here of the way in which software developers offload certain cognitive tasks to calculators and
spreadsheets. These are only a small fraction of the relevant tasks because only a small fraction of the
money invested in software development goes to buying the machines that do these types of tasks. (E.g.
calculators are very cheap and use of google sheets are very cheap compared to a developer’s salary.)
The assumption that a small percentage of software tasks, rather than 0 tasks, are initially performed by
2020-FLOP does not materially affect the results.

the total R&D input depends on the input to each task as follows. You multiple the inputs of every task
together to get the total R&D input. Mathematically, suppose there are N tasks, and input to each task is
given by X1, X2,..., XN. Then total R&D input I = X1 * X2 *... * XN. The implication is that you want to spread
your inputs evenly across the tasks, as a tiny input on any task could really let you down (and zero input
on any task will mean zero total input).
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When will we develop AI that can perform various cognitive tasks?
My proposal is to extend the Bio Anchors model for when we train AGI. Let’s say that we use
Bio Anchors to predict that we’ll need 1e36 2020-FLOP to train AI that can automate 100% of
cognitive tasks (my definition of AGI). We can extend it to estimate the 2020-FLOP needed to
train AI that can perform x% of cognitive tasks, for various values of x.145 For example, we
might assume that you automate 50% tasks with 1e34 2020-FLOP and automate 20% of tasks
with 1e31 2020-FLOP.

What evidence can we use to inform these assumptions?
● Bio Anchors, or perhaps other methods, can inform how much 2020-FLOP we think is

needed to train AI that can perform 100% of tasks.
● My earlier discussion of the effective FLOP gap can then inform how much 2020-FLOP

we think is needed to train AI that can perform 20% of tasks.
● The Full Takeoff Model (FTM) then uses a pretty hacky method to extrapolate to the

training run needed to automate x% of tasks for any x.

The spread of these tasks in 2020-FLOP space, together with g(2020-FLOP), will dictate how
quickly new tasks are automated. It is a hugely important and uncertain input to this framework,
which strongly influences how suddenly we transition from world 1 where human workers are
the key input to economic production to world 2 where AI is the key input.

When do you have enough runtime compute to actually automate various tasks?
As discussed in section 2, having AI that can perform a task is not sufficient to fully automate it.
In addition, you must have enough runtime compute to actually replace the human workers that
currently do the task.146 147

To know whether we have enough runtime compute to fully automate a task, we need to know:
1. How many human workers are currently performing that task?
2. How much compute are we using to run AIs doing software R&D?
3. What are the runtime compute requirements for AIs to have the same output at the task

as a human worker?
4. What one-off productivity gains do AIs have over humans?

147 Of course, even this is not sufficient. You might have AI that can readily perform a task, and enough
compute to affordably automate all instances of that task, but not actually automate it due to some other
bottleneck like regulations, incumbents resisting automation, or just the minor effort involved in
introducing the AI into the workflow. The Full Takeoff Model does not incorporate delays between getting
enough training and runtime compute to fully automate a task and actually fully automating it; I discuss
this weakness in section 10[TODO link]. (This is why the training compute threshold should be interpreted
as the 2020-FLOP training requirement for AI to be able to “readily perform” x% of cognitive tasks.

146 Indeed, you must be able to run enough AIs doing the task that it becomes more profitable for human
workers to perform a different task instead.

145 In fact, to fully specify the model we’ll need to determine the 2020-FLOP needed for every value of x
between 0 and 100, though the results are not sensitive to small variations.

https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#Comparisons_and_limits
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Our Full Takeoff Model (FTM) makes assumptions about these quantities. The important high
level points are that:148

1. FTM assumes 1.6 million people149 doing software R&D in 2022, which grows at 20%
before “wake up” and 25% after “wake up”. Also workers’ time is split evenly over equally
important non-automated tasks (so if there are 5 equally important non-automated tasks,
workers spend 20% of their total time on each).

2. FTM tracks total global compute and, after “wake up”, the fraction of this used to run AIs
doing software R&D rises very rapidly to ~10%. Why so high? After “wake up”, demand
for AI software R&D will be high, and so a notable fraction of AIs will be assigned to it if
they can be useful.

3. FTM assumes that the runtime requirements for different tasks are spread out over
multiple OOMs, just as the training requirements.

a. My central estimate has AGI at 1e17 2020-FLOP/s and 20% of tasks at 1e15
2020-FLOP/s.

b. The spread of runtime requirements is smaller than the spread of training
requirements for two reasons.
i. A 10X increase in runtime compute typically corresponds to a 100X

increase in training, e.g. for Chinchilla scaling.
ii. Increasing the horizon length of training tasks will increase training

compute but not runtime.
4. The FTM assumes ~60X one-time gains for AGIs over humans doing R&D.

The software sector is relatively small and so lack of runtime FLOP only prevents task
automation if AI training requirements are extremely low.

To summarise the above two subsections, a task is fully automated when we i) have done a big
enough training run to develop AI that can perform the task, and ii) we have enough runtime
compute for AIs to replace all humans at that task. I believe this is a natural way to integrate Bio
Anchors with a task-based model of incremental automation.

Section 7 considers a model in which having more runtime compute than you need to automate
a task can compensate for not having enough training compute. The consequence is that
software R&D can be fully automated much earlier due to an abundance of runtime FLOP.

This simplistic model obviously omits many factors that in practice affect the automation of
tasks; I’ll discuss this in section 8.

149 In fact, the true number of people doing AI software R&D is lower by 1-2 OOMs. My methodology was
to multiply world population by an estimate the fraction of GWP spent on software R&D (0.02%); but in
fact these workers’ salaries are much higher than average and per-person capital costs for this industry
are also unusually high. It doesn’t matter much to the results as the bottleneck to automation is nearly
always training compute rather than runtime compute.

148 Some additional details are included in this appendix.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.xrfouzges0mp
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.io2mfsn29u71
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The dynamics during the transition from world 1 to world 2
During the transition, there is the following two qualitative feedback loops:

(A) Better software150 → more 2020-FLOP in largest training run→ more tasks automated
→ more input to software R&D → better software

(B) Better software → more 2020-FLOP for running AIs→ more AIs per automated task→
more input to software R&D → better software

Both loops increase inputs to software R&D; I’ve highlighted the differences in bold.

151

Qualitatively, the result of this feedback loop is that software R&D inputs and 2020-FLOP grow
at increasingly fast rates – super exponential growth – as software tasks are automated.152

When does this super exponential growth become quantitatively significant?

152 Equation (3) implies the growth rate of software inputs is given by g(I) = (1-f)*g(L) + f*g(C). We know
that g(C) > g(L): 2020-FLOP grows much quicker than human inputs to software R&D. So as f increases,
g(I) increases. If the growth rate of software inputs increases, so does the growth rate of software output:
2020-FLOP per FLOP. (This follows from the SEG). And if g(2020-FLOP per FLOP) increases then so
does g(2020-FLOP), as long as g(physical FLOP) is not falling (in fact it will be rising). This establishes
that both g(I) and g(2020-FLOP) increase as f increases. In short: f increases → g(I) increases →
g(2020-FLOP per FLOP) increases → g(2020-FLOP) increases. This argument could fail for two reasons.
Firstly, in the CES version the importance of tasks done by AI falls over time and so we must automate
tasks quickly enough to counteract this for the argument to go through. Secondly, if g(C) falls for some
other reason (e.g. we stop ramping up the fraction of compute used for software R&D) then g(I) may fall
and the argument is blocked.

151 Link to chart.
150 I use this interchangeably with “more 2020-FLOP per FLOP”.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=1CzCOGE4pwcR#
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In section 4 I guessed that the growth rate of real $ inputs to software R&D would be 25% after
“wake up”. We can ask:What fraction of tasks must be automated before the effect of AI
on software inputs is larger than this?

Equation (3) implies that the growth rate of software inputs due to AI equals f * g(2020-FLOP). If
g(2020-FLOP) = 100%153, then this first exceeds 25% when f = 0.25. In other words, it is when
roughly ~25% of cognitive tasks have been automated that rising AI inputs become more
important to software R&D than rising human inputs. I’ll revisit this question in section 6 when
we discuss bottlenecks, which will push towards a somewhat larger fraction.154

Summing up
Incremental AI automation will increase g(2020-FLOP per FLOP) as we cross the effective
FLOP gap. This effect is smaller than the effect of rising human inputs until AI has automated
~25% of cognitive tasks. By the time we reach AGI, 2020-FLOP per FLOP will be doubling in
months or much less.

More generally, as we cross the effective FLOP gap, g(2020-FLOP per FLOP) depends on:
1. The returns to software R&D, quantified by the parameter r.
2. The rate at which inputs to software R&D grow. There are two sources of growth:

a. Increasing number of people doing software R&D.
b. Increasing fraction of tasks done by AI, and an increasing number of AIs doing

each task.

This completes my discussion of the effect of incremental AI automation on 2020-FLOP per
FLOP. The next section discusses the effect on FLOP/$.

FLOP/$
In section 4 I analysed how fast-rising AI investment might affect FLOP/$ after “wake up”. I
guessed that inputs to hardware R&D might grow at 17%, eventually driving FLOP/$ to grow at
~88%.

This section extends that analysis by additionally considering the effect of incremental AI
automation on FLOP/$. Like with software, we’ll see that g(FLOP/$) increases as more tasks
are automated such that FLOP/$ may be doubling in months or quicker by the time we have
AGI.

154 In fact, this analysis involved a few simplifications. Firstly, the bottleneck dynamic introduced in the
next section will reduce the effect of AI automating 20% of tasks. Secondly, the effect of rising human
inputs becomes less important as AI automates more tasks, which pushes in the other direction. Overall, I
think the answer “f = 0.2” given here is too low, a more realistic answer is maybe f = ~0.35. [Maybe Jaime
can investigate the relative contributions from AI automation vs rising human inputs for rho = -0.5?]

153 A ballpark figure from section 4.
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The analysis is very similar as for software, so I start by noting the points of similarity and
difference.

Comparing the effect of AI automation on hardware vs software R&D
The effects of AI automation on g(FLOP/$) is similar to its effects on g(2020-FLOP per FLOP).
Here are the key similarities in my analysis of each:

● We start in world 1, with humans doing 100% of the cognitive tasks needed for hardware
R&D.

● We end up in world 2, where AIs do 100% of those cognitive tasks.
● There’s a transition from world 1 to world 2 where the fraction of cognitive tasks done by

AIs increases continuously from 0% to 100%. g(FLOP/$) increases significantly during
this transition.

○ During the transition, a task is automated when i) we’ve done a big enough
training run that the resultant AI can perform the task, and ii) we have enough
runtime compute to replace all humans doing that task.155 156

There are a few important changes:
● Delays before innovation can boost AI capabilities.

○ Software improvements can be rolled out immediately over all existing compute,
increasing AI inputs to software R&D without delay. By contrast, there are
significant lags between designing new chips and using the new chips to run AIs.
At the least you need to manufacture new chips from an existing fab; you may
also need to build new manufacturing equipment (e.g. for making chips of a new
node size).

○ The FTM models the need to manufacture new chips, tracking both the stock of
chips and the new chips produced each year. It also includes an optional lag
between designing new chips and beginning to manufacture them. More.

● Physical capital is needed for hardware R&D. Hardware R&D sometimes requires
experiments to test the behaviour of materials and new chip designs. To incorporate this,
a fixed fraction of tasks are performed by capital; the rest are cognitive tasks.157 Myα
best guess is .158α = 0. 3

158 Alpha gives the fraction of R&D costs paid to physical capital (as opposed to cognitive labour) in 2021.
This data suggests labour share is 65% and maybe as high as 90%, depending on whether you label

157 So this simplistic model assumes that all R&D tasks performed by labour are cognitive tasks, not
requiring physical actuators. For labour tasks that aren’t cognitive, it is probably best within this framework
to include them as tasks done by physical capital. More.

156 The hardware R&D sector employs a relatively small number of people (though more than AI software)
and so lack of runtime FLOP only prevents task automation if AI training requirements are low (e.g. AGI
trained with <1e31 FLOP [TODO confirm]).

155 FTM assumes 16 million people doing hardware R&D in 2022, which grows at 7% before “wake up”
and 17% after “wake up”; people are split evenly over non-automated tasks. (16 million is too high by 1-2
OOMs; the reason is that we multiply world population by an estimate the fraction of GWP spent on
software R&D (0.02%). It doesn’t matter much because the bottleneck to task automation is nearly always
training compute rather than runtime compute.

https://docs.google.com/spreadsheets/d/13MM1zrcNaGwJ1sgLlrpv0fTddub_cJS0t4yknKZw-9E/edit#gid=0
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○ The three equations from last section become:

(1*) - humans do all cognitive tasks, world 1𝐼
𝐻

 = 𝐾
𝐻

α 𝐿
𝐻

(1−α)

(2*) - AI does all cognitive tasks, world 2𝐼
𝐻

 =  𝐾
𝐻

α 𝐶
𝐻

(1−α)

(3*) - AI does fraction f of cognitive tasks𝐼
𝐻

 =  𝐾
𝐻

α 𝐿
𝐻

(1−α)(1−𝑓)𝐶
𝐻

(1−α)𝑓

where , and gives the amount of physical capital, labour and𝐾
𝐻

𝐿
𝐻

 𝐶
𝐻

 

2020-FLOP used in hardware R&D; and gives the resultant real input to𝐼
𝐻

 

hardware R&D.
○ The Full Takeoff model incorporates a similar dynamic into its model of hardware

R&D. A constant fraction of tasks are performed by physical compute. The total
input to these tasks is proportional to the amount of available physical FLOP –
not 2020-FLOP.

Having made this comparison with hardware vs software, I’ll briefly describe the dynamics
affecting g(FLOP/$) in world 2 and in the transition from world 1 to world 2.

World 2
As with software, we consider two questions.

1. How long does the first doubling of hardware (FLOP/$) take in world 2?
2. How do the lengths of the software doublings change over time in world 2?

How long does the first doubling of hardware (FLOP/$) take?
The considerations influencing this are similar as for software. We forecast how many
researcher-years will be needed to double hardware, and compare this to how many AGIs we’ll
be able to run. If we’ll need 1 million researcher-years but we’ll have 2 million AGIs, the first
doubling takes 6 months. The ballpark estimate here goes the same as for software, with the
result that the first doubling could happen in months or less.

One additional complication here is that hardware R&D progress might be bottlenecked by
limited physical capital. This could cause the first doubling to happen more slowly.

How do the lengths of the hardware doublings change over time
As with software, we can distinguish two scenario:
1. Hardware singularity - quicker and quicker doublings. If returns to hardware R&D exceed
a certain threshold, the feedback loop is so powerful that there’s a “hardware only singularity”.
The level of FLOP/$ grows faster and faster, theoretically going to infinity in finite time. This

certain subcategories are spent on labour vs capital. However, the data is for generic R&D rather than
hardware R&D.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.o7tmwweugbb
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.o7tmwweugbb
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dynamic is initially curtailed by the difficulty of printing new chip designs fast enough to quickly
match the current stock of hardware.

2. Hardware fizzle - slower and slower doublings. If returns to hardware R&D are below a
certain threshold, FLOP/$ grows more and more slowly over time,159 assuming a fixed $ spend
on FLOP.

Which scenario will obtain? The condition for hardware singularity is r > 1. My(1 − α)
best-guess values of =30% and r = ~5 imply it would happen comfortably. Though of course rα
may be lower by the time we reach AGI. The question is less important than for software
because any hardware singularity would be slowed by delays printing chips, as mentioned
above.160

Transition from world 1 to world 2
Just like last time, there are two feedback loops at play during this transition:

(A*) Better hardware161 → more 2020-FLOP in largest training run→ more tasks automated
→ more input to hardware R&D → better hardware

(B*) Better hardware → more 2020-FLOP for running AIs→ more AIs per automated task→
more input to hardware R&D → better hardware

We can show these feedback loops alongside those for software:

161 I use this interchangeably with “more FLOP/$”.

160 Even if the conditions for software singularity don’t obtain and the conditions for hardware singularity
don’t obtain, there can still be a joint hardware-and-software singularity if the combined returns are high
enough. And even if this doesn't obtain, I expect both FLOP/$ and software to eventually grow
increasingly quickly due to GWP growth accelerating (which I discuss later).

159 There is technically a “knife edge” third possibility where software grows at a constant exponential rate,
if software returns are exactly equal to the threshold. I’m setting this aside because it’s a knife edge
result.
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162

It’s worth emphasising that the fast growth of 2020-FLOP is playing a dual role: bigger training
runs which lead to greater automation and more runtime compute to run AIs doing tasks that
have been automated.

AI automation becomes the dominant source of R&D input growth at about the same time as for
software. In section 4 I guessed that human inputs to hardware R&D would rise at 17%.
Equation (3*) implies that the growth rate of software inputs due to AI is given by the expression

* f * g(2020-FLOP). (Recall f is the fraction of cognitive tasks automated by AI.) If(1 − α)
g(2020-FLOP) = 100% (from section 4), then this first exceeds 17% when f = 0.25.163

163 100%*0.7*0.25 = 17.5%. Notice that f = 0.25 is the same as the result for software R&D. There are in
fact two differences between software and hardware here, which happen to roughly cancel out. First, I
projected slower growth of human investments in hardware R&D than in software R&D. Second, I model
physical capital (which AI can’t replace) as having an important role in hardware R&D but not in software
R&D.

162 Link to diagram. There are of course human inputs to hardware and software R&D, but these aren’t
represented explicitly in the diagram.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=1CzCOGE4pwcR#
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Summing up
Incremental AI automation will increase g(FLOP/$) as we cross the effective FLOP gap. This
effect is smaller than the effect of rising human inputs until AI has automated ~25% of cognitive
tasks (though the bottlenecks considered in the next section will increase this % somewhat).

More generally, as we cross the effective FLOP gap, g(FLOP/$) depends on:
1. The returns to hardware R&D, quantified by the parameter r.
2. The rate at which inputs to hardware R&D grow. There are two sources of growth:

a. Increasing number of people and physical capital used in hardware R&D.
b. Increasing fraction of cognitive tasks done by AI, and an increasing number of

AIs doing each task.

This completes my discussion of the effect of incremental AI automation on FLOP/$. The next
section discusses the effect on $ on FLOP.

$ on FLOP
In section 4 I analysed the impact of rising AI investments on $ on FLOP. I guessed that, after
“wake up”, $ on FLOP would initially grow at a rate of ~97% as we ramp up the fraction of global
FLOP used on the largest training run, and then at ~22% after this when we’re just expanding
global chip production.

This section extends this analysis by incorporating the impact of incremental AI automation on $
on FLOP.

My approach here is to:
1. Use the same task-based model to forecast the effect of AI automation on Gross World

Product (GWP) as I previously used to forecast its effect on software R&D and hardware
R&D.

a. This will tell us GWP in each year as we cross the effective FLOP gap and AI
automates more and more cognitive tasks.

2. Assume that any acceleration in GWP growth accelerates growth in all economic sectors
to the same degree. In particular, the increase in g($ on FLOP globally) equals the
increase in g(GWP).

a. For example, suppose AI automation causes GWP growth to be 5% in some year
rather than 3% - an additional 2% growth. Then I’ll assume that g($ on FLOP
globally) is 2% larger than I was previously assuming: 24% rather than 22%.

b. This is a conservative assumption. AI automation of the economy will probably be
disproportionately directed towards manufacturing more chips (more fabs, more
chips per fab), given the large demand for FLOP that will exist.
i. Importantly, the FTM does assume that AI automation will be

disproportionately focussed on software and hardware R&D. Only on this

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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third component, $ on FLOP, am I making this conservative
assumption.164

c. For more detail see this appendix.

I’ll now say a bit more about #1, the effect of AI automation on GDP.

How I’m modelling the effect of AI automation on GWP
Just like I did for hardware and software R&D, I model incremental AI automation of the
economy as a continuous transition between a world where cognitive tasks are performed by
humans (world 1) to a world where they’re performed by AIs (world 2).

The equations here are the same as for hardware R&D, in that they include a constant fraction
of tasks performed by physical capital. GWP is given by:α

(1’) - humans do all cognitive tasks𝑌 = 𝐾
𝑔

α 𝐿
𝑔

(1−α)

(2’) - AI does all cognitive tasks𝑌 =  𝐾
𝑔

α 𝐶
𝑔

(1−α)

(3’) - AI does fraction f of cognitive tasks𝑌 =  𝐾
𝑔

α 𝐿
𝑔

(1−α)(1−𝑓)𝐶
𝑔

(1−α)𝑓

Y gives GWP in each year;165 , and give the amount of (physical) capital, human labour𝐾
𝑔

𝐿
𝑔

𝐶
𝑔

and 2020-FLOP used to produce goods and services (i.e. GDP) that year.

Equation (1’) is the standard Cobb Douglas formula for GDP. Each time you double the quantity
of labour (L), GDP (Y) doubles times. And similarly, each time you double the quantity(1 − α)
of capital (K), GDP (Y) doubles times.α

Equation (2’) simply replaces number of human workers with 2020-FLOP, indicating that AI
has fully automated the cognitive tasks previously done by humans.

Equation (3’) uses the task-based Cobb Douglas model to allow for a continuous transition
between (1’) and (2’).

165 If growth is fast, Y can increase significantly over the course of a single year. To account for situations
like this, there is a more precise definition of Y: Y gives the GWP that would be produced if output
remained constant for 1 year. Mathematically, Y = ($ value of goods and services produced per second) *
seconds in a year.

164 In other words, we are imagining that for each of the three components of 2020-FLOP ($ on FLOP,
FLOP/$, 2020-FLOP per FLOP) there is an equivalent sub-sector of the economy (chip manufacturing,
hardware R&D, software R&D). FTM assumes AIs are disproportionately focussed on the latter two areas
but not the first. While advanced AIs are heavily concentrated on improving software and chip design,
they’re not concentrated on building new fabs and expanding the capacity of existing fabs. Of course, the
sharp division between hardware R&D and chip manufacture the model makes here is not entirely
realistic; the two will often merge together in practice like when a new fab must be built to manufacture a
new type of chip.

https://en.wikipedia.org/wiki/Cobb%E2%80%93Douglas_production_function
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turns out to be the fraction of GDP paid to capital, and is the share paid to cognitiveα (1 − α)
labour. The actual share of GDP paid to labour in developed countries is ~0.65 and ~0.5
globally, but this includes physical labour as well as cognitive labour.166 I’ll assume the share
going to cognitive labour globally is 0.5, and so use .167(1 − α) = 0. 5

(1’)𝑌 = 𝐾
𝑔

0.5 𝐿
𝑔

0.5

(2’)𝑌 =  𝐾
𝑔

0.5 𝐶
𝑔

0.5

(3’)𝑌 =  𝐾
𝑔

0.5 𝐿
𝑔

0.5(1−𝑓)𝐶
𝑔

0.5𝑓

The conditions under which tasks are automated are the same as for the task-based models I’m
using for software and hardware R&D. A task is automated when i) we’ve done a training run
large enough that AI can perform the task,168 and ii) we have enough runtime 2020-FLOP to run
enoughs AIs to replace all humans at the task.169

There are the same feedback loops as before, as more $ on FLOP causes more tasks to be
automated and more AIs to perform each task.

(A’) Bigger GWP → more $ on FLOP → more 2020-FLOP in largest training run→ more
tasks automated→ bigger GWP

(B’) Bigger GWP → more $ on FLOP → more 2020-FLOP for running AIs→ more AIs per
automated task→ bigger GWP

We can show these feedback loops alongside those for hardware and software.

169 As before, I adjust the Bio anchors estimate of the 2020-FLOP/s needed to run AGI to estimate the
2020-FLOP/s needed to run AI that performs only x% of cognitive tasks for 0 < x < 100.

168 As before, I adjust the Bio anchors estimate of 2020-FLOP training requirement for performing 100% of
cognitive tasks (AGI) to estimate the 2020-FLOP needed to train AI that performs only x% of cognitive
tasks for 0 < x < 100. How widely distributed these thresholds are in FLOP space is very important, and
informed by these considerations.

167 Though 0.5 is too high for world GDP, I actually care more about the share of cognitive labour in the
semiconductor industry: that’s what’s relevant for $ on FLOP.
My thinking more generally is that cognitive labour is economically more valuable than physical labour by
a wide margin, and so the share of GDP paid to cognitive labour should only be slightly lower than that
paid to labour in total. Importantly, even jobs involving “manual labour” have a very significant component
of cognitive labour to them. E.g. a plumber needs to figure out which changes to make and know how to
make them; their distinctive skills mostly relate to these cognitive abilities rather than in their body’s ability
to execute particular physical movements when instructed to do so by the brain.
Empirical research could inform a better estimate of this parameter. You could look at the wages paid to
various jobs in the US economy, and estimate the extent to which each job could in principle be done
remotely (and so is purely cognitive) vs requires physical labour.

166 I’m using a simplistic model that completely ignores tasks that require physical labour. Each task is
either done by physical capital or it’s a cognitive task that’s initially performed by humans and later
performed by disembodied AI. I discuss this in this appendix.
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170

Quantitative implications of the model
What does this model imply about how GWP growth changes over time? Equation (3’) implies
that the contribution to GWP growth from AI equals 0.5 * f * g(2020-FLOP). (Recall f is the
fraction of cognitive tasks automated by AI; it increases over time.) Assuming g(2020-FLOP) =
~100%, this equals ~f * 50%.

With full automation (f = 1), this implies GWP growth is 63%, doubling roughly every year.171 172

We get “explosive” GWP growth of >30% from AI when f = 0.6, i.e. with AI automates 60% of
cognitive tasks. However, f will be higher once we take into account bottlenecks, as we’ll do in
the next section.

Even so, if we quickly transition from a world where f < 0.1 to one where f > 0.8 then GWP could
quickly go from doubling every ~20 years to doubling every ~2 years. In other words, there
could be a fast takeoff according to the GWP doubling metric discussed above.

172 By the time f = 1, g(2020-FLOP) is much higher and so this model will predict a faster GWP growth in
practice. On the other hand, the model omits certain bottlenecks that will make growth slower.

171 e^0.63 = 1.9.

170 Link to diagram. The diagram doesn’t show inputs of human labour and physical capital to R&D and
GWP. It only shows the AI inputs for simplicity.

https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=l-ONbpreu-dX#
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When does the effect of AI automation on g($ on FLOP) become more significant than rising
human investment? In section 4 I guessed that rising human investment would drive g($ on
FLOP) = 22%. The contribution of AI to g($ on FLOP) is the same its contribution to GWP
growth: f * 50%. This exceeds 22% when f = 0.45.

By contrast, we estimated AI automation would dominate human investment in software and
hardware R&D when f = 0.25. So it seems like AI automation will dominate rising human
investment for g(2020-FLOP per FLOP) and g(FLOP/$) before g($ on FLOP).173

I analyse why the Full Takeoff Model (FTM) can easily predict fast takeoff in GWP, in the context
of what generic growth models say about takeoff speed, in this appendix.

I’m not modelling AI automation of generic R&D
The FTM does not include AI automating generic R&D and thereby causing a productivity
explosion.174 This means I’m modelling the role of AI in producing goods and services but not in
developing new technologies (other than those relating to software and hardware).

If I included this, it would increase the impact of AI automation on GWP and make takeoff faster.
However, perhaps not that much faster: I believe the economic effects of AI automation via
generic R&D will initially be smaller than its effects via goods and services.175

175 Why? In short, because “doubling inputs to goods and services” immediately doubles GDP while
“doubling inputs to R&D” only doubles the rate of tech progress, which takes many years to actually
translate to a doubling of GDP.
In more detail: Imagine there are two sources of GWP growth: more production inputs and more R&D
inputs. We want to compare using AI to increase production inputs via using AI to increase R&D inputs.
There are two reasons to think the effect on GWP would be bigger and quicker via increasing production
inputs. Firstly, data suggests that each doubling of R&D inputs causes less than 1 doubling of TFP; but in
standard models doubling production inputs doubles GWP. This implies that doubling production inputs
has a bigger effect on GWP. Secondly, to double GWP via production you only need to double annual
production inputs. But via R&D what matters is cumulative R&D inputs, which are harder to double (even
if your annual inputs instantaneously doubled, it would take a while for cumulative inputs to double).
Combining these two points: to double GWP via production you need to double annual production inputs,
but via R&D you need to more than double cumulative R&D inputs.
There are some good reasons to think increasing production inputs would have smaller effects than I’m
claiming. i) Past a certain point people don’t want more of the same goods and services, they want new
types of good; so increasing production inputs won’t help unless you’ve used R&D to invent new goods. ii)
More technological, social and regulatory barriers to automating the provision of goods and services than
to automating R&D. I discuss these further in TODO.

174 This is imagined in the Cold Takes description of PASTA.

173 What’s driving the difference here? Firstly, I’ve assumed that capital is more important to GWP than to
software or hardware R&D inputs. (Capital does 50% of GWP tasks, 30% hardware tasks, 0% of software
tasks.) AI automation doesn’t (directly) affect this capital component, so has smaller effects on GWP than
on hardware and software R&D inputs. Secondly (and less importantly), I assume human inputs grow at
22% for $ on FLOP vs only 17% for hardware R&D. This means there’s a lower bar for AI automation to
dominate inputs for hardware, compared with $ on FLOP.

https://web.stanford.edu/~chadj/IdeaPF.pdf
https://www.cold-takes.com/transformative-ai-timelines-part-1-of-4-what-kind-of-ai/
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The takeoff model so far
The takeoff speeds model so far can be summarised as follows:

● We’re forecasting the calendar time to cross the effective FLOP gap.
○ effective FLOP gap = How much bigger does your training run need to be to

automate 100% of cognitive tasks rather than just 20%?
● This depends on the size of the effective FLOP gap and on how quickly we’re able to

increase the 2020-FLOP used in the largest training run.
● 2020-FLOP has three components such that:

g(2020-FLOP) = g($ on FLOP) + g(FLOP/$) + g(2020-FLOP per FLOP)
● Section 4 analysed the effects of fast rising human investments on each of the three

components. It can be thought of as estimating the effect of rising human labour and
physical capital inputs on each component.176

176 Section 4 estimated the growing input as measured in real $, rather than separately estimating the
growth of labour and capital. The simplest assumption is that real inputs of both labour and capital are
growing at this same rate.
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177

● This section analysed the effect of AI automation on each of the three components. As
2020-FLOP increases, we automate more tasks and have more AIs performing each
task. These AI inputs are combined with human labour and capital inputs for each
component.

177 Link to diagram.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=0tQNsXC7lSRR#
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178

● The growth of each component accelerates as we cross the effective FLOP gap and
automate more tasks. By the time we have fully automated all the cognitive tasks for any
given component, it doubles in a year or much less.

○ We found that, for software and hardware R&D, the effects of AI automation are
smaller than those of fast rising human investments (L and K) until ~25% of
cognitive tasks have been automated. For $ on FLOP the threshold was ~45%.

○ These thresholds will be somewhat higher after we take bottlenecks into account
in the next section.

○ Once we’ve reached these thresholds, the feedback loops in green and orange
have become more significant in increasing g(2020-FLOP).

New metrics
The modelling introduced in this section, and the additional assumptions we must now make,
allow us to calculate some other metrics of takeoff speed that were discussed in section 2.

● Successive GWP doubling times.

178 Link to diagram.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=MaPNeDZHl_xi#
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○ Equation (3’) calculates GWP based on the inputs of capital, (human) labour, and
2020-FLOP. As AI automates more tasks the importance of labour falls, that of
2020-FLOP rises, and GWP growth accelerates.

○ If we transition quickly from world 1 to world 2 GWP growth can quickly go from
its current level (~3%) to much faster (>60%). The speed of this transition
depends on the effective FLOP gap and on the average g(2020-FLOP) as we
cross the gap.

○ The sensitivity analysis will report the largest ratio between successive GWP
doubling times during this transition. Remember I’m calling ratios > 4 a “fast”
takeoff, ratios <=2 a “slow” takeoff, and ratios between 2 and 4 a “medium”
takeoff.

● Time from “AI could readily automate x% of tasks” to “AI could readily automate
y% of tasks”.

○ To determine when tasks can be automated I make assumptions about i) the
2020-FLOP training requirements for each task and ii) the 2020-FLOP/s runtime
requirements for each task.

● How many AGIs can we run?
○ The training and runtime requirements for the final task are the highest and can

be loosely interpreted as the AGI training and runtime requirements.179

○ The model calculates the largest training run in each timestep, so can calculate
when we first train AGI

○ The model also calculates the total quantity of 2020-FLOP/s in each timestep, so
can calculate how many AGIs we could run in each timestep.

○ This allows the model to calculate the first timestep in which we can train AGI
and run X AGIs, for any X.

■ In fact it can calculate the number of AI that automates x% of tasks, for
any x. AGI is the special case when x = 100.

○ I use this to calculate the metric time from AI that could automate 20% of
cognitive tasks to when we can run 10 billion AGIs.

■ My startpoint of “automating 20% of cognitive tasks”, requires the training
2020-FLOP to train AI that can automate 20% of cognitive tasks and the
runtime 2020-FLOP to run enough AIs to replace human workers at those
tasks.

●
● Cognitive output.

○ As AI automates more cognitive tasks the model calculates total cognitive output
in each timestep.

○ This is simply the output on tasks not performed by capital. The formula is:

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿
𝑔

(1−𝑓)𝐶
𝑔

𝑓

179 Those requirements are sufficient to train an AI and run it to do any task as well as a human worker. In
practice, AIs with lower requirements are used to perform most tasks in the model as this is more
efficient. But you could in principle use a more expensive system to perform every task.



70

○ This notion embraces the complementarity between human and AI cognitive
labour by tracking the output from both of them combined. It aims to side-step the
complementarity between cognitive labour and physical capital in order to get a
metric of AI capabilities that is independent of physical capital bottlenecks.

○ The notion also avoids leaning on any specific and arbitrary capability level like
“AGI”; total cognitive output is the result of AI systems of varying levels of
generality and capability, some of which may be tools and some of which may be
agentic.

○ The units of cognitive output are remote human equivalents. More precisely,
“How many remote human workers would be needed to generate the same
economic value per day as we’re getting from the combined cognitive output of
humans and AIs?”180

○ I use this to calculate the metric: time from AIs being a 2X multiplier on
human cog output to being a 10X multiplier.

Significant AI automation need not happen before AI risk
If you believe that the most likely path to AI causing existential risk is via accelerating economic
growth, or having vastly superior cognitive capabilities, then there will be significant effects from
AI automation before this happens. In this case, the dynamics discussed in this section are
potentially extremely important as they precede x-risk.

On the other hand, if you think it’s likely existential risk comes from pre-AGI systems that
perform some tasks excellently but cannot perform most tasks, the analysis of this section is
much less relevant. AI won’t be sufficiently capable and general to accelerate software R&D,
hardware R&D, or GWP before it poses x-risk.

My own view is that AI would probably need very significant degrees of autonomy in a very wide
range of cognitive tasks to pose existential risk via power-seeking. For example, it would need
to be able to perform ~all tasks in one or more broad areas like AI R&D, social manipulation,
hacking and business/military strategy. And my guess is that this in turn would require AI to
perform a large percentage of total cognitive tasks, probably >70%.181

Summing up
This section analysed the effect of AI automation on the speed crossing the effective FLOP gap,
g(2020-FLOP). I did this separately for each of the three components – g(2020-FLOP per

181 In particular, fully automating any of these high-level tasks requires many capabilities which will also
help to fully automate or partially automate many other high-level tasks.

180 So “cognitive output = 1 billion remote human workers” means “if we continued to produce cognitive
output at the current rate for a year, then the total cognitive output produced would have the same value
as that produced by 1 billion remote human workers working for 1 year”.

https://docs.google.com/document/d/1smaI1lagHHcrhoi6ohdq3TYIZv0eNWWZMPEy8C8byYg/edit#heading=h.pwdbumje5w8r
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FLOP), g(FLOP/$) and g($ on FLOP) – using the same task-based model for each.
Unsurprisingly, AI automation increases these growth rates significantly as we cross the
effective FLOP gap. By the time AI has automated all cognitive tasks in a component, it doubles
in months or faster.

When does the effect of AI automation become significant, compared to the rising human
investments discussed in section 4? In the model used here, the answer depends on the
component in question. For g(2020-FLOP per FLOP) and g(FLOP/$), i.e. for software and
hardware progress, AI automation becomes significant when roughly ~25% of cognitive tasks
have been automated; for g($ on FLOP) it was roughly when ~45% of cognitive tasks have been
automated.

These AI automation dynamics are less relevant for takeoff speeds if you think AI will pose an
existential risk before it automates a significant fraction of tasks.

Modelling AI automation required additional assumptions about the compute needed to train
and run AIs that can perform x% of cognitive tasks for 0 < x < 100. These additional
assumptions allow us to calculate the way in which the % of tasks performed by AI increases
continuously over time.

The result model can calculate metrics of takeoff speed relating to GWP, the number of AIs, and
the total cognitive output of AIs and humans.

What is the bottom line here for takeoff speeds? In this framework the values of takeoff speed
metrics – e.g. how long from 20% automation to AGI – depend on the training and runtime
requirements of pre-AGI systems, and how these combine with the rising human investments
from section 4 and the bottlenecks described in the next section. Unfortunately, I’m not aware of
a simple analytically tractable way to estimate them, and so this section did not make new
central best-guess estimates of takeoff speed.182 My approach instead is to conduct a sensitivity
analysis on a simulation of the model, which I’ll present in section 7.

The main body of the report continues in a new doc.

Appendices
Appendices to add:

● The shape of the task distribution over log(FLOP); maybe there’s a tail of tasks?
● Are we assuming “AGI is one big model” vs “lots of little models”?

182 Though I do take the numbers in section 4 to be very rough best guesses even accounting for AI
automation. That’s because the numbers in section 4 are too high for when we start crossing the effective
FLOP gap, and too low after AI automation kicks in.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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Literature on brain size - IQ correlations
Edit: a new meta analysis has been released, which comes down a little more conservative than
I did here.

My current guess is that a 10% more brain volume → 4.5 more IQ points.

I skimmed three studies.
1. Gignac & Bates (2017) is a large recent meta analysis.

a. Its headline figure is a correlation of 0.29 (95% CI = 0.24, 0.33) between brain
volume and IQ.

b. It found the result depended on the accuracy of the IQ measurement used. ‘Fair’,
‘good’, and ‘excellent’ measurements had correlations of 0.23, 0.32 and 0.39.
i. It claims the adjustments it makes here are probably too small, as

empirical measurements tend to be less reliable than normative samples
used to rate measurement procedures.

c. At a glance, it doesn’t seem to discuss confounders much. Health and education
seem like possibilities. I don’t know how carefully the object level studies
controlled for this.

d. If the above two factors cancel (under-adjusting for mismeasurement of IQ and
not including confounders) then the estimate of correlation due to causation is 0.3
- 0.4. (I’d guess this cancelling assumption leaves the correlation too high.)

e. We can use the correlation to estimate that a 10% bigger brain increases
intelligence by 4.5 - 6 IQ points.
i. A correlation of z between X and Y means: increase X by 1 standard

deviation → increase Y by z standard deviations. (This assumes the
correlation is causal.)

ii. I couldn’t see data about the standard deviation of brain sizes for the
study participants; but this seems to be ~10% in the general population.
So 1 standard deviation of brain size = 10% bigger brain.

iii. So this study is saying a 10% bigger brain → 0.3 - 0.4 standard deviations
of IQ, or 4.5 - 6 IQ points. (A standard deviation of IQ is 15 IQ points.)

f. I’d guess this estimate is too high due to the seeming lack of effort to adjust for
confounds, but I’m not confident about this.

2. Nave et. al (2018) is (I believe) the largest empirical study to date, bigger than all
previous investigations combineed (N = 13,608).

a. The most relevant figure here is a correlation of 0.25. (They get this after
including various confounders and trying to adjust for mismeasurement of IQ.)

b. This paper includes a few confounds (social deprivation, place of birth, height,
genetics) and did other robustness checks.

c. I expect they have under-adjusted for mismeasuring IQ, for the same reasons as
Gignac & Bates (2017).

d. We can use the correlation to estimate that a 10% bigger brain increases
intelligence by 4 IQ points.

https://royalsocietypublishing.org/doi/10.1098/rsos.211621
https://journals.sagepub.com/doi/full/10.1177/0956797618808470#
https://www.leadersproject.org/2013/03/01/understanding-the-normative-sample/
https://www.google.com/search?q=standard+deviation+of+brain+size&rlz=1C1VDKB_enUS931US934&sxsrf=APq-WBsnBKHx9WUbMplyxHUITisNNiUfHA%3A1646256286295&ei=nuAfYr_WEcDKkPIP7rmzCA&ved=0ahUKEwi_nZ3Jrqj2AhVAJUQIHe7cDAEQ4dUDCA4&uact=5&oq=standard+deviation+of+brain+size&gs_lcp=Cgdnd3Mtd2l6EAMyCAghEBYQHRAeMggIIRAWEB0QHjIICCEQFhAdEB4yCAghEBYQHRAeMggIIRAWEB0QHjIICCEQFhAdEB4yCAghEBYQHRAeMggIIRAWEB0QHjIICCEQFhAdEB4yCAghEBYQHRAeOgcIIxCwAxAnOgcIABBHELADOgQIIxAnSgQIQRgASgQIRhgAUIMCWNIeYPcfaAFwAXgAgAGUAYgBtguSAQQwLjEymAEAoAEByAEJwAEB&sclient=gws-wiz
https://journals.sagepub.com/doi/full/10.1177/0956797618808470
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i. This is just as above, except that the standard deviation of brain volume
in this study was 9.3%.183

ii. The correlation means that a 9.3% larger brain → 0.25 standard
deviations of IQ, or 3.75 IQ points. (Again assuming the measured
correlation is causal.)

iii. So a 10% larger brain → 4 IQ points.184

e. I don’t see a strong reason to think this is biased in either direction overall.
3. This 2019 sibling study (N = 1022) finds a correlation of 0.18 within families and 0.33

overall.
a. They of course control for family environment, which will include health and

education.
b. Again, I expect they have under-adjusted for mismeasuring IQ. Indeed, they find

strong evidence that their IQ tests are less reliable than they assume in their
adjustment.185

c. We can use the correlation to estimate that a 10% bigger brain increases
intelligence by 3.5 IQ points.
i. This is just as above, except that the standard deviation of brain volume

in this study was 8%.186

ii. So a 10% larger brain → 3.5 IQ points.187

d. I think this is too low, due to under-adjusting for the mismeasurement of IQ.

To summarise the above evidence on the effect of a 10% bigger brain:
● Gignac & Bates (2017): 4.5 - 6 IQ points. I’d guess this is too high, but I’m not sure. I

don’t have a good understanding of this sprawling meta analysis.
● Nave et. al (2018): 4 IQ points. This doesn’t seem biased in either direction and is the

biggest study out there.
● The sibling study: 3.5 IQ points. I think this estimate is too low, so I see this as easily

consistent with the true effect being 4 - 5 IQ points.

Overall, I’d guess a 10% more brain volume → 4.5 more IQ points. I’ve adjusted slightly
upwards from Nave et. al (2018) due to Gignac & Bates (2017). This corresponds to 1 standard
deviation of brain size → 0.3 standard deviations of IQ.188

188 Assuming 1 standard deviation is a 10% increase in brain size and a 15 point increase in IQ.
187 10% bigger brain → 0.18 * 10/8 = 0.23 standard deviations of IQ = 3.45 IQ points.

186 Figure S1 finds brain volume mean (standard deviation) is 1270 (101) for males, and 1100 (88) for
females. 1270/101 = ~1100/88 = ~ 8%.

185 For reasons that are unclear, the correlation between Verbal and Performance observed in the MCTFR
does not seem consistent with such high reliability. We nevertheless used a conservative value of 0.82 in
calculating the disattenuated associations; the assumption of a lower value would lead to larger apparent
effects.

184 3.75 * 10/9.3 = 4.03.
183 See figure S3 in the supplementary material.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440690/#SD1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440690/#SD1
https://journals.sagepub.com/doi/full/10.1177/0956797618808470
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Ramp up will be bottlenecked by supply of FLOP
In this regime of fast rising investment, I expect the primary bottleneck for investment is not
going to be willingness to pay, but instead supply constraints.

For example, if someone wanted to spend $100 billion on AI chips today, they simply couldn’t
(NVIDIA data center revenue in 2022 was ~$10b, and they’re a large fraction of the AI chip
market). If the person insisted on spending that much, they’d be forced to buy non-AI chips that
are much less well suited for AI. In this example, the bottleneck on “get a quantity of AI chips
that would be worth $100 billion at current prices” is not willingness to pay but instead how
quickly chip manufacturers can scale up production of AI chips. Large willingness to pay can
expedite this process, but only to some extent.

Similarly, if someone wanted to spend $100 billion on AI software researchers today, the key
bottleneck would be talent availability. If they wanted to hire good quality people, they’d be
limited by the time it takes to attract and train good people to grow a small field. In this example,
the bottleneck to “get a quantity of AI software workers that would cost $100 billion at today’s
prices” is how quickly you can attract and train high quality talent.

So I analyse how quickly we can ramp-up AI investments by focussing primarily on the supply
side.189

I ignore the rising price of inputs to AI development after wake up
One factor I (try to) put to one side is the likelihood that the cost of inputs to AI investment will
rise significantly as demand far outstrips supply. If the actual number of AI software workers
remains constant, but their salaries have all doubled, I don’t want to say that software
investment has doubled. Instead, I would say that real software investment has stayed constant.
The numbers in this report should all be interpreted in this vein as referring to the growth of real
inputs to AI, measured in the number of quality-adjusted workers, physical capital and computer
chips. In this way, I (try to) sidestep the way in which high demand will drive up the price of real
AI investments.190

190 I feel confused about whether this move will lead to unrealistic predictions about the things I care
about. E.g. I will end up talking about “FLOP/$” numbers that, because I’m ignoring the effect of high
demand on prices, are predictably too low. But what I ultimately care about is the total FLOP available in
the world, not the amount that is paid for; I’m only using “FLOP/$” as a measure of hardware progress.
The question is whether my forecast of the available FLOP is distorted by not explicitly modeling this
factor.
I’ll forecast “$ on FLOP” numbers that are predictably too low for the same reason, and again it’s unclear
how much this matters.

189 I don’t think supply places a strict bottleneck on annual AI investment. If there’s higher willingness to
pay on the margin, that will somewhat increase real AI investment by inducing more people to abandon
otherwise lucrative activities. So demand does make a difference on the margin. But, past a certain point,
that marginal difference is small and you approach hard limits in terms of (e.g.) the time it takes to find
and train additional people, and the limited number of people who have the expertise to deliver that
training.

https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-fourth-quarter-and-fiscal-2022
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Bold assumption to make the analysis somewhat tractable
One thing I’ll need to forecast is the growth of FLOP produced each year globally.191 By analogy
with section 3, I calculate this as:192

FLOP per year = $ on FLOP per year * FLOP/$

I forecast each of the two components by mapping them to two sources of growth in FLOP
production. The two sources are:

1. More chips. Increases in the number of chips produced per year. E.g. more fabs, more
production lines within each fab.

2. Better chips. Increases in FLOP per chip. E.g. smaller node sizes, specialised chip
designs.

In reality, I suspect these two sources can’t always be cleanly separated.193

My bold assumption is that “more chips” corresponds exactly to more $ on FLOP, and that
“better chips” corresponds exactly to more FLOP/$. In particular, I assume g($ on FLOP per
year) = g(number of chips produced per year), and that g(FLOP/$) = g(FLOP per chip).194

Then my strategy is to:
● Forecast g($ on FLOP per year) via forecasting how quickly we will expand chip

production after “wake up”.
● Forecast g(FLOP/$) by assuming that hardware R&D has driven historical growth in

FLOP/$, and forecasting inputs to hardware R&D after “wake up”.

194 I.e. I assume that the price of chips is constant. People create better chips so that they can sell more
chips at the same price, not to increase the price per chip. I think this assumption is more accurate over
long timescales than short timescales. Over short timescales, you might be able to sell better chips for
more. But in the long run, the price of the most recent cutting edge chips may be constant at ~$10,000
per chip.

193 Imagine we build a new fab with smaller node size, and compared its FLOP production to an old fab.
We ask: Is the new fab’s greater FLOP production due to better chips, or due to expanded production?
The new node size may use a completely different kind of chip that doesn’t map cleanly to the old chip.
As a result, it may be ambiguous whether the new fab has more chips, relative to the old fab. So it’s
ambiguous to what extent the greater FLOP production of the new fab comes from more chips vs better
chips.

192 In section 3 I calculateed FLOP for the largest training run = $ on FLOP for the largest training run *
FLOP/$. (I’m putting aside software progress for now.)

191 What do I mean by “total FLOP produced each year”? Take all the chips produced over the course of
one year, run them all non-stop for one year, and ask: How many FLOP did you do? This is what I mean.
A more precise statement would be “the annual FLOP capacity of 1 year’s chip production”. I use this unit
so we can talk about FLOP rather than FLOP/s. This is useful because I’m ultimately concerned with how
many FLOP we have available for the largest training run in each year, and only indirectly concerned with
FLOP/s.

Perhaps the right thing to do is to replace “FLOP/$” with “FLOP/s per chip” and replace “$ on FLOP” with
“number of chips”, to avoid the reference to “$”.
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Source of growth Equivalent quantity in
takeoff framework

Cause of growth

More chips g($ on FLOP per year) Build more fabs and bigger fabs

Better chips g(FLOP/$) Hardware R&D

I discuss why my bold assumption might be wrong, and how a more realistic assumption might
change the results, in the following footnote.195 This part of the framework feels conceptually
confused, and I’d welcome suggestions for improvement.196

Details about assumptions of the Full Takeoff Model
This appendix gives some additional details on assumptions made by the Full Takeoff Model
(FTM). For additional information you could:

● See the FTM’s behaviour for your chosen deterministic inputs here, including
justifications for my preferred values.

● Inspect the functionality of this old spreadsheet version of the FTM.
● Ask Epoch for the most up to date python code.
● Read this concise mathematical description of the FTM (courtesy of Epoch).

Accounting for the “stepping on toes” effect when estimating the returns to
hardware R&D
Suppose you invest $X in R&D. If there’s a stepping on toes effect, then the effective R&D input
is only X^lambda, lambda < 1. Some effort is duplicated (or otherwise wasted due to the
difficulty of parallelising R&D effort). So doubling investment only increases effective inputs by
2^lambda.

196 Repeating from an earlier footnote, perhaps I should replace “FLOP/$” with “FLOP per chip” and
replace “$ on FLOP” with “number of chips”, eliminating the reference to “$” entirely.

195 I suspect my assumption gives too much credit to “more chips”, and not enough credit to “better chips”,
in explaining the historical growth of FLOP production. I assume that all the increase in [$ on FLOP] is
due to “more chips”. But the price of chips has probably increased over time, so that some of the increase
is due to “better chips”. How would giving more credit to “better chips” change the results? Firstly, it would
mean giving historical hardware R&D more credit for the growth in FLOP production, and so increase my
forecast of how quickly hardware R&D will increase FLOP production after ”wake up”. Secondly, it would
slightly lower my estimate of how quickly we’ll be able to expand chip production after “wake up”. I’m not
sure how these effects would net out; my guess is that the first would be larger and that the net effect
would be fairly small.
I assume that the only reason why [$ on FLOP] increases is because of more chips; but in reality I’d
guess that it also increases due to better chips. People pay more for SOTA chips over time. This means
that

https://takeoffspeeds.com/playground.html
https://docs.google.com/spreadsheets/d/1NSGcSkW53xkhVq4SDpUcBEQDQEPWnwhjWaRKsvxcdfE/edit?usp=sharing
https://epochai.org/
https://takeoffspeeds.com/description.html
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How does this affect our empirical estimate of the returns to hardware R&D?

Let g_I be the growth of R&D inputs, g_O be the growth of the relevant R&D output metric,
lambda be the stepping on toes parameter and r be the returns to hardware. For hardware R&D
increasing FLOP/$, we have historical observations of g_I and g_O and must infer lambda and r
from the data. With the semi-endogenous growth model, if g_I grows at a constant rate, the
equation linking these quantities is:

g_O / g_I = lamba * r (1)

Here’s what happens in the main text. Let g_I_h and g_O_h be the observed historical growth
rates of R&D inputs and FLOP/$. In the main text I assume lambda = 1 and then use (1) to infer
r = g_O_h / g_I_h. I then make a hypothesis about the future growth of inputs after “wake up”
g_I_f, and infer future growth of the FLOP/$ g_O_f. Mathematically, this is:

g_O_f = g_I_f * r = g_I_f * g_O_H / g_I_h

(g_I_h and g_O_h give historically observed growth of hardware inputs and FLOP/$; g_I_f and
g_O_f are forecasts of the same quantities after “wake up”.)

If instead I’d assumed some stepping on toes then I’d used (1) to infer r = g_O_h / (g_I_h *
lambda). My estimate of r would increase by a factor 1 / lambda, as the growth of effective
inputs have increased more slowly due to stepping on toes. Then I’d have made the same
forecast about growth of inputs after “wake up” and inferred future growth of FLOP/$ as follows:

g_O_f = g_I_f * lambda * r = g_I_f * lambda * (g_O_H / g_I_h * lambda) = g_I_f * g_O_H / g_I_h

g_O_f is exactly the same. My estimate of r is higher in a way that exactly offsets stepping on
toes. So stepping on toes doesn’t affect the predicted growth of FLOP/$ after “wake up”.

There is one significant caveat. Equation (1) assumes annual inputs are growing at a constant
rate. If annual inputs start growing more quickly than they used to – like they will after “wake up”
– things are more complex. In this case, a stepping on toes dynamic (lambda < 1) will increase
the lag between the faster growth of annual inputs and the faster growth of the output. You can
see this dynamic play out in this sheet. So the stepping on toes effect increases the lag between
“faster growing hardware R&D inputs” and “faster growing FLOP/$” and so makes takeoff
slower.

The diminishing returns to hardware and software become steeper over
time; ideas become increasingly hard to find
By the time we reach physical limits of hardware, further progress is impossible. This
corresponds to r = 0 (each doubling of cumulative R&D inputs causes 0 doublings of FLOP/$).

https://docs.google.com/spreadsheets/d/12V2JISfk05_-RcTdcMewlcVIb5I5kSWvSjNvziE5StU/edit#gid=0
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The FTM assumes r decreases towards 0 by a constant amount each OOM of FLOP/$ increase
between now and the physical limit. E.g. if we’ve 6 OOMs from the physical limit and currently r
= 2 then by the time FLOP/$ has increased by 3 OOMs, the FTM assumes r = 1.

This dynamic can capture the expectation that hardware returns should trend back to the
average R&D returns across all sectors of the economy.197 As long as the physical limits are
assumed to be at or above 1e25 FLOP/$, introducing physical limits in this way doesn’t
significantly affect the results.

And the same model is used for software.

You can see the assumptions about these physical limits, and justifications, in the “additional
parameters” tab here.

Full derivation of the equation for hardware R&D
It's the standard semi-endogenous equation, with a "stepping on toes" effect, and with two
complications.

Here's a derivation of the equation ignoring "stepping on toes" and the additional complications.

197 Are ideas getting harder to find estimates the average returns to the overall economy to be r = ⅓, much
lower than the returns for hardware.

https://takeoffspeeds.com/playground.html
https://web.stanford.edu/~chadj/IdeaPF.pdf
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Notice this implies that g(A) = m * g(R). In the report I use different variable names, so let's stick
with those of the report: g(O) = r * g(I).

Now to include stepping on toes in this set-up I alter the semi-endogenous equation in the
standard way by adding a parameter lambda: A = delta * r^lambda * A^phi.

I then define 𝑅(𝑡) =  
−∞

𝑡

∫ 𝑟(𝑡)λ𝑑𝑡

This (I claim) doesn’t change the result of the above derivation. We again get A = constant * R^(
1/(1 - phi)) = constant * R^r. So g(A) = r * g(R).

But my new definition of R implies g(R) = lambda * g(r). So g(A) = r * g(R) = r * lambda * g(r).

In the report's notation: g(O) = r * lambda * g(I).

Then two complications are added:
1. For hardware R&D (but not software R&D) I replace r^lambda with CES(r^lambda,

K^lambda) where K is the physical capital used for R&D and r continues to be the
number of researchers. This allows for physical capital to play a role in R&D, and
potentially allows for physical capital to bottleneck R&D progress.
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2. The returns to R&D r decreases towards 0 as we approach physical limits (more).

For a full implementation reach out to Epoch or check out this (messy!) sheet.

Aggregating one-time productivity gains from different sources
My approach is to quantify the individual effects mentioned, combine the relevant ones together,
and maybe do a final adjustment based on my “gut”.

Productivity gains from different sources:
● Faster serial speed

○ Paul and Carl think a 1000X speed-up is possible
○ E.g. 1 AGI running for 1000 subjective years rather than 1000 humans working

for 1 year each
○ I’m calling this ~10X198

● No leisure / sleep: 3X (people spend 8 hours a day working)
● Better motivation: 2X
● Average vs top productivity

○ Among humans, average vs top productivity is >100X (global average income is
~$10k, most productive people can earn >$1m)

○ But all AGIs are as productive as the most productive AGI
○ So this naively gives AGI a gain of ~100X

Multiplying these gains together gives 10 * 3 * 100 * 2 = 6,000.

One-off gains for AGI in R&D. I will exclude "average vs top productivity" as researchers are
mostly close to the top global average productivity. That leaves me on 10* 3 * 2 = 60X.

One-off gains for AGI in goods production. I don't think serial speed will apply very much in
goods production. I also feel pretty suspicious of the “average vs top productivity” figure, in
particular that AGIs could increase everyone’s productivity by 100X despite lacking the context
of their jobs. This leaves me 3 * 2 = 6X.

In the FTM these assumptions are combined with a starting estimate of the AGI’s runtime
compute of 1e17 FLOP/s using 2020 algorithms. See rows 5 and 7 here.

Modelling $ on FLOP
Roughly speaking, I assume:

$ on FLOP for training run = GWP * fraction of GWP spent on FLOP * fraction of FLOP on
largest training run

FLOP for a training run = $ on FLOP for training run * FLOP/$

198 It turns out that you can derive the size of this effect from the size of the “stepping on toes” effect. If
you quantify that effect in the usual way with lambda < 1, then a 1000X speed up increases productivity
by 1000^(1-lambda). 10X gain corresponds to lambda = ⅔, which is roughly my best guess for lambda.

https://epochai.org/
https://docs.google.com/spreadsheets/d/1NSGcSkW53xkhVq4SDpUcBEQDQEPWnwhjWaRKsvxcdfE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r-WxW4JeNoi_gCMc5y2iTlJQnan_LLCF5s_V4ZDDMkI/edit#gid=0
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The quantities are forecast as follows:
● GWP: use the task-based model for how AI automation affects GWP
● Fraction of GWP on FLOP: section 4 analysis of growth of $ on FLOP globally

○ I guessed $ on FLOP globally might grow at ~22% after “wake up”
○ GWP growth is 3%, so this implies that the fraction of GWP on FLOP will grow at

~19%.
○ So my central estimate is ~19%.

● FLOP/$: grows due to hardware R&D. Section 4 analyses the effect of human inputs;
section 5 analyses the effect of AI automation.

● fraction of FLOP on largest training run: analysed in section 4.

Annual production vs stock
The above equation ignores that we can use chips bought in previous years in training runs. In
fact the equations used in the FTM are:

global FLOP year y+1 = global FLOP year y + GWP * fraction of GWP on FLOP * FLOP/$

FLOP for training run = global FLOP * fraction of FLOP used on largest training run

In essence, the above equation pretended that we produce all our chips from scratch each
time-step, while these ones allow us to accumulate a stock of chips over time. Each year’s
production simply adds a little to that stock.

I do not explicitly distinguish between FLOP used for AI and other FLOP. I think this is a
weakness of the FTM as it stands, which I explain more in this doc.

FTM assumes no tasks are done by physical labour
● The better model would have:

○ Some tasks done by physical labour, some by cognitive labour, some by physical
capital

○ One process whereby AI automates cognitive labour.
○ A second process whereby robotics automates physical labour.

● But my model only includes the first process: AI automating cognitive labour. I ignore
physical labour.

Calculating the training requirements for “AI can readily perform x% of
cognitive tasks”
The Full Takeoff Model (FTM) makes assumptions about the training requirements for “AI that
can readily perform x% of cognitive tasks” for all x. In other words, it makes an assumption
about the full shape of the following graph:

https://docs.google.com/document/d/1iz437LMV31VqznCRVXfMnc6uksG551BSqUNJxLvjVlg/edit
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The FTM calculates the full shape of the curve mechanically from just one input, the effective
FLOP gap from 20% of tasks to 100%. The method, described mathematically here, creates a
curve shaped like that in the picture above. In particular:

● Each additional OOM of training unlocks more tasks than the last.
○ This seems very likely as recently each OOM of training has seemingly unlocked

very few tasks.199 I’d expect a gradual transition with each OOM unlocking more
tasks than the last.

● The effective FLOP gap from ~1% to 20% is half the effective FLOP gap from 20% to
100%.

○ My best guess would actually be that ~1% to 20% is roughly as big as 20% to
100%, or bigger.

○ But if we used that assumption, we’d have less flexibility in specifying the
20%-100% effective FLOP gap. E.g. suppose we wanted to say AGI is 1e30
FLOP and the effective FLOP gap is 4 OOMs. Then our assumption would imply
that ~1% of tasks required training of ~1e22 FLOP. But we’ve already seen
training runs of 3e24 FLOP, implying that today’s systems can readily perform
>>1% of cognitive tasks. The model would predict that AI could readily200 add
>>$500 brillion/year to GDP, in contrast to observed AI revenues.

200 Reminder: the phrase “readily” here indicates that i) it would be profitable for organisations to do the
engineering and workflow adjustments necessary for AI to perform the task in practice, and ii) they could
make these adjustments within 1 year if they made this one of their priorities.

199 Annual revenues from AI are estimated at ~$10 - 100b. (E.g. here, here, here, here; I don’t know how
reliable these estimates are, or even their methodologies.) But performing even 1% of tasks would be
worth ~$500b because about ~$50tr is paid in wages each year globally.

https://docs.google.com/spreadsheets/d/1gBeQG45HNWoVeed8KbVJxWPdNZEZvCTYXlitiovtGG8/edit#gid=1121904834
https://medium.com/dataseries/artificial-intelligence-market-size-a99e194c184a
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.globenewswire.com/news-release/2022/04/19/2424179/0/en/Artificial-Intelligence-Market-Size-to-Surpass-Around-US-1-597-1-Bn-By-2030.html
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/
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○ Our actual assumption allows us to specify scenarios with fairly large effective
FLOP gaps without this implied inconsistency. This is a reason to expect the
actual effective FLOP gap to be smaller, than the maximum effective FLOP gap
allowed by the model.

Different assumptions about the exact shape of the curve would change the bottom line
somewhat. And perhaps some useful insight could come from thinking more carefully about
implications of different curves, and testing out different possibilities (e.g. a log-normal
distribution). But I suspect most of the ‘action’ is in the single scalar parameter I’ve pulled out –
the effective FLOP gap – that describes how spread-out in FLOP space different tasks are.

How does physical capital changes over time in the FTM?
● Cognitive output is grows fast due to AI automation.
● Initially, this increases GWP a lot because cognitive tasks are important to GWP (they’re

paid a high fraction GWP).
● More GWP → more reinvestment → faster growth of physical capital.
● But after a while, the abundance of cognitive tasks reduces their importance to GWP

(they’re paid a much lower share of GWP). GWP is bottlenecked by physical capital.
Further cognitive output growth doesn’t affect GWP much at this point. So the
reinvestment in physical capital stops rising: ~constant GWP → ~constant reinvestment
→ ~consant growth of physical capital.

● Eventually physical capital grows faster and faster because of tech progress
○ Higher TFP allows you to accumulate capital more quickly.
○ This takes unrealistically long in the FTM.
○ The reason it takes so long is that the FTM assumes TFP grows exogenously

rather than modelling AI automation’s effect on generic R&D; it takes many
decades before physical capital is doubling every year.

○ In fact I expect it would take much less long that for billions of AGIs to design
robot-factories that collectively self-replicate in a year.

How much does AI automation accelerate our progress through
the effective FLOP gap overall?
We re-ran all the scenario analyses from this section, excluding the speed-up effect of AI
automation. This allowed us to compare the takeoff speed with and without AI automation.

Takeoff speed

Time from AI that could readily Time from AI that could readily

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.fx5ojmz239vb
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automate 20% economic tasks to AI
that could readily automate 100%.

automate 20% R&D tasks to AI that
could readily automate 100%.

Scenario Including AI
automation

Excluding AI
automation

Including AI
automation

Excluding AI
automation

Short, best
guess

3.7 16.5 4.4 8.8

Medium, best
guess

5.0 14.0 5.5 12.5

Long, best
guess

15.7 63.6 18.0 56.8

Medium,
aggressive

0.4 0.9 0.6 0.9

Medium,
conservative

27.0 46.5 32.3 49.4

Overall, it looks like AI automation increases our speed crossing the effective FLOP by ~2.5X.

Am I assuming AGI will take the form of one unified system, or
many narrow systems working together?
Early writing about AGI tended to assume that it would take the form of one system with general
capabilities. Others have since suggested that AGI could instead consist of many individually
narrow AIs which work together to collectively have general capabilities.

When developing this framework, I tried not to take a strong stance on this question. Ultimately,
the mathematical form of the Full Takeoff Model (FTM) fits best with the latter view. The FTM
has dozens of different tasks, which each have different training and runtime requirements. The
most natural interpretation is that different AIs perform each task.

If you want to make the FTM consistent with the “one general system” interpretation of AGI, you
could say that there’s one AI that i) learns to do more tasks as we increase the size of our
training runs, and ii) can match human performance at some tasks with OOMs less compute
than other tasks. But this interpretation seems less natural to me.201

But then why do you talk about the “number of AGIs we could run” as if AGI was a
unified system?

201 In particular, how is AGI able to match human performance on some tasks with OOMs less compute
than others? Perhaps it does them in much less time, but the more natural explanation is that it delegates
those tasks to a smaller model, in which case we are back to having many different AIs.

https://www.amazon.com/Superintelligence-Nick-Bostrom-audiobook/dp/B00LPMFE9Y/ref=sr_1_1?gclid=Cj0KCQjwxveXBhDDARIsAI0Q0x0g4aa5EH75WtAeIXGKiVO-zSBfhHN4sYWNVCM9WsofJewUOncUVKYaAq0tEALw_wcB&hvadid=241886445826&hvdev=c&hvlocphy=9031939&hvnetw=g&hvqmt=b&hvrand=10067853902569623368&hvtargid=kwd-307944747019&hydadcr=16434_10305513&keywords=superintelligence+by+nick+bostrom&qid=1660846486&sr=8-1
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
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To calculate the number of AGIs we could run, I divide the globally available FLOP/s by the
FLOP/s required to run the AI that performs the most compute-intensive task (task with the
highest runtime compute requirements).

This calculation would be accurate if one unified system can use this amount of FLOP/s to
match human performance on any task, and can’t perform any tasks with less FLOP/s.

This calculation is conservative by the lights of the FTM, in that it underestimates the number of
remote human workers whose output we could match by running AIs. This is because
(according to the FTM) many tasks can be done with much less runtime compute than the most
compute-intensive task.

But your assumption that a massive training run will be needed to train AGI implies AGI
will be one unified system.

All that is strictly-speaking implied is that a massive training run will be needed to automate the
hardest-to-automate tasks. I expect many tasks will be performed by smaller and more
specialised AIs than this. That said, I do expect the AI trained in that massive training run to
have fairly general capabilities.

Value-weighted cognitive tasks
Throughout the report, whenever I refer to the % of cognitive tasks – or the fraction of cognitive
tasks – I am using a particular method for weighting different tasks.

Roughly and intuitively, each task is weighted by how important it is to the economy in 2020. A
task that many people perform, and are paid lots of money to perform, has more weight than a
task performed by fewer people on lower wages. More precisely, a task’s weight is proportional
to the total $ that people earn while performing the task.202

Even more precisely, a task’s weight is given by the elasticity of GDP to that task in 2020. If you
performed 1% more of that task, how much would that increase GDP? If the answer is “GDP
would increase by x%”, then the task’s weight is x. The task-based models I’m using assume
that performing 1% more of every task (both cognitive and non-cognitive tasks) would increase
GDP by 1%, so the total weight of all tasks equals 1. If economic inputs are allocated efficiently,
this definition should match the one relating to wages.203

The weights are pinned to a particular year (in my case 2020 for convenience) because the
relative economic importance of tasks changes over time. In particular, tasks that are automated
and so can be performed in higher volumes and quality tend to become less economically

203 For tasks performed by physical capital, a task’s weight should equal the total amount paid to rent
capital to perform the task.

202 For each person, this is given by the time they spend on the task multiplied by their hourly wage.



86

important over time (e.g. producing food). Tasks that cannot be automated or made more
productive tend to become more important (e.g. those in healthcare and education).

This same effect happens in the Full Takeoff Model (FTM) as AI automates cognitive tasks.
Tasks that AI can perform in great quantities become less economically important – their weight
decreases – ones still performed by humans become more important. The weights change over
time, and so I pin my weights to 2020 when referring to the % of cognitive tasks.

An analogous definition of task weights applies to R&D as to the broader economy. As before,
the precise definition ties a task’s weight to how much performing more of the task would
increase R&D output (R&D output in each timestep is proportional to the rate of R&D progress
in that timestep). If performing 1% more of a task would increase R&D output by x%, the task’s
weight is x. Again, if R&D resources are allocated efficiently, this should correspond to weighting
each cognitive task by the total wages paid to people while they perform it.

Objections talking in terms of the “% of cognitive tasks”
Objection 1: We have already automated >70% of 1700 tasks? And there was no
explosion of economic growth. So why do you think this time will be different?

In economic models of automation, the growth effects of automation depend on how quickly new
tasks are automated. If you automate 90% of tasks, the models I’ve seen predict GDP/capita
should rise by >10X.204 But if this is spread out over 300 years, it might correspond to 1% growth
per year.205 So the effect would not be extremely high rates of growth. But if this was spread out
over 10 years, it would correspond to >20% growth.206 So the first key difference here is that I’m
considering much faster rates of automation than we’ve seen historically.

The second difference is that I think we could ultimately see full automation. Many growth
models predict a qualitatively different long-run outcome from this compared to mere partial
automation. With full automation, models tend to predict accelerating economic growth.207

Objection 2: Won't we introduce new types of tasks into the economy? If so, then AI that
can perform 100% of 2020 cognitive tasks won’t necessarily be able to perform the new
cognitive tasks we’ve introduced.

I think this objection has some force.

207 I discuss this point further in a previous report on whether AI could drive >30% GDP growth.
206 10 years of 20% growth is a 7X increase.
205 300 years of 1% annual growth is a 20X increase.

204 You get 10X from having all human workers concentrated on the remaining 10% of tasks, and having
enough machines to increase per-task output on the automated tasks by 10X. This increases output of all
tasks by 10X, so increases total output by 10X. You can get further gains from increasing the output of
automated tasks even further. This all assumes you’re investing enough in capital accumulation to get
enough machines to do this.

https://en.wikipedia.org/wiki/Baumol%27s_cost_disease
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#WhyThinkAIAutomation


87

One attempt to dodge is to reiterate that the FTM implies that, over time, the automated tasks
will become less important and non-automated tasks will become more important. We can claim
that the model represents the introduction of new tasks (that AI can’t perform) via the increased
importance of non-automated tasks. More precisely, the apparently new task is really just a new
application of a pre-existing non-automated task and this new application makes the
non-automated task more important (as the FTM predicts).

I like this dodge. I think it suggests that the FTM’s predictions need not go badly wrong because
of this objection. If we think many important new tasks will be introduced that AI can’t perform,
we can increase the degree to which automated tasks become less important (by decreasing
the parameter ) and keep in mind that our training requirements for AGI (AI that can performρ
~all cognitive tasks) should include any newly introduced tasks.

But I do worry that the FTM’s misleading ontology, in which the tasks needed for GDP and for
R&D are fixed over time, may introduce other issues. This objection makes me view the
abstraction of “% of cognitive tasks that AI can perform” less useful and meaningful.

Objection 3: AI will add value by enabling entirely new workflows as well as by
automating existing ones.

As with the last objection, I think it has some force but there’s a dodge that I like.

The growth model allows that, in addition to replacing humans on automated tasks, AI can have
additional economic impact by producing more output on automated tasks than humans
previously produced. If AI has economic impact by enabling new workflows, we can say the
model represents this via AI producing additional output and already-automated tasks. The
apparently new task is just a new application of a pre-existing automated task. If we think this
effect will be significant, we should increase the parameter .ρ

Objection 4: In practice it won’t be possible to actually measure what % of cognitive
tasks AI could perform.

I agree that it will be very hard to evaluate precise claims about the “% of cognitive tasks” that AI
could readily perform in each year. But it isn’t meaningless; it’s the kind of thing that economists
have tried to measure. In principle you measure it by going through the concrete cognitive tasks
that each person is in fact performing in each year (and how much they’re being paid to do it, as
implied by the time they spend and their salary), and ask the technological question of whether
AI could perform that task instead (with a limited amount of engineering work and rearranging of
workflows). Any measurement would necessarily involve many arbitrary judgment calls about
what to include, but that doesn’t render it meaningless or prevent us reaching rough
conclusions.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.njea0s86yka4
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.njea0s86yka4
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.njea0s86yka4
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet
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Even if it didn’t map to reality well at all, the “% cognitive tasks” abstraction would still be the
best way I’m aware of to model AI continuously improving from today when it (seemingly) can
readily perform <1% of economic tasks to a future world where it can perform ~all cognitive
tasks. A skeptic can just think of the framework as giving some arbitrary one-dimensional scale
on which “AI capabilities” improve between today and AGI.

Objection 5: Whether AI can or can’t perform a task depends in part on the extent to
which nearby tasks are already automated. But in your model, whether AI can perform a
task depends solely on SOTA AI capabilities (measured via the biggest training run to
date).

I agree with this. Automating one task can “unlock” a nearby task for automation by
standardising the workflow. If nearby tasks have been automated, this reduces the AI
capabilities needed to automate any given task.

My current interpretation of the Full Takeoff Model is that AI can “readily perform” a task if it can
perform it with <1 year of engineering effort and work changing workflows, and it’s profitable to
make these workflow changes. This ignores the question of “But are adjacent tasks already
automated?’

I’m not sure there’s a way to get around this without significantly complicating the model. A
better version might say that, if there’s been a few years since AI could perform 20% of tasks
then this reduces the training requirements for AI to automate 30% of tasks, since AI automating
20% of tasks will make it easier to automate further tasks. More generally, the training
requirement for performing x% of tasks fall over time once AI can perform x - e% of tasks
because we expect nearby tasks to be automated.

I think the effect of this change would be to make very fast takeoff somewhat less likely (by
raising the training requirements for AI suddenly performing 100% of tasks without any nearby
tasks being automated) and make very slow takeoff less likely (by lowering the training
requirements for eventually automating 100% of tasks via iteratively automating more and more
nearby tasks).

The truth is, though, that the evidence about training requirements for different levels of
automation is already extremely rough. It consists of first estimating the requirements for 100%
automation (perhaps via Bio Anchors), then adjusting this based on evidence about the effective
FLOP gap for lower levels of automation. My uncertainties here are already so big that this
doesn’t feel like a significant contributor.

https://www.overcomingbias.com/2019/12/automation-as-colonization-wave.html
https://www.overcomingbias.com/2019/12/automation-as-colonization-wave.html
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How this report relates to previous thinking about takeoff speeds

Paul Christiano’s 2018 blog post
Paul Christiano argued for a slow takeoff in an influential 2018 blog post. Most of the post
counters various arguments that have been made for fast takeoff. His central argument for slow
takeoff is:

● Before we have an incredibly intelligent AI, we will probably have a slightly worse AI.
● A slightly-worse-than-incredibly-intelligent AI would radically transform the world, leading

to growth (almost) as fast and military capabilities (almost) as great as an incredibly
intelligent AI.

I agree with this argument, but I think its conclusion is that takeoff will be continuous rather than
that takeoff should be slow.

The argument precludes a discontinuous jump in capabilities or impact, because some
slightly-worse AI would have caused an intermediate level of impact first. This I agree with
(though I assign some probability to discontinuous jumps in capability nonetheless).

But the argument doesn’t preclude AI capabilities and impacts increasing continuously but
extremely rapidly. It doesn’t speak to whether the slightly-worse AI will occur 1 year vs 1 second
before the slightly-better AI. And this can make a big difference to takeoff speed. If AI
capabilities improve continuously but go from today’s capabilities to AGI in one month, then it
seems possible that we go straight from world GDP doubling in 24 years to it doubling in 1 year,
which is a very fast takeoff by Paul’s definition. And the GDP trajectory underlying this could
also be entirely continuous.

The framework of this report is (an example of) one in which AI progress is assumed to be
continuous but this can still give rise to fast takeoff if the rate of continuous AI improvement is
sufficiently fast. More concretely, AI capabilities improve continuously as you cross the effective
FLOP gap, but if you cross that gap sufficiently quickly then takeoff is fast.

Paul predicts that takeoff will be slow enough that there’s a full 4-year doubling of world GDP
before the start of a 1-year doubling (and a full 8-year doubling before a 2-year doubling, etc).
The Monte Carlo analyses calculate the probability that this is the case:

Median AGI training
requirements in simulation
(FLOP using 2020
algorithms)

Probability of a full 4-year
doubling of world GDP finishing
before a 1-year doubling begins

Probability of a full 8-year
doubling of world GDP
finishing before a 2-year
doubling begins

~1e31 49% 32%

~1e36 74% 47%

https://sideways-view.com/2018/02/24/takeoff-speeds/
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
https://takeoffspeeds.com/reports.html#mc_analysis
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In a nutshell, then, my reply is: Yes takeoff will probably be mostly continuous, but it could still
be fast.

Eliezer Yudkowsky’s Intelligence Explosion Microeconomics
These are my opinions, and Eliezer might disagree with my characterisation of his thinking.

Intelligence explosion microeconomics doesn’t argue for takeoff happening in weeks
rather than in years.
My impression is that Eliezer Yudkowsky expects takeoff to be very fast, happening in time
scales of days or months. By contrast, this framework puts the bulk of its probability on takeoff
taking multiple years.

Does Eliezer give arguments for a transition taking weeks or months, rather than years?
Intelligence Explosion Microeconomics (IEM), Eliezer’s most detailed piece on this topic, gives
various qualitative arguments for thinking that an intelligence explosion would not fizzle out but
instead involve intelligence growing super-exponentially. There are also arguments for thinking
AI will only need to outcompete the very small fraction of humans who do AI software R&D,
rather than outcompeting the whole world, for them to kickstart an intelligence explosion. But
these arguments don’t (attempt to) quantify either the length of the transition to AGI or the
pattern of software progress during and after the transition. So they don’t speak to whether we
should expect the transition to take days vs years; and thus to whether the accelerating AI
progress will take the form of a slow takeoff vs a fast takeoff. Therefore I view those arguments
as all wholly compatible with the full range of scenarios sketched in this report from 1 year
takeoff to 30 year takeoff.

For example, Eliezer argues that the comparison of chimps and humans suggests that returns
to improving the algorithms for general intelligence are very favourable in the human range. This
can be interpreted as claiming that the returns to software R&D, which I quantify with r, will be
favourable around human-level AI. But the argument doesn’t (attempt to) quantify i) how good
these returns are, or ii) the time it will take AI to transition from “comparably useful to software
R&D as today’s AIs” to “fully automates software R&D”, or iii) the rate of software progress
during and after this transition. Nor is there any attempt to make a bounding argument - to argue
that any takeoff respecting these constraints must be extremely fast. Without this, the argument
doesn’t support takeoff happening in days vs years.

Perhaps the closest thing in IEM is the analogy to uranium. To simplify, when the density of
uranium is below a critical threshold, no chain fission reaction occurs. But once it rises even a
tiny bit above that threshold, the chain reaction quickly explodes.208 If AI follows an analogous
trajectory then the transition from “AI can’t really help with software R&D” to “AI recursively
self-improves, doubling its own abilities every few hours” would be very quick indeed. While I
find the analogy suggestive of the logical possibility of a very quick transition, I think more work

208 The threshold was k = 1. When k = 1.0006, the neutron level doubled every 2 minutes.

https://intelligence.org/files/IEM.pdf
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is needed to show that this is plausible or probable in the case of AI. (I’d be excited about
someone doing this work, teasing apart why the transition is so sudden in the case of uranium
and what analogous assumptions would need to hold in AI for a comparably quick transition.)

I think of this report as providing a quantitative framework for Intelligence Explosion
Microeconomics
IEM qualitatively discusses a number of factors:

● Moore’s law would go faster if humans ran on computer chips.
● The importance of algorithmic improvements to AI progress.
● The (large) returns to higher quality intelligence

As I said above, he doesn’t use these factors to predict takeoff speed, or even to bound takeoff
speed (e.g. he doesn’t argue takeoff must take less than 1 year to be consistent with this
evidence).

This report quantities these factors, wherever possible using relevant empirical data:
● Moore’s law would go faster if humans ran on computer chips.

○ Data on the returns to hardware R&D.
○ An economic model where AI increasingly automates the cognitive work of

hardware R&D.
● The importance of algorithmic improvements to AI progress.

○ Data on returns to software R&D.
○ An economic model where AI increasingly automates the cognitive work of

hardware R&D.
● The (large) returns to higher quality intelligence

○ Correlations between brain size, IQ and output.
○ Data from ML on how much less thinking time models with “bigger brains”

need to achieve the same performance.
● The report also incorporates the fact that AI might have strong comparative on some

tasks over others, which tends to slow down takeoff speed.

So I think of the report as providing a quantitative framework to think about the factors that are
discussed qualitatively in IEM.

Other arguments for discontinuous AI progress around AGI

I put ~6% on a substantial discontinuity in AI progress around the human range
I agree that takeoff could happen in mere days if there is a transition in days from “AI that can
perform <20% of cognitive tasks in today’s software R&D” to “AI that fully automates software
R&D” and there are no compute bottlenecks to a software-only singularity. In this case, the pace
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of software progress could jump from its current pace (doubling every few years) to a 1000X
faster pace (doubling in hours).209

I put low probability on such a large discontinuous jump occuring, for familiar reasons. In
particular

1. Such large discontinuous jumps are rare in technological progress in general, rare in
software progress and rare in AI,210

2. Large discontinuities seem more plausible in narrow areas than in broad areas and
achieving general intelligence seems like a very broad area (though there’s more room
for doubt about how broad the skills for software R&D are).

3. It seems to me the rebuttals211 of specific arguments for why there might be
discontinuities around AGI are strong, and no good responses have been given 4 years
on.

That said, I do think that small jumps in AI capabilities are likely to occur, and that we should
attach some probability to substantial discontinuous jumps in AI capabilities.212 How much
probability would I assign to a large jump or kink in capabilities around AGI? Based on a rough
outside view argument, I’d maybe assign ~6%?

● AI impacts looked at 38 trends, 20 of which had substantial discontinuities, ~50%
● They went looking for discontinuities though, so i'd put this probability 4X lower, ~12%.
● But the generality of AGI and the continuity of recent AI progress provides some reason

to think big jumps are less likely. And even if there is a big jump, there’s no particular
reason for it to happen just before AGI. So I’ll lower this another 4X: ~3%.

● I update up to ~6% based on an argument from Nate Soares about the chimp-human
transition.

This has not been the main focus of my work, which was exploring the implications of a
compute-centric approach that doesn’t have substantial discontinuities (beyond those implied by
a small effective FLOP gap).

212 By “ substantial discontinuous jump” I mean “>10 years of progress at previous rates occurred on one
occasion”.

211 See Paul Christiano’s blog post and AI Impact’s page.

210 Though progress can be somewhat discontinuous in particular narrow applications of AI like Go,
progress in entire domains (like games) is more continuous and progress in the field as a whole is even
more continuous.

209 Let’s assume software currently takes ~2 years to double with ~20,000 high quality software workers.
After developing AGI that’s equally good at software development as a high quality software worker, it
may be possible to run ~10 million such AGIs. (This depends on the AGI runtime requirements.) This
implies the first post-AGI software doubling could happen 10 million / 10,000 = 1000X more quickly than a
current software doubling. So it could happen in < 1 day. If a software only singularity is possible,
subsequent software doublings would be faster than this so that within a few days very many doublings
have occurred: an ‘intelligence explosion’. I model out this scenario here.

https://aiimpacts.org/discontinuous-progress-investigation/
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.apdvo0uwo5qe
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.apdvo0uwo5qe
https://sideways-view.com/2018/02/24/takeoff-speeds/
https://aiimpacts.org/likelihood-of-discontinuous-progress-around-the-development-of-agi/
https://docs.google.com/spreadsheets/d/1Kls2l0WGlcQ1VQ0DBIxBrNvwzuvD9nFVxMctfhO3Ekw/edit#gid=0
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Takeoff speed can differ in different domains
Suppose it takes 1 month to go from today’s AI capabilities to a disembodied AGI, but it then
takes decades for this to affect GDP due to various bottlenecks. Is takeoff fast or slow? If you
measure AI capabilities by the ability to perform cognitive tasks that a human worker could
perform remotely, takeoff was very fast. But if you measure AI capabilities by their impact on the
economy, takeoff was slow.

Or suppose that overnight we develop AI that massively increases military power, giving its
controller a decisive strategic advantage, but this AI doesn’t accelerate technological progress.
In one relevant strategic sense takeoff is fast, but in another it is slow.

In cases like these, it can be useful to talk about takeoff speed in domain X. The question of
takeoff speed becomes: How long will it take to go from “AI has a minor impact on X” to “AI is
making X go through the roof”. Here are some example domains:

● Cognitive output. Annual output on tasks that a human worker could do remotely. E.g.
software development, math, strategy, knowledge work, writing.

● SOTA technological progress. The speed at which we’re developing new technologies
(distinct from how quickly they are integrated into the global economy).

● Military power. Ability to win a hot war.
● GDP. GDP as measured by the incomes and consumption of fleshy humans.
● AI-inclusive GDP. GDP as measured by the incomes and consumption of fleshy

humans and digital agents (including human uploads and AIs).

We care about different domains for somewhat different reasons, and fast takeoff is more
plausible in some domains than others.

Conditions under which simple growth models predict fast takeoff
in GDP
Let’s first take a simple case where we’re not modelling technology or TFP.

In standard growth models output Y (which represents GDP) is a function of capital K and
labour L. The equation is:
Y = g(K, L)

Capital cannot replace labour in these models. There are diminishing returns to capital which
makes it hard to get a large output by building more capital alone. An extreme but simple way to
model this is:
Y = min(K, L)

These models can represent full automation from AI via capital being able to replace labour in
production. After the transition to full automation there aren’t diminishing returns to capital. If you
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can amass enough capital, output can become very high. To increase output significantly you’ll
need enough capital to replace all the labour many times over. One simple way to model this is:
Y = K + L

There are a few ways to model a continuous transition here. You can model the economy as
containing many tasks, and have capital perform and continuously increasing fraction of them.
(This is my approach in this report.) Or you can model the elasticity of substitution between
capital and labour (as in a CES production function); it starts <1 (so that capital and labour are
complements) and continuously increases until it approaches infinity (so that capital and labour
are perfectly sustitutable).

Fast takeoff means that the growth rate of Y increases very suddenly during the and
immediately after transition (see earlier discussion). This will only happen if both:

1. The transition happens very quickly.
○ Output can only become very high once that transition has occurred and capital

can replace the limited supply of labour. If the transition is gradual then the gain
in Y will be spread out over time.

2. Shortly after the transition there is lots of capital, including enough to replace labour
many times over.

○ Even after the transition, output won’t become significantly higher unless there is
enough capital to replace labour many times over. (If one type of capital replaces
labour (e.g. AI robots) and another doesn’t (e.g. trucks) then there must also be
lots of both types of capital, as there are diminishing returns to each type.)

If both these conditions hold then you quickly transition from a world where capital can’t replace
labour to a world where it can and there’s enough capital to replace it many times over. After the
transition, the inputs to production are many times higher than before the transition.

Growth models would predict that Y increases extremely rapidly during such a transition,
implying a very rapid increase in the growth of Y. The simple example equations I gave clearly
imply that if conditions 1 and 2 hold, there will be a very rapid increase in the growth of Y.

What about technology? Well, the best models of technological progress are similar to the
model of output I’ve been discussing. You simply replace Y with dA/dt, the rate of technological
progress (you also model diminishing returns, but we can set that aside). So you’ll get a sudden
and dramatic increase in the rate of technological progress if conditions 1 and 2 hold for the
tasks involved in technological progress. So this doesn’t really change the analysis.

How does this all relate to the broader report? The historically fast growth of both computer
hardware and software give reason to think conditions 1 and 2 could hold for cognitive tasks.

● Condition 1 (fast transition) holds if we rapidly cross the effective FLOP gap, achieving
100% automation of cognitive tasks. Fast growth of hardware and software (i.e. of
FLOP/$ and 2020-FLOP per FLOP) allow us to cross the effective FLOP gap quickly.

https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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● Condition 2 (enough capital to replace humans many times over) holds if there’s enough
computer capital to replace human cognitive labour many times over shortly after the
transition. Fast growth of hardware and software allow us to quickly increase the
numbers of AGIs we can run after crossing the effective FLOP gap.

○ In fact, condition 2 nearly always holds in my framework because either i) by the
time we have enough FLOP to train AGI we already have enough to run 10s of
billions of AGIs, or ii) around when we develop AGI the amount of 2020-FLOP is
increasing extremely rapidly due to AI automation of hardware and software
R&D.

■ For factor (i) it’s essential that compute can be easily reassigned from one
purpose to another. After inventing AGI we won’t need to print new
specialised AGI chips to run the new AGI algorithms.

○ So the main determinant of whether there’s fast takeoff of GDP is normally
condition 1.

This gives an interesting perspective on why hard takeoff in GDP can happen in this framework.
It’s because it allows for the possibility of a rapid transition to a world in which computer capital
can replace human cognitive labour and there is very soon enough computer capital to replace
human cognitive labour many times over.

If I had captured this dynamic with a different sort of growth model, I would have got a
comparable result. E.g. if instead of a task-based model, I could have used a standard CES
growth model with 3 inputs: human labour, computer capital, and physical capital. Rather than
the ‘transition’ corresponding to AI performing a greater fraction of tasks, it would correspond to
increasing substitutability between human labour and computer capital. I’d peg this
substitutability to the biggest training run that has occurred. The overall result would be the
same: the possibility of a fast transition to a world where AI can completely replace human
cognitive labour.

This also gives an interesting perspective on a key bottleneck of the report: physical capital.
While the quantity of computer capital has grown extremely rapidly in recent decades, this is
unusual. The quantity of physical capital generally grows much more slowly. This means that it
could prevent Y from becoming extremely large, even if there’s enough computer capital to
replace human cognitive labour many times over.

Why a fast takeoff probably has its origins in the transition to AGI
rather than purely in the aftermath of AGI
I’ll analyse a simple toy model of growth dynamics in the aftermath of AGI. This toy model
suggests that the internal dynamics of the aftermath themselves won’t by themselves lead to a
fast takeoff. But it also suggests that if the transition to AGI was sufficiently quick, there would
be a fast takeoff.
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Here’s the toy model. We’ve developed AGI, and can run a certain number of AGIs. Let’s say
that, initially, the AGIs’ total cognitive output equals 10. For now, let’s say the only way to
increase their cognitive output is via software R&D to improve the AGI algorithms (i.e. recursive
self-improvement).

After a certain amount of time, the AGIs will have doubled their own cognitive output to 20. Let’s
call this amount of time D1. D1 is the duration of the first doubling of cognitive output after AGI.
(“D” for “Doubling time”.)

After some additional amount of time, the AGIs will have doubled their cognitive output a second
time to 40. Let’s call this additional amount of time D2. D2 is the duration of the second doubling
of cognitive output after AGI.

And similarly, D3 is the duration of the third doubling of cognitive output, and D4 the duration of
the fourth. More generally, Dn is the duration of the nth doubling of cognitive output after AGI.

The key question for takeoff speeds is: what is the ratio between Dn and Dn+1? That is, what is
the ratio between successive doubling times? If the ratio is very large, e.g. Dn = 10Dn+1, then
there is a fast takeoff. We go very quickly from AI self-improving at a moderate rate to it
self-improving 10X faster. But if the ratio is relatively small, e.g. Dn = 2Dn+1, then takeoff is slow.
We move gradually from AI self-improving at a moderate rate to it self-improving at a slightly
faster rate.

This metric of takeoff speeds mirrors Paul’s definition in terms of GDP doubling times, except
that we’re replacing “GDP” with “cognitive output”.

Ok then, what is the ratio between Dn and Dn+1? In this toy model, there’s good reason to think
the ratio is <2. In particular, if there’s any diminishing returns whatsoever to increasing
cognitive output, the ratio is <2.

Let’s compare D2 and D1. At the start of the second doubling, cognitive output is 2X higher than
at the start of the first doubling. (By the definition of a “doubling of cognitive output”.) If the
amount of cumulative cognitive output needed to achieve the second doubling exactly equalled
that needed to achieve the first doubling, the second doubling would take half the time. With
twice the cognitive output (per second), it takes half as long to do a fixed quantity of work. So if
(work needed for first cognitive doubling) = (work needed for second cognitive doubling), then
D1 = 2D2.
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But in fact diminishing returns are fairly ubiquitous.213 It will probably take more absolute effort to
double output the second time than it did the first time. The lowest hanging fruit, the biggest
improvements that are easiest to find, will have already been taken. This implies that the second
doubling will take more than half as long as the first doubling. So if (work needed for first
cognitive doubling) < (work needed for second cognitive doubling), then D1 < 2D2. The ratio
between successive doubling times is <2.214

So, at least in this toy model, it seems like takeoff will be slow in the aftermath of AGI. The rate
of recursive self-improvement will increase gradually with each doubling of cognitive output,
rather than suddenly.

But this still leaves open the question of how the rate of AI improvement in the aftermath of AGI
compares to the rate of improvement before AGI. If D1 = 1 week (AI cognitive output doubles in
a week immediately after AGI) but the doubling in cognitive output just before AGI took one
year, then the ratio between successive doubling times on either side of AGI would equal 52!
The argument above still leaves open the possibility of a very fast takeoff during the transition
to, and immediate aftermath of, AGI.

This explains why I believe that a fast takeoff is unlikely to arise purely from the internal
dynamics of a post-AGI world, but could easily arise from a rapid transition to AGI.

There are considerations omitted from the toy model which could lead to a fast takeoff dynamic
occurring purely from the internal dynamics of a post-AGI world. If the fraction of the world’s
compute used to run AIs working to improve AI algorithms increases very rapidly in the
immediate aftermath of AGI, then the ratios between successive doublings could be larger. For
example, if twice as much compute is used for each successive doubling, then that could double
the ratio. Or, similarly, if the data AGIs can access increases very rapidly between doublings,
this could also increase the ratio between successive doublings. More generally, the pattern is
that there’s some input to AI development (compute, data, something else) that grows very
rapidly in the immediate aftermath of AGI.

I think though, that this kind of dynamic is likely to only be significant if there is a rapid transition
to AGI. If the transition lasts many decades, it seems likely that we’ll already be using AIs to
improve AI algorithms and already be leveraging all the data we can to train our AIs. In this
scenario, I wouldn’t expect very significant gains to be left on the table from reallocating the
world’s inputs just after we cross the threshold for AGI. If so, it would raise the question: why
expect those inputs to be reallocated just after AGI but not before?

214 This is just a bound. I make my best guess about what happens in this scenario when I assess
whether a software only singularity might occur.

213 Are Ideas Getting Harder to Find finds diminishing returns in the economy as a whole and many
particular areas of it. See also this blog post by Matt Clancy examining the empirical evidence. To my
mind, there are also strong a priori reasons to expect diminishing returns. If some improvements are
harder to discover than others, then most simple models will exhibit diminishing returns as the
easier-to-discover improvements are found earlier on.

https://web.stanford.edu/~chadj/IdeaPF.pdf
https://mattsclancy.substack.com/p/innovation-gets-mostly-harder
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These arguments are not conclusive. But they do lead me to expect that, conditional on a fast
takeoff, the fast takeoff probably doesn’t arise purely from the internal dynamics of a post-AGI
but also relies on a fairly quick transition to AGI.

How likely is a software-only singularity?
Suppose you have a fixed amount of hardware that's capable of doing a particular number of
physical FLOP/s.215 You use this hardware to run AGIs (one or more AIs that collectively
automate all cognitive labour) that do software R&D. In particular, they try to improve the
algorithms that the AGIs are running on.

In this scenario, how would the total cognitive output216 of the AGIs change over time?

In section 5 I said this depended on i) how long it takes to double the AGIs’ cognitive output the
first time, ii) how the doubling time for cognitive output changes over time.

This appendix discusses (ii), in particular whether there will be a software-only singularity with
doublings becoming quicker over time and, if so, how long this might last before doublings
become slower over time.

While current returns to software R&D suggest a software-only singularity would happen
comfortably, returns may become worse as we approach AGI and being limited to a fixed
amount of physical FLOP/s could bottleneck software progress in a couple of ways.

Overall, I’m roughly ~65% on a software-only singularity occurring, and my median best guess
is that it would last for ~2-3 OOMs if it happened. What would 2.5 OOMs of a software
singularity mean? My unit of software in this section is "useful cognitive output per FLOP". So
2.5 OOMs means you can 300X the rate of progress on software development, persuasion, and
any other cognitive task. One way to imagine this is that it’s as if the software improvements
allowed all your AGIs to think 300X more quickly; though in fact the progress will come from a
combination of “you can run more AIs in parallel” and "AIs can think in new and qualitatively
better ways". (And I expect some of the progress to allow AI to do entirely new things that they
previously couldn’t have done even with ~arbitrarily long to think.)

216 By this I mean their ability to make progress on software R&D and their output in other cognitive
domains like maths, strategy, persuasion, etc. My preferred unit for cognitive output is “How many remote
human workers would it take to add the same amount of value?” So if the AGIs make some software
progress in one month, and you’d have needed 1000 human workers to make the same amount of
progress in one month, then the AGIs’ cognitive output is “1000 remote human worker equivalents”. More.

215 In practice, I expect physical FLOP to be growing very rapidly during any period where there might be
a software only singularity. However, the simplification of imagining that physical FLOP is constant is still
useful. This is because it can tell us about whether software (2020-FLOP per FLOP) might grow much
much faster than physical FLOP during this time. If it does so, then physical FLOP will be roughly
constant on timescales over which software grows very significantly. So the question “Would there be a
software singularity?” maps to the question “Would software grow much much faster than physical
FLOP?”.
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Note, even without a software singularity I expect software progress to become extremely fast
by the time we have AGI.

In the rest of this section I:
● Recap the mathematical condition under which a software only singularity occurs.
● Distinguish between pure efficiency improvements and capability improvements.
● Argue that a singularity via only efficiency improvements seems plausible, ~50%.
● Argue that including capability improvements makes it significantly more plausible,

~85%.
● Suggest potential bottlenecks do not rule out a software only singularity but do make it

less plausible, leaving me on ~65%.

Recap: the mathematical condition for a singularity
Whether there is a software singularity depends on the returns to software R&D. These returns
can be quantified by the parameter r. The meaning of r is: each time cumulative software inputs
double, 2020-FLOP per FLOP doubles r times. During a (potential) software only singularity
these inputs are provided by AGIs and they only increase due to the AGI’s improved software.

As discussed above, the mathematical condition for a software-only singularity is r > 1. Each
doubling of cumulative cognitive R&D inputs must more than double 2020-FLOP per FLOP.

Two types of software improvements
One type of software improvement that AGIs might make is simply to make the algorithms on
which they’re running more efficient. The same level of intelligence is then produced with fewer
physical FLOP/s. An example of this type of improvement would be pruning, where some of the
connections in a dense neural network are removed (‘pruned’) but the performance of the
system is (mostly) maintained.

This contrasts with the second type of improvement, which increases the capabilities of the
AGIs. A greater level of intelligence is produced, perhaps with the same or more physical
FLOP/s. For example, GPT-3 performs much better at a range of language modelling tasks than
GPT-2.

If AGIs are trying to achieve a software only singularity, they will be able to make both kinds of
improvement. They will presumably work on both improvements in (roughly) whichever
combination best improves software.

I will first assess whether a software only singularity could be achieved by the 1st type of
improvement alone, and then discuss the effects of the second type of change.
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An efficiency-only singularity
We are restricting ourselves only to efficiency software improvements, i.e. ones that decrease
the physical FLOP/s to achieve a given capability. With this restriction, the mathematical
condition for a singularity here is the same as before: each doubling of cumulative inputs must
more than double the efficiency of AI algorithms. If this holds, then the efficiency of running AGIs
(of fixed ability) will double faster and faster over time. Let’s call this an “efficiency-only
singularity”, which is of course an example of a software-only singularity.

Estimating r from ‘AI and efficiency’
What data do we have on this? Recall that to estimate r we need data on cumulative inputs and
on output.

Let’s start with outputs. AI and efficiency, an OpenAI blog, looks at how the runtime FLOP/s
needed to achieve a given level of performance on ImageNet has changed over time. They
observe an 18X decrease from 2012 - 2017. This corresponds to an efficiency doubling time of
15 months and an efficiency growth rate of 58%.217

What about inputs? Tamay Besiroglu’s dissertation suggests that the number of computer vision
researchers grew at 19% over the same period.218 If the cumulative research effort on ImageNet
grew at the same pace, that implies that that r = 2.9.219 (Recall, this means that each doubling of
cumulative R&D inputs doubles runtime efficiency 2.9 times.)

My impression is that similar rates of software improvement have been achieved in other
domains of ML, with efficiency doublings happening every 1 - 2 years.220 But gathering more
data points on this would be a very tractable and useful exercise.

If the value of r when we first get AGI is similar to this estimate, then there would comfortably be
an efficiency-only singularity. However, there are a few reasons to think that r will be smaller
than this.

1. ImageNet inputs rose more quickly than 19%. I don’t have data on the amount of
research done specifically on ImageNet. It’s plausible that it rose faster than the number
of computer vision researchers overall after 2012 did. ImageNet rose in prominence, as
did approaches to it that used large amounts of compute. On the other hand, the growth
of quality-adjusted researchers is probably slower than the growth of researchers if many

220 For example, table 2 of OpenAI’s paper shows similar or faster software gains on other select tasks as
on ImageNet (though this is for training compute, not runtime).

219 55/19 = 2.9.
218 Calcs.

217 e^(0.58*5) = 18 -- 18X increase in 5 years. e^(0.58*15/12) = 2 -- doubling time of 15 months

https://openai.com/blog/ai-and-efficiency/
https://github.com/Besiroglu/webpage/blob/3682ccac6fc92378934c24b0c08a64bcca1793e6/papers/AreModels.pdf
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=10
https://docs.google.com/spreadsheets/d/1qmiomnNLpjcWSaeT54KC1PH1hfi_jUFIkWszxJGVU5w/edit#gid=0


101

new researchers entered the field.221 In addition, even if annual research inputs rose
faster than 19%, cumulative inputs would have risen more slowly than annual inputs.222

Let’s say that quality-adjusted cumulative ImageNet inputs actually grew at a rate of
25%; this still implies r = 2.2.223

2. There was low hanging fruit to improve ImageNet in 2012 as algorithms were
using more physical FLOP than previously.224 If you suddenly have access to much
more physical FLOP/s than previously, new algorithms will become available225 and
people won’t previously have been able to pluck the low-hanging improvements to
improving them. This seems correct, but I don’t think it suggests we should use a lower
value of r.

a. Firstly, the model I’m using already incorporates low-hanging fruit. Each
efficiency doubling is harder to achieve than the last. (Indeed, the FTM normally
predicts that the first post-AGI software doubling will take >~100X effort as a
software doubling takes today, though this depends on the parameter choices.)
So it is consistent with the observation that efficiency improvements were easy in
2012 and have become harder since. The objector here would have to further
claim that the value of r itself, which controls the rate of diminishing returns,
should decrease over time.

b. Secondly, AGI will plausibly be in an analogous situation to ImageNet. More
physical FLOP will be used to train AGI, and more physical FLOP/s to run it, than
with previous systems. So you’d expect there to be low-hanging fruit here for the
same reasons as with ImageNet.226

3. Minimal efforts made to make vision algorithms compute-efficient before 2012.
Before 2012, computer vision algorithms used much less compute. In particular,
compute was a small fraction of the total costs of a project, much smaller than human

226 In fact, this gets at an important way in which my model may underestimate the speed of software
progress around AGI. It implies that the first software doubling after AGI will take much more effort than
the first such doubling after ImageNet 2012, because of algorithmic progress inbetween pushing us
further out the curve of diminishing returns. (~100X more effort, depending on what much software inputs
increase before AGI.) But if each new OOM of physical FLOP “resets” the low-hanging fruit, then the first
software doubling in each case may require equal effort. This would mean that the initial post-AGI
software doublings would happen much faster than I’m predicting, and even if r<1 there would be many
very rapid doublings of software.

225 Here’s a toy example of how this might happen. To train algorithm 1 on D data points requires physical
FLOP of 10*D^1.2. To train algorithm 2 on D data points requires physical FLOP of 1000*D^0.8. The
second algorithm only becomes more efficient than the first once you are using a sufficiently large number
of data points. It scales better with data but has a larger up-front cost, so only becomes ‘available’ when
we are using enough physical FLOP to process lots of data points.

224 In particular, I believe AlexNet, the system that famously won the competition in 2012, used
significantly more training and runtime compute than had historically been used.

223 55% / 25% = 2.2.

222 ImageNet had been going since 2010, and its predecessor since 2005 (source). Earlier work on
computer vision also contributed to the stock of relevant cumulative inputs. So there would have been a
notable stock of cumulative inputs in 2012. If the growth rate of annual inputs increased in 2012 then, it
turns out mathematically, the growth rate of cumulative inputs is initially lower than this and catches up
only after a few years.

221 This is the relevant comparison, because any efficiency gains will allow us to run more AGIs of a fixed
quality.

https://en.wikipedia.org/wiki/ImageNet#History_of_the_ImageNet_challenge
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labour. So there was minimal incentive to optimise algorithms for compute-efficiency. But
after 2012, the cost of compute for projects rose very rapidly, increasing the financial
incentives to make computer vision algorithms efficient. So there may have been one
time gains from transitioning from a “we don’t care about efficiency” to a “we do care
about efficiency” regime that will not be repeated again. If we ignored these one-time
gains, our estimate of r would have been lower.

I think this point has some merit, but it doesn’t seem to justify a much lower value of r.
There are often “one-time gains” that drive progress, and my model of software progress
is really just aggregating together many such one-time gains. And, to repeat, the model
incorporates diminishing returns and so it expects the one-time gains to become smaller
and less common over time. And there will plausibly be comparable “one time gains” in
the future: as researchers spend $1 millions and much more on training runs, the
financial incentives to make AI algorithms more efficient will grow significantly. The
question is whether the transition from pre-2012 to post-2012 is part of a series of
one-time gains that we should include in the model as part of a pattern of diminishing
returns that will continue into the future, or whether they constitute an outlier from that
pattern.227 I currently lean towards the former. This is influenced i) by a suspicion that,
even before 2012, algorithm designers in computer vision were at least somewhat
concerned with efficiency, and ii) by a sense that similar rates of software progress have
happened in other ML domains until the current day (2022).

If I discount 25% of the observed efficiency gains as due to a one-off effect that should
be treated as an outlier, then my estimate drops from r = 2.2 to r = 1.7.228

4. r will fall as we approach ultimate limits of software efficiency, and will be lower by
the time we get to AGI. There is some ultimate limit to how efficient software can
become; e.g. you can’t run AGI on 10 FLOP/s. Once we reach this limit, further progress
is impossible. This corresponds to r = 0.229 So r falls towards 0 as we approach ultimate
limits, and may have fallen somewhat by the time we get to AGI.230

The longer your AI timelines, the stronger this argument as there is more time for
software to approach ultimate limits before AGI.

This seems broadly correct to me, and I expect r will be lower when we get AGI than
today. I don’t expect this effect to be huge because I don’t think we’ll have reached

230 An important question is whether r falls based on our linear distance from the limit, or our log-distance
from it. If the former, then only in the last OOM of software improvement will r fall to 0 and r probably won’t
change much before AGI. If the later, then r will fall somewhat during each software doubling along the
way and r may decrease significantly before AGI.

229 Each doubling of cumulative inputs causes 0 doublings in efficiency.
228 2.2 * 0.75 = 1.65.

227 One way to settle this is empirical. Look at whether rates of software progress were significantly higher
just after 2012 than in periods since; if so it suggests the transition was an exception. Another way is
speaking to practitioners in the field about whether they feel there is a continued pattern of this kind, or
whether there was a regime change around 2012 that will never be repeated.
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ultimate limits by the time we get to AGI (more). In addition, AGI will probably be trained
using more physical FLOP and run using more physical FLOP/s than previous systems.
So it seems unlikely that the first AGIs will be maximally efficient, given our lack of
experience optimising systems with that level of compute.231 I think we’ll have made 2 - 3
OOMs progress, with more than this still remaining before reaching ultimate limits.

My guess would be that r falls ⅓ of the way towards 0 by the time we get AGI; so my
estimate drops from r = 1.7 to r = 1.1.232 I think people could reasonably expect r to fall
½ or even ⅔ of the way towards 0, which would imply r < 1.

After considering those 4 objections, my best guess for r fell from 2.9 to ~1. This matches my
gut feeling that, once we have AGI, returns will be worse than the naive ImageNet data suggest,
but not way way worse, and that means there could well be an efficiency only singularity. I’m
about 50 -50 on whether r > 1 at this point. (Later, I’ll discuss how many software doublings a
singularity might last for, if it happens.)

Estimating r from Computational Limits of Deep learning
Thompson et al. (2022) find that “3 years of algorithm improvement is equivalent to an increase
in computing power of 10X” in image models. This corresponds to a growth rate of 77%. The
paper does not estimate growth of inputs, but using the 19% from above implies r = 4. This is
higher than the equivalent r = 2.9 we estimated previously. Applying the same penalties as in
the last section would leave us on r = 1.5.

Estimating r from ‘How Fast do Algorithms Improve’
How Fast do Algorithms Improve, by Sherry and Thompson, is another source of data on
efficiency improvements. They survey a wide range of algorithms, most of which are not specific
to machine learning, and calculate the annual rate of efficiency improvement. The rate of
improvement depends on the size of the problem - how many examples or data points must be
processed. They find that, at a problem size of n = 1 billion, the efficiency of the median
algorithm had a growth rate of 25%.233

To estimate r, we also need data on software investments across this period. A couple of data
sources imply software investment, measured in real $, grew at a rate of 6 - 14% during this

233 They say “28% per year” on p.5, which corresponds to a growth rate of 25%: e^0.25 = 1.28.
232 1.65 * 2/3 = 1.1.

231 Although if you think that AGI will consist of multiple interacting AIs, we may have already trained most
of those AIs before training the final AI that allows the AIs to collectively perform all tasks. (OTHO, the
tasks performed by the final AI could well be the main bottleneck, so that final AI’s capacity for
improvement may be most relevant.)

https://arxiv.org/pdf/2007.05558.pdf
https://ide.mit.edu/wp-content/uploads/2021/09/How_Fast_Do_Algorithms_Improve.pdf
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=233523958
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=233523958


104

period. Let’s say the number of quality adjusted researchers had a growth rate of 10%.234 That
implies r = 2.5.

This methodology avoids objections 1, 2 and 3 from above, as these were specific to the
ImageNet data being used. Objection 4, that returns may be worse once we get to AGI, still
applies. The same ⅓ adjustment as before leaves us at r = 1.6.

There are a couple of big uncertainties here.

Firstly, Sherry and Thompson observe very large disparities on progress in different types of
algorithms.235 If we have similar uncertainty about AGI we should be open to an efficiency-only
singularity happening comfortably, or to it not happening at all.

Secondly, the result is sensitive to the problem size used. A problem size of 1 million, rather
than 1 billion, reduces the median rate of progress from 25% to 14%,236 which would leave us at
r = 0.9.237 I don’t know a principled way to choose the problem size. I think using the size of
current SOTA AI models (e.g. # params or # data points) would imply a somewhat higher
problem size than 1 billion. The problem size will be larger still for AGI.238

I see this second estimate as broadly consistent with the first; both suggest r = ~1 is plausible
for efficiency improvements around AGI. I find the second estimate slightly less informative
because it looks at algorithms in general rather than focussing on AI.

In both cases, my biggest uncertainty is how much r will decrease between today and when we
get AGI. It seems fairly clear that today r > 1 by some margin, but that could easily stop being
the case by the time we get to AGI.

A software-only singularity (including capability improvements)
The above analysis assumed we were restricted to only using software improvements that
increase the efficiency of running systems with ~fixed capabilities. I guessed there was a ~50%
chance these improvements would happen increasingly quickly; and if so, that might be ~10X
total improvement before progress began to slow.

238 This gives another reason to think there won’t be extremely harsh diminishing returns at this time
(larger problem sizes lend themselves to faster algorithmic improvements, measured in % terms).

237 1.6 * 14%/25% = 0.9.
236 e^0.14 = 1.15.

235 They say (p.4) that just under half the families show little to no improvement, while 14% of algorithms
improved by more than 11X each year (on average).

234 This is probably slightly too high, as it looks like real $ grew at ~10% and so quality adjusted people
probably grew ~2% more slowly (due to rising real salaries). As a result, the estimate of r will be slightly
too low.
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In reality, AGIs would also try to make improvements to make more capable AI, perhaps running
on as much or more FLOP/s. This could only increase the chance of a software-only singularity
occurring and its duration.

How large might this effect be? I think there are good reasons to think the effect will be big:
● New capabilities are plausibly a much bigger source of progress than efficiency

improvements on existing capabilities.
○ OpenAI argue239 for this. For example, they suggest that AlexNet – the system

that famously won ImageNet in 2012 – achieved its level of performance much
more efficiently than pre-existing algorithms could have. More generally, they
argue that the first time a capability is achieved, the algorithm used is typically
much more efficient than pre-existing algorithms at achieving that capability.
Their arguments seem reasonable to me; the key question then becomes how
useful these new capabilities are. (Who cares about dramatically increasing the
efficiency of new capabilities if those capabilities aren’t useful?)

○ My impression is that the growth in AI’s economic importance since 2012 has
mostly come from new capabilities, rather than merely from increasing the
efficiency of capabilities that already existed before 2012.240

○ There is very large variation among humans in terms of effectiveness at software
R&D.241 This suggests that, around the human level, there are very large gains to
software R&D from increased capabilities.

○ More speculatively, perhaps AGI whose (collective) capabilities surpass any
human will identify new kinds of software improvements that humans cannot see.
Perhaps many such improvements will exist, as humans haven’t been able to see
any of them. If so, there could be extremely rapid progress once AIs surpass the
best humans.

○ Overall, this gives me a prior that capability improvements will be a much bigger
deal than efficiency improvements during a software-only singularity. So if we
previously thought r = 1 for efficiency improvements only, you might think r = 3
when you include capability improvements (so that capability improvements are
twice as big a deal as efficiency improvements).

● Grace (2013) measures algorithmic progress in 6 domains, and finds that in many areas
about half of all progress is due to software and half due to hardware.

○ I believe that these improved algorithms often used constant or increasing
amounts of compute, so her evidence speaks to non-efficiency gains from
software.

○ One extremely hacky way is to assume that her measure of ‘hardware progress’
maps to increases in FLOP/$, and assume that inputs to software R&D have
grown at the same rate as inputs to hardware R&D. Then the returns to software
R&D will be the same as we calculated earlier for hardware: r = ~7.

241 I’ve heard there is SMPY data on this but I couldn’t find them with an hour or so looking. Salary
differentials are indicative, but they may underestimate true productivity differences for social reasons.

240 People could dig into this: the specific use cases that generate revenue and the algs used for them.
239 Section 5.3 of the paper that accompanied the AI and Efficiency blog.

https://intelligence.org/files/AlgorithmicProgress.pdf
https://en.wikipedia.org/wiki/Study_of_Mathematically_Precocious_Youth
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
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○ This is very far above the threshold for a singularity (r = 1). In the last section I
adjusted the efficiency estimate down from r = 2.9 to r = 1.1 based on a few
objections; similar adjustments here242 would still leave the overall estimate at r =
~2.5.243

○ An important caveat, discussed more below, is that these returns might not be
possible without increasing the amount of physical training FLOP and runtime
FLOP/s.

● Eliezer Yudkowsky argues that the evolution of humans suggests that there are
favourable returns to improving the algorithms for general intelligence around the human
range, and that those returns aren’t sharply diminishing. Roughly speaking, this
corresponds to the claim that r is large when software reaches human levels. It’s hard to
translate this into a quantitative claim, but the next footnote argues from Yudkowsky’s
claim to the conclusion that r > 2 (around the human range).244

○ I find this evidence fairly unconvincing for the same reasons given in Paul
Christiano’s blog post. Selection for intelligence, in particular for learning from
and communicating to others, may have increased significantly during this period
due to the massively increased importance of culturally accumulated knowledge
for survival.245

● Evidence from within ML suggests ‘cleverer’ models make much better use of compute.
○ Jones (2021) finds that, when training AlphaZero on the game Hex, using 10X

more training compute reduces the runtime compute246 needed to achieve a
given test result by 15X.247 In other words, a model that is “10 times smarter” (as
quantified by its training FLOP) can achieve the same result with 15X less
thinking (as quantified by its runtime FLOP).248

248 We can relate this to model size, i.e. FLOP/s at runtime, if we make an assumption relating training
FLOP to runtime FLOP/s. Let’s assume that when you double model size you need 4X the training FLOP.
In this case, 10X more training FLOP corresponds to a ~3X bigger model. Jones’ result is then that a 3X

247 This implies that, with a fixed budget for both training and runtime, it’s optimal to spend ~55% on
training and ~45% on runtime. (The system is Cobb Douglas: test result = Train^0.55 * Runtime^0.45. I
have verified that this Cobb Douglas equation roughly reproduces Jones’ results.)

246 The reduction in runtime compute comes from reducing the depth of the tree search. (It must be
reduced by more than enough to compensate for the mdoe being larger.)

245 The Secret of Our Success is the best account of the importance of culture to the biological evolution
of humans that I’m aware of.

244 Yudkowsky argues that the effort needed to increase intelligence didn’t significantly increase during the
evolution from Australopithecus to Homo erectus to Homo sapiens. In this period, he claims, brain size
increased by a factor of four. If software increased by a similar factor over this period (i.e. if better
software was responsible for the same share of cognitive improvement as bigger brains), then software
too increased by 4X. According to the model of this report, the effort needed to improve software
increased by 4^(1/r) during the period. Suppose we accept Yudkowsky’s claim that the effort needed
didn’t increase much; let’s commit to saying it increased by <2X. To meet this commitment, we’d need
4^(1/r) < 2, which implies r > 2.

243 7 * 1.1 / 2.9 = 2.65

242 Are these objections applicable? The first (inputs rose more quickly than we assumed) might apply if
the problems studied received faster growing investment than is typical for software. The second (low
hanging fruit due to more physical FLOP) applies more strongly as I believe the amount of physical FLOP
by the systems studied in Grace (2013) was continually increasing. (By contrast the physical FLOP used
on Imagenet didn’t increase after 2012 in the OpenAI data.) The third objection (minimal effort to make
algorithms compute-efficient before 2012) doesn’t apply, as it was specific to 2012.

https://intelligence.org/files/IEM.pdf
https://sideways-view.com/2018/02/24/takeoff-speeds/
https://arxiv.org/pdf/2104.03113.pdf#page=5
https://docs.google.com/spreadsheets/d/1HgmyK8yy4DxuVFl0TkLsrKTM8dqgYmzN3fyZTrx9CE8/edit#gid=0
https://www.amazon.com/Secret-Our-Success-Evolution-Domesticating/dp/0691166854
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○ On a simple intuitive level, this suggests that the returns to training more capable
AIs could be large. Increases in training FLOP, or simply training efficiency, could
result in significantly more capable AIs.

○ A simple toy model supports this intuition.
■ To simplify the model, let’s suppose 10X more training FLOP reduces the

runtime FLOP needed for a given result by 10X, rather than 15X. I.e.
doubling training FLOP means that only half the runtime FLOP is needed
to achieve a given result.

■ Suppose we have 1000 FLOP available to us in each timestep. Each
timestep we must use the latest algorithms to train AGI from scratch and
then run AGIs to improve AI algorithms.

■ It turns out that, given our assumptions, it’s optimal to use 50% of our
FLOP on training and 50% on runtime. 500 FLOP each.

■ First, let’s walk through an example where we don’t increase training
efficiency and so don’t train more capable AIs.

● Suppose that in the first timestep AGIs double cumulative R&D
inputs. Further, assume that this doubles runtime efficiency (i.e.
assume r_runtime=1) but doesn’t change training efficiency
(assume r_training=0). The new algs take the same amount of
FLOP to train, but run on half as many FLOP/s.

● Then in the second timestep we’ll again use 500 FLOP to train
AGIs of the same ability, but we can run twice as many of them
with the other 500 FLOP. We get twice as much R&D done as in
the first timestep, so we double cumulative R&D inputs again. As
before, this doubles runtime efficiency (r_runtime=1) but doesn’t
change training efficiency (r_training=0).

● The process continues: in the third timestep we again use 500
FLOP to train our newly designed AGIs, use the other 500 FLOP
to run 4X as many AGIs as in the first timestep, double cumulative
R&D inputs again, so double runtime efficiency (r_runtime=1) but
don’t change training efficiency (r_training=0).

● The process can continue indefinitely. We chose the knife-edge
r=1, and so the software doubling times are constant over time. If
we’d chosen r > 1, each doubling would have taken less long.

■ Now let’s walk through an example where we do increase training
efficiency.

● Like last time, AGIs double cumulative R&D inputs on the first
timestep and this doubles runtime efficiency (r_runtime=1). This
time let’s assume it also doubles training efficiency (r_training=1).
The new algs take half as much FLOP to train and run on half as
many FLOP/s.

bigger model achieves the same result with 15X less runtime FLOP/s. This means it thinks for 45X
less long! Or, equivalently, a 2X bigger model achieves the same result with 6X less FLOP/s and 12X less
thinking time.
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● Then in the second timestep we could train AGIs of the same
capability with only 250 FLOP, and use the other 750 FLOP to run
them twice as efficiently as before. We would get three times as
much R&D done as in the first timestep. (2X as efficient, using
1.5X the runtime FLOP.) Call this option 1.

● Alternatively, we could use 500 FLOP for training. Compared to
the option 1, this doubles training FLOP. We will train more
capable AIs than in option 1.249 How much more capable? Above,
we assumed that doubling the training FLOP halves the runtime
FLOP needed to achieve a given result. (This was based on Jones
(2021).250) So our more-capable-AGIs will achieve the same
output with half as many runtime FLOP, compared to option 1. We
could achieve the same software progress as option 1 by running
them with 375 FLOP, but in fact we can run them with 500 FLOP.
This means we’ll get 500/375 = 4/3 times as much R&D done as
in option 1, and four times as much as in the first timestep. Call
this option 2.

○ There’s a factor of 2 from reducing the runtime FLOP of
our old AGIs, and a factor of 2 from using more efficient
training to train more capable AGIs. Based on the result
from Jones (2021), improvements to runtime and training
combine multiplicatively.

● Option 2 is better than option 1, by a factor of 4/3, because it
exploits the ability to train smarter AGIs. The actual numbers from
Jones (2021) suggests the true effect of increasing training
efficiency would be slightly larger. (He found 10X more training
compute drives 15X more runtime efficiency, whereas we
assumed it would drive only 10X.)

● In this toy model, there’s a software only singularity just if
r_runtime_efficiency + r_training_efficiency > 1; we saw earlier

250 [Weedsy fn.] We are applying the result from Jones (2021) in a subtly different context here. The
original result showed that doubling the physical training FLOP (slightly less than) halved runtime FLOP to
achieve a given result. There was only one algorithm used (AlphaZero). Here we are again imagining
doubling the physical training FLOP, but we also imagining that we just halved training FLOP by making
algorithmic improvements. You could object that the doubling training FLOP won’t halve runtime FLOP if
you’ve just made some algorithmic improvement to make training more efficient. Maybe that efficiency
improvement only improves training at the new smaller scale, but not so much at the original scale? This
objection doesn’t seem convincing to me. My guess is that the training algorithms developed since
AlexNet (the 2012 ImageNet system) also function well at the training FLOP used for AlexNet. Much more
significant to my mind is the fact that Jones (2021) is a toy environment, while we’re here imagining AI
that can do 100% of cognitive tasks.

249 By analogy with Jones (2021), this happens via training a bigger model (one with more FLOP/s) than in
option 1. Remember, option 1 itself involved AGIs using half as many FLOP/s as in timestep 1, so in
option 2 AGIs will use more than half as many FLOP/s. How much exactly? If we assume model size
goes with sqrt(training FLOP) then the model size will be 0.5*sqrt(2) = ~0.7 times as big as in timestep 1.
So models still get smaller, but they also get smarter, due to the combined effects of training
improvements and runtime improvements.
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that an efficiency only singularity occurs just if r_runtime_efficiency
> 1. So this toy model suggests that a software only singularity is
considerably more plausible.

○ Above I estimated r_runtime_efficiency = 2.9, based on
data about ImageNet (though revised it downwards to 1.1).
What about r_training_efficiency? The same AI system
driving the runtime estimate produces an estimate of
r_training_efficiency = 3.2,251 which a similar discount
would reduce to 1.2.

○ More generally, most improvements in runtime efficiency
also increase training efficiency,252 but not vice versa.253 So
I’d expect r_training_efficiency > r_runtime_efficiency. This
implies that we get a software singularity as long as
r_runtime_efficiency > 0.5. This is definitely the case now,
and I expect it will still be true when we get to AGI, but I’d
still assign >25% to the contrary.

■ All this is to say that a toy model implies that being able to train cleverer
models would make a software-only singularity significantly more
plausible. It uses a tradeoff between runtime and training FLOP that
Jones (2021) observed in a toy environment, but that type of tradeoff
does seem plausible.

■ This suggests that if we thought r = 1 only including runtime efficiency
improvements, we should think r > 2 once we include training efficiency
improvements that can lead to more capable models. (Because in the toy
model the contribution of the latter was expected to be bigger,
r_training_efficiency > r_runtime_efficiency.)

● If we discover a learning algorithm that scales as efficiently with training and runtime
FLOP as the human lifetime-learning algorithm, then it seems plausible we could do a
software-only singularity just by making that algorithm more efficient.

○ Correlations between brain size and IQ, and IQ and productivity, suggest a
relationship between brain size and productivity in humans. In particular, a 10%
bigger brain is ~5 IQ points smarter, and so ~30% more productive. Extrapolating
heroically, a 2X bigger brain is ~8X more productive (see calcs and data source).

○ Suppose you had (an inefficient version of) the human learning algorithm, and
were able to make it 2X as efficient. That would mean that, using the same
amount of physical FLOP as before, you could train and run a model that was like
a “2X bigger brain” and so was 8X more productive.

○ Whether you succeed in doing a software-only singularity or not depends on
whether you become faster or slower at making 2X efficiency improvements of

253 For example, improving the optimiser or the hyper parameters don’t affect runtime efficiency.

252 Training consists in doing multiple forward passes. If you increase runtime efficiency, you decrease the
compute for each forward pass.

251 While the system’s runtime efficiency increased 18X (growth rate 55%), its training efficiency increased
by 21X (growth rate 61%). With the same assumption that cumulative inputs grew at 19%, this implies
r_training_efficiency = 61/19 = 3.2.

https://arxiv.org/abs/1707.01083
https://docs.google.com/spreadsheets/d/1rY1cKRYWX0x-2z-927SDYRyHjmIcrNFuptKHvNwa-1k/edit#gid=1834427578
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that kind. To succeed, each 2X efficiency improvement must take <=8X as much
effort as the last.

○ This condition will hold unless diminishing returns to efficiency improvements are
much steeper than they are today.

■ For context, the estimate of r_efficiency = 2.9 from Imagenet models
corresponds to each 2X efficiency improvement taking 27% more effort
than the last. Much less than 8X more effort!254

■ We can use a model like before, where r_brain_alg means: when you
double cumulative R&D inputs you double the efficiency of the human
learning algorithm r_brain_alg times. The condition for software-only
singularity is r_brain_alg > 0.3. This is a lot lower than the estimates
we’ve been seeing.

● Translating back to the condition on overall r (‘When we double
cumulative software R&D inputs, how many times do we double
productivity?’), I see this as evidence that r > 1, perhaps
comfortably so.

■ Here’s a toy model of this dynamic.
○ A qualification here is that perhaps the human learning algorithm scales well

within the human range of variation (±10%), but no further. Or perhaps by the
time we find anything that scales this well, we’ll have already hit the ultimate
limits to software. On the other hand, you might think we could get better scaling
than the human learning algorithm by scaling data in proportion to model size.
(The human learning algorithm keeps data fixed as brain size increases.)

I said I was 50-50 on an efficiency only singularity happening, at least temporarily. Based on
these additional considerations I’m now at more like ~85% on a software only singularity. And I’d
guess that initially r = ~3 (though I still think values as low as 0.5 or as high as 6 as plausible).
There seem to be many strong ~independent reasons to think capability improvements would
be a really huge deal compared to pure efficiency problems, and this is borne out by toy models
of the dynamic.

How long might a software-only singularity last?
Even if a software only singularity occurs, there’s a further question of how much software
improves before software doublings start to slow down. I don’t have much to say here. There
are a few sources of evidence that I’m aware of:

● How big were the total efficiency improvements on ImageNet? Runtime efficiency
increased 18X from 2012 to 2017; training efficiency increased 44X from 2012 to 2019.
Perhaps returns to increasing the efficiency at which we achieve AlexNet-level
performance become much worse shortly after this (though returns for making more
capable models more efficient might be better). We can anchor to this and predict total
gains of 2 - 5 OOMs before returns become worse and doublings start to slow down.

254 2^(1/2.9) = 27%.

https://docs.google.com/spreadsheets/d/1ydGmUGpgkcxl4be5iJeu2HbWthq7_gGpMXenae80Pe8/edit#gid=0
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○ Why 2 OOMs? Conservatively only include training efficiency increases (44X)
and assuming these ran out soon after 2019 (at 100X).

○ Why 5 OOMs? Combine training and runtime increases multiplicatively as in the
toy model above: 18 * 44 = 800, ~3 OOMs. Then assume the trend could
continue for another ~2 OOMs before running out.

● How far away are ultimate limits to software efficiency (at this level of physical
FLOP)?

○ Runtime efficiency.
■ I expect that when we first train AGI, its runtime efficiency will be less than

the human brain. The first version of an AI system with a new capability is
typically not well optimised for runtime efficiency. AGI might initially be
10X or 100X less efficient than the human brain, perhaps much more.

■ In addition, I’d guess that the ultimate limits for runtime software efficiency
are significantly better than that of the brain:

● The brain does specialised cognitive tasks using general thinking
software that is much less efficient than specialised software
would be (e.g. doing mathematics using neural networks).

● There’s significant variation between humans in IQ, even holding
brain size fixed.

● In evolutionary time, we have not had brains our size for that long;
and they have not been optimised for doing the cognitive tasks
needed for science for long.

● AI will have a some significant structural advantages over humans
that make them more productive; e.g. faster serial speed, no
leisure (though there are potential ethical concerns here), more
motivated to work hard and coordinate effectively. More.

■ Overall, 3 OOMs or more increase here seems likely before hitting limits.
○ Training efficiency.

■ When we first train AGI, its training efficiency will be many OOMs below
human learning efficiency. Human lifetime-learning takes ~1e24 FLOP,255

and training AGI with 1e30 FLOP would be less than my median. Naively,
that suggests 6 OOMs improvement available just in training efficiency.

● Even if the human learning algorithm is extremely complicated and
evolution has learned thousands of clever tricks, in principle AI
could discover and hardcode them themselves.

■ It seems like human learning efficiency is not close to physical limits.
● We could do much better to fully optimise people’s experiences for

learning, e.g. by providing better and more personalised learning
curricula.

● Again, there’s large variation in learning efficiency between
humans.

255 Quoting from Bio Anchors: “I took the anchor distribution to be the number of total FLOP that a human
brain performs in its first 1 billion seconds (i.e. up to age ~32); my median estimate is (1e15 FLOP/s) *
(1e9 seconds) = 1e24 FLOP.”

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.87mp14r9lgsj
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● Again, there’s only a limited amount of time (on evolutionary
timescales) that human-sized brains have been optimised for
learning. And much less time still being optimised to learn in our
current cultural environment (e.g. from books).

● So if there’s 2 - 5 OOMs of software gains still to be had once we
get AGI, perhaps returns become worse (ending the software
singularity) after ~2 OOMs.

■ Overall, 5 OOMs or more increase here seems likely before hitting limits.
○ Bigger brains

■ Even if human brain learning and runtime efficiency is at physical limits,
you could increase total productivity simply by training bigger brains.
Above I discussed the naive estimate that doubling brain size would 8X
productivity; this means 4X more output per FLOP.

■ If we trained 100X bigger-than-human brains using the human lifetime
learning algorithm, this would take 100X the compute (people with bigger
brains don’t take longer to learn), 1e26 FLOP. That would increase
productivity by 10,000X, 4 OOMs.

○ What do ultimate physical limits tell us about how long the software-only
singularity will last?

■ If initially r= 2 and we’re Y OOMs from ultimate physical limits to software,
and the software-only singularity requires r>1, then a really simple model
might say that the singularity will last for Y/2 OOMs. The idea is that r=0
at ultimate limits, and we assume it falls a constant amount towards 0 with
each OOM of software improvement.

■ We guesstimated 3 OOMs to improve runtime software efficiency, 5
OOMs to improve training efficiency and at least 4 OOMs to increase
output by training bigger models. I think these are multiplicative,256

summing to 12 OOMs.
■ So then if we start at r = 2, then the software singularity would last for 6

OOMs. (Above my best guess was r=3, so i’m being somewhat
conservative here.)

■ Clearly, a lot of work is being done by the assumption that r = 2 when the
software singularity starts (i.e. when we fully automate software R&D).
Assumptions of r = 1.2 would lead to a much shorter singularity; r = 4
would lead to a much longer one.

■ A lot of work is also done by the linearity assumption, that r decreases
steadily OOM by OOM. Maybe r falls quickly to ‘close to 0’ and then
slowly approaches 0 over subsequent OOMs.

● Directly estimate r at human levels of software. Above I discussed Yudkowsky’s
claim that returns to software aren’t sharply diminishing around the human level of
intelligence, and suggested we could very roughly parse the claim as r > 2. This implies

256 Training and runtime improvements are multiplicative in the toy model above, and then training bigger
brains is clearly a distinct type of improvement.
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that, even when software is at human levels, returns would have to become notably
worse before a software only singularity stopped.

I don’t trust any of these lines of evidence, but my best guess is that, based on the evidence
discussed so far, a software singularity, if it started, would last ~5 OOMs before software
doublings become slower. It could be 1 OOMs, or even 10 OOMs.

Importantly, even after software doublings become slower (r < 1), there may still be very fast
software progress for multiple doublings. For example, if r = 0.5 then each doubling takes twice
as long as the previous one. If the fastest software doubling took 1 week, after which each
doubling is twice as long as the previous one, there would still be 16X software progress over
the next 30 weeks.257

Bottlenecks from a fixed supply of physical FLOP
Two bottlenecks are salient to me.

1. The need to experiment to find better algorithms
2. The dependence of software progress on using more physical compute.

The need to experiment to find better algorithms
As discussed in section 6, one seemingly important contributor to software R&D is doing
experiments to see which algorithms have good performance in practice. Across all the data
series considered in this section, the physical FLOP available for doing such experiments was
increasing exponentially while software progress happened. Perhaps this exponential growth in
physical FLOP was needed to run enough experiments to maintain the observed pace of
software progress. Perhaps we’d have seen slower software progress if the amount of physical
FLOP had remained constant (as it would in a software singularity). If so we’d have estimated a
lower value for r and judged the software singularity to be less likely.

For example, I estimated that r = 2.9 for runtime efficiency improvements on Imagenet. But
perhaps we’d have only seen half these improvements had the physical FLOP used for
experimentation remained constant. In which case I’d have instead estimated r = 1.45, and
lowered my probability of a singularity accordingly. And similarly, perhaps the software
improvements observed in Sherry and Thompson (2021) and Grace (2013) would have been
smaller had the physical FLOP for experimentation remained constant. Again this would reduce
the estimates of r that I derived and make a software singularity look less likely.

To make the potential bottleneck here concrete, let’s imagine trying to achieve an efficiency-only
singularity. Each doubling of efficiency will require a certain number of experiments. We can
compare the number required for one efficiency doubling with the number required for the next
efficiency doubling. The key question is: How does the number of experiments required change

257 The next four doublings take 2 weeks, 4 weeks, 8 weeks, and 16 weeks. That’s 2^4=16X progress in
30 weeks.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
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for successive efficiency doublings? If we needed a constant number of experiments to achieve
each efficiency doubling, the physical FLOP needed for experimentation would actually
decrease over time. After the first doubling, each experiment would take half as much physical
FLOP.258 If we needed twice as many experiments for each new efficiency doubling, the physical
FLOP needed for experimentation would be constant over time. Each successive doubling
would require twice as many experiments, but each experiment would use half as much
compute. The effects would cancel. Lastly, if we needed more than twice as many experiments
for each new efficiency doubling, the physical FLOP needed for experimentation would increase
over time.

If we instead imagined a software-only singularity that included improvements in the capability
of AGIs, then this analysis would shift. In the previous paragraph, after each software
(efficiency) doubling, the physical FLOP per experiment halved. But capability improvements
would make experiments more computationally expensive. So the physical FLOP per
experiment would not halve after each software doubling; it might decrease more slowly than
this, or even increase if new models use more physical FLOP/s.259 This makes it comparatively
more likely that experiments would significantly bottleneck progress.

Still, we could get significant capability gains while doing a fixed number of experiments per
software doubling, by holding physical runtime FLOP/s fixed. And we can adjust how we
conduct software R&D to reduce the reliance on large experiments (e.g. conducting
experiments on a smaller scale, reasoning more from first principles, inferring the outcome of a
training run from the first 100 timesteps, a move back to “good old fashioned AI” where AI
runtime software is handwritten). I think experiments would probably eventually bottleneck
capability improvements, but this might not happen until we’ve seen multiple OOMs of
improvements.

One way to model this would be to have physical FLOP perform some fraction of software R&D
tasks;260 this input would stay fixed during the software singularity and so eventually (if R&D
tasks are complementary) bottleneck progress. I believe Epoch are investigating a model of this
kind.

My takeaways from the previous few paragraphs are:
● The number of experiments for each software doubling has to increase at a fast

exponential rate for it to block an efficiency only singularity. This doesn’t seem very likely.
● It is more likely to be a bottleneck for capability increases, but this is not guaranteed.

260 You could use the fraction of lab spending on physical FLOP vs talent to decide the fraction of software
R&D tasks performed by physical FLOP. (Although physical FLOP allows labs to develop and run AIs, as
well as improving their algorithms; so this is problematic.)

259 This depends on the balance between runtime efficiency improvements and capability improvements,
and on how capability improvements affect the AGI’s runtime FLOP/s. If we are increasing the physical
FLOP/s of our SOTA AIs, then we will have fewer experiments at that scale; but capability improvements
can also come from using a fixed amount of FLOP/s more effectively.

258 I’m assuming that the physical FLOP required for an experiment is proportional to the runtime FLOP/s
of the system the experiment is investigating.

https://en.wikipedia.org/wiki/GOFAI
https://epochai.org/
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● Overall, I’d be surprised if experimental bottlenecks block a software-only singularity in
its early stages, but wouldn’t be surprised if they blocked it after a couple of OOMs of
improvements.

● I think this consideration should lower our estimates of r; if I had to say it would lower r
from 3 to 2.

● It also lowers my probability that a software-only singularity will occur at all from ~85% to
~70% and makes me think any software singularity would last less long (~2-3 OOMs
rather than ~5 OOMs).

The dependence of software progress on using more physical compute
A decent chunk of software progress may be the result of software adapting to larger hardware
scales (h/t Paul Christiano). In other words, there are fast diminishing returns to improving
algorithms that use a fixed budget of (physical) FLOP/s, but using more FLOP/s allows us to find
new algorithms that are much better adapted to the additional FLOP/s than our previous
algorithms.

As a concrete example, suppose alg1 has efficiency 100 when run on 1e9 FLOP/s. alg2 has a
very similar efficiency of 105 when run on 1e9 FLOP/s. But when run on 1e10 FLOP/s, alg2 has
an efficiency of 200, compared to alg1’s efficiency of 110.

Efficiency of algorithms alg1 alg2

1e9 FLOP/s 100 105

1e10 FLOP/s 200 110

alg2 is much better adapted to the new FLOP/s budget than alg2, even though their
performance was similar on the old budget.

If much historical algorithmic progress is of this sort, then algorithmic progress would become
much slower if our budget of FLOP/s remained constant (as during a software-only
singularity).261

There’s a couple of reasons it could be easier to improve algorithms are larger hardware scales:
● Less effort has been made to optimise algorithms for that large scale historically, so

there’s more low-hanging fruit.
● Improvements in scaling behaviour (e.g. moving from O(n^2) to O(nlogn), or moving to

Chinchilla scaling) have bigger effects at larger levels of FLOP/s.

How does this consideration affect the estimates of r that I’ve used in this section?

261 How Fast do Algorithms Improve supports the idea that we’ve only maintained our overall pace of
algorithmic progress by increasing our physical FLOP budgets. It finds that algorithmic progress is faster
at larger problem sizes.

https://ide.mit.edu/wp-content/uploads/2021/09/How_Fast_Do_Algorithms_Improve.pdf
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● The AI and Efficiency and the How Fast do Algorithms Improve estimates are affected in
similar ways.

○ They both measure algorithmic progress as a reduction in the FLOP/s to achieve
a given capability. Their measured software progress does not rely on using new
algorithms that are better adapted to new scales of FLOP/s.

○ However, the fast software progress they measure may be a result of adapting to
a new large hardware scale, as happened with ImageNet in 2012. This could
mean that the researcher inputs to software R&D for that new hardware scale
grew especially quickly during that time, because the scale was previously
neglected.

○ I already adjusted for this consideration for AI and Efficiency, where I ended up
on r = 1.

○ I didn’t adjust for this in How Fast do Algorithms Improve, so will make an
additional adjustment from r = 1.6 to r = ~1.2.

● The (very rough) estimate based on Grace (2013) would be more affected. It looked at
software progress over periods of time when the FLOP/s used by systems increased; if
instead the FLOP/s used had remained constant, software progress may have been
slower.

○ I estimated r = ~7, then adjusted down to r = ~2.5. I’d now adjust this further to ~r
= 2.

So this mostly affects the estimate of r from Grace (2013), the only one that suggested a
software singularity would happen comfortably. The estimates of r = ~1 from ImageNet and How
Fast do Algorithms Improve aren’t affected much.

Paul Christiano and Carl Shulman commissioned work to investigate this objection. They
compared the performance of an old chess algorithm to a new algorithm at both old levels of
(physical) FLOP and new levels of FLOP. The old algorithm was 1998 Fritz [black line] and the
new algorithm was 2021 Stockfish [blue line].

https://www.lesswrong.com/posts/ax695frGJEzGxFBK4/biology-inspired-agi-timelines-the-trick-that-never-works?commentId=EuHZLiKcXMeahpqMB
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[x axis shows compute used by a system; y axis shows its Elo rating. Each line corresponds to a
different algorithm.]

If the objection is correct, 2021 Stockfish should have a bigger advantage at the new hardware
scale (~10,000 kNodes) than the old scale (~100 kNodes).

It’s ambiguous whether this is the case. It depends how you measure it.
● The Elo differences between the two algorithms are slightly bigger at the old hardware

scale. At 100 kNodes, the Elo gap is ~1000, at 10,000 kNodes it’s ~800. This suggests
algorithmic progress didn’t rely on increasing the hardware scale.

● But the efficiency improvements are bigger at the new levels of FLOP than at old levels
of FLOP. Suppose you ask “how many times fewer FLOP does the new algorithm need
to match the performance of the old algorithm?”. 2021 Stockfish needs 100X fewer
FLOP to match the performance of 1998 Fitz at 100 kNodes, vs ~500X fewer to match
its performance at 10,000 kNodes.262

262 The data also suggests that capability improvements are more significant than efficiency
improvements. New algorithms achieve capabilities that would have taken old algorithms >10 OOMs of
extra FLOP. By contrast the efficiency improvements are 2 - 3 OOMs. This confirms OpenAI’s claim,
above, that the first time a capability is achieved, the algorithm used is typically much more efficient than
pre-existing algorithms at achieving that capability.
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Overall, it seems plausible that software progress does depend on moving to new hardware
scales to some extent. This mostly affects the estimate based on Grace et al, which was already
extremely rough. This consideration slightly decreases my probability that a software singularity
occurs, down from ~70% to ~65%.

Summing up
I’ve tried to assess the plausibility of a software-only singularity by looking at data about the
historical returns to software R&D. I proceeded in a few steps:

● ImageNet data left me thinking that there was ~50% chance of a singularity based on
efficiency improvements alone.

● Including significant potential gains from capability improvements increased this to
~85%.

● If a software-only singularity does occur, I guessed it might last for ~5 OOMs.
● Considering two potential bottlenecks, neither of which seemed compelling to me,

lowered my estimates somewhat:
○ ~65% chance of a software-only singularity
○ I expect it to last ~2-3 OOMs if it does occur.

● Importantly, even if there is no software-only singularity, software progress might still be
extremely rapid just after we fully automate software R&D due to the huge rise in R&D
inputs. There could be multiple OOMs of fast progress on a fixed hardware base even if
software doublings are slowing down over time. In addition, I expect the quantity of
hardware to be increasing rapidly, driving further software progress.

Open questions
I’ve organised these open questions according to which components of the model they’d inform.
I highlighted the ones that I thought had the best combination of importance and tractability in
yellow.

● To inform g($ on FLOP globally) - semiconductor production scale up
○ If people were willing to spend $ trillions expanding semiconductor production,

how long would it take to double the number of chips produced per year?
■ Via new fabs and more efficient use of existing fabs. Not via better chip

designs - this falls under R&D scale up.
■ Are there fundamental physical bottlenecks to increasing manufacturing

throughput above a certain level? E.g. a certain crystal needs months to
be grown and this can’t be expedited.

■ How would the above answers change if there was also abundant
specialised cognitive labour (from AIs) to help with the expansion?

■ Use expert networks to speak to someone at TSMC / Intel / Samsung
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● To inform g(fraction of FLOP on a training run) - prospects for rapid scale up of
training runs

○ If you wanted to actually use 30% of global FLOP/s in a training run, how would
you do that? What bottlenecks would there be? How long before you can start
the training run?

■ What fraction of existing FLOP could you rent? What fraction of new
production could you buy without being blocked?

■ How much engineering effort would it take to distribute training over
~1000X more chips than we’ve done to date?

● Speak to people at labs about the engineering barriers.
■ What is the highest fraction of FLOP/s that could be used in a single

training run in various scenarios?
○ Improve our empirical estimates of how the fraction of FLOP on a training run is

likely to change over time.
■ What FLOP/s is currently available from all the world’s AI chips?
■ How quickly will the FLOP/s globally and from AI chips grow over the next

10 years?
■ How easy would it be to reappropriate production lines currently

producing non-AI chips to make AI chips?
■ How will the FLOP on the largest training run grow over the next 10

years?
● To inform g(FLOP/$) - prospects for future hardware progress.

○ Near-term forecasts of FLOP/$ from speaking to industry experts.
■ In a ‘business as usual’ scenario where AI improvements are modest.
■ What happens with hardware if we get AGI in 2030?

● How many gains are still available from fabless R&D, improving
the designs of chips made with existing fab production processes?

● Once these gains have been taken, what’s the next lowest
hanging route to hardware progress?

○ Alternative paradigms: are quantum computing or optical computing plausible
over the next few decades? What magnitude of improvement might they bring?

○ If people were willing to spend $ trillions on hardware R&D, how would that affect
the rate of progress?

■ How much money could the field usefully absorb?
■ How many people could move in from adjacent fields and usefully

contribute?
■ How sharp would the diminishing returns be to increased spending within

each year?
■ What are the current bottlenecks to R&D progress, to what extent could

they be relieved by more $?
○ If people were willing to spend $ trillions on hardware R&D and there was

super-abundant expert cognitive labour (from AIs), how would that affect the rate
of progress?
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■ What are the current bottlenecks to R&D progress, to what extent could
they be relieved by more $ and abundant cognitive labour?

● To inform g(2020-FLOP per FLOP) - prospects for future software progress
○ Gather up to date versions of the data from ‘AI and efficiency’ paper, for a variety

of AI benchmarks.
■ To inform r_software.

○ Do more experiments where you run both old and new hardware using both old
and new algorithms. Investigate whether the new algorithms only help with the
new hardware, vs whether they help equally with old and new hardware.

■ To inform r_software and whether software progress is dependent on
hardware.

○ Think of a new and better way to conceptualize (and ideally quantify) software
progress that allows us to achieve new capabilities.

■ The first time a new capability is achieved, the algorithm that achieves it
often does so using orders of magnitude less compute than any
pre-existing algorithm.

● E.g. these chess graphs, and section 5.3 of the ‘AI and Efficiency’
paper.

■ This is at odds with our formalism, in which the compute requirements for
new and old capabilities decrease gradually year on year, halving every
~2 years.

■ The challenge here is simply to suggest a new framework for software
progress that better captures the nature of software improvements that
unlock new capabilities.

● The new framework may imply, contra Bio Anchors, that we could
not have trained AGI with ~1e36 FLOP using 2020-algs.

■ To improve the way I’m modelling software progress.
○ Estimate the correlations between IQ and output on key tasks like R&D.

■ We can combine this with IQ-brain size correlations discussed above.
■ The relationship between brain size and output informs the effective

FLOP gap, whether a software singularity is likely to occur, and takeoff
speed according to a one-dimensional model of intelligence.

○ Empirically, how ‘jumpy’ is algorithmic progress? What fraction of the total gains
happen in unusually large discrete jumps vs normal progress.

■ To inform whether I should put more probability on large discontinuous
jumps in capability.

○ During a software-only singularity, might it be possible to avoid retraining each
generation of AGIs?

■ What techniques for making AI systems more capable/efficient don’t
require retraining from scratch? How big are the efficiency gains from
these techniques? How long do they take?

● E.g. chain of thought prompting.

https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
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■ If the model size increases significantly, is it possible to avoid retraining
the system from scratch (e.g. by initializing the weights of the new larger
system using the weights of a smaller system)?

■ If a new architecture is introduced, is it possible to avoid retraining the
system from scratch?

■ To what extent could ~all AI training by done via online learning, so that
precious compute is not “wasted” on training rather than running AGIs?

■ How can we integrate the answers to these questions in my analysis of
whether a software singularity will occur?

○ What would ‘automating 20%, 50%, or 80% of software R&D’ look like in
practice?

■ Speak to AI researchers about what tasks they perform. Estimate the time
spent on each type of task. Describe what it might look like for AI to
perform tasks that currently take x% of researchers’ time.

■ What percentage of these tasks could SOTA AI profitably perform today?
■ What percentage of tasks will AI be able to perform with a training run of

(e.g.) 1e27 FLOP.
■ To inform whether it will be possible to get large productivity gains from

partial software automation in practice.
○ How much easier will it be for AI to readily automate a large fraction of AI R&D

tasks compared to a large fraction of the broader economy?
● To inform the speed-up from automating AI R&D sooner than the global economy.

○ How much easier will it be for AI to perform all cognitive tasks in AI R&D than all
cognitive tasks in the broader economy?

● To inform the size of the effective FLOP gap
○ My research into evidence about the effective FLOP gap was fairly shallow. Two

factors in particular could be investigated further.
■ How AI capabilities vary with training FLOP.

● How does the performance of AI systems vary as we increase the
training FLOP 10X - 1000X, but hold algorithms constant? What
does this suggest about the increase in training FLOP needed to
cross the effective FLOP gap?

● Are there some domains where it takes significantly more FLOP to
train AI than others? E.g. perhaps achieving human level at some
band of games takes more FLOP than achieving human level for a
comparably narrow band of language tasks.

■ How animal capabilities vary with brain size.
● Pick animals with 3X, 10X, 30X 100X smaller brains than humans.

Learn about the cognitive capabilities of these animals.
● First ask: Could the animal do useful economic tasks (or help with

R&D) if they were motivated to help (i.e. if we could perfectly
control their second by second desires).

● Second ask: Could the animal do useful economic tasks (or help
with R&D) if their brain had been optimised for this by evolution?
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○ This is a weirder counterfactual so harder to think about,
but ultimately more relevant to the effective FLOP gap I
think.

● To the extent the answers are “no, they don’t have the cognitive
capabilities to be helpful”, this suggests the effective FLOP gap is
small.

○ What is the current $ value-add of AI? How is it changes over time, or with model
size?

■ Various ways of operationalising this: investment, revenues, effect on
GDP.

■ Relevant for when AI will first be capable enough to readily add $trillions /
year to GDP.

○ Why do MIRI people think there’ll be a rapid (< years) transition from “shallow
systems” to “deep systems” where the former aren’t very helpful to science and
the latter can ~fully automate science? In the language of this framework, they
think the effective FLOP gap is small.

○ Dig into AI impacts’ finding that it took decades to cross the human range in
chess, Go and checkers.

■ This is in tension with the findings of this report. Some possible
resolutions of the tension:

● The effective FLOP gap is on the high end of my estimates,
implying high AGI training requirements.

● Progress in those games is slower due to slower investment
growth and the absence of speed-ups from AI automation.

● The effective FLOP gap is narrower than in those games, e.g.
because “capabilities scale especially quickly in the human range”
or “it’s difficult to partially automate jobs”.

■ This is also in tension with the one-dimensional model of takeoff.
■ The first step is probably finding data about how inputs to these domains

(compute at training / runtime, software R&D effort) changed while they
crossed the human range.

● To inform thinking about bottlenecks.
○ Do bottlenecks raised by economists suggest growth won’t ever accelerate?
○ To what extent do bottlenecks push towards slow takeoff in areas of strategic

importance?
○ Critique and improve my analysis of bottlenecks in sections 6 and 9.
○ To what extent is AI progress driven by running big experiments vs software R&D

labour? How fast would progress become if we had ~unlimited supply of the
latter?

○ Some slightly more fleshed out ideas here.
● Validate this model of takeoff speeds.

○ David Schneider-Joseph makes some suggestions here.

https://aiimpacts.org/is-the-range-of-human-intelligence-small/#AI_performance_on_human_tasks
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
https://docs.google.com/document/d/1z6NFHPhT6heT0N4_WCQhnAuKPCsZ34sWAx51HMhXnbE/edit#
https://docs.google.com/document/d/1L7IONMm1Etb3yPesqakoniO2J8w6Xh7yCEIfb0TT324/edit#heading=h.561cybjpjfhj

