
Exploration of PDF Scraping solutions
(note: this document will be converted into an rmd)

Background/Rational

In the field of epidemiology, the rapid and accurate extraction of data from various sources,
including situation reports on disease outbreaks, is critical for monitoring, understanding, and
responding to public health crises. Situation reports are often released by health organizations,
governmental bodies, and international agencies to provide up-to-date information on the
progression and impact of outbreaks. However, these reports are frequently published in PDF
format, which poses significant challenges for data extraction. PDF scraping solutions can
empower modelers, epidemiologists and public health professionals to efficiently extract,
analyze, and act on crucial epidemiological data, ultimately contributing to better preparedness,
response, and control of infectious disease outbreaks.

Objective
As a project in the 2023 Early stage outbreaks analytics hackathon, at the WHO Berlin Hub, we
set out to document and test PDF scraping tools. The objective of this work is to explore and
highlight the suitability, advantages and limitations of existing PDF scraping solutions.

Approach
Our approach comprised the evaluation of selected R and Python packages, text and image
recognition methods, and the utilization of Large Language Model (LLM) capabilities for
extraction of data from PDF with varying degrees of complexity.

Target PDFs
We attempted to perform scraping on three target tables, which had varying degrees of
complexity. For the purposes of this document, we focus on scraping of a relatively simple, text
based table. Further code used to scrape other tables can be seen in our code repository [link to
repo].

Example 1. of Target table for scraping

Summary of evaluated tools

Package Software Type Category Advantages Disadvantages

Tabulizer R R package Simple code

Several useful
options for
different
scenarios

Potential
installation
problems
●​ Not on
CRAN
●​ Requires
Java

pdftools R R package Simple
installation,
faster than
tabulizer

Requires
installation of
poppler for
Linux, requires
extensive text
parsing work
downstream

pdf2image Python Python library
using
OCR-based
approach
(image
recognition)

img2table Python Python library

using
OCR-based
approach
(image
recognition)

Approach Ease of
installation

Ease of use Value
accuracy

Table
structure
complexity

Image
parsing

Tabulizer
(Tabula API)

Medium High High Medium No

Text parsing High Medium High Low no

OCR Medium* Medium Low High Yes

Tabulizer R package
Tabulizer is an R package maintained by ropensci.It acts as an R wrapper for the Tabula java
library, which requires a local installation of Java. The package is not currently available on
CRAN, but can be installed from github.

Code example:

Install tabulizer package (requires a local installation of Java)
devtools::install_github("ropensci/tabulizer")

#Load packages
library(tabulizer)
library(tidyverse)
library(janitor)

pdf_1 <- "Examples/PDF-1.pdf"
t_1_raw <- extract_tables(pdf_1, output="matrix")
str(t_1_raw)
t_1_raw[[4]]
t_1_raw_headers <- t_1_raw[[4]][1:2,] %>%
 t() %>%

https://docs.ropensci.org/tabulizer/
https://github.com/ropensci/tabulizer

 as_tibble() %>%
 unite(name, c("V1","V2"), sep=" ") %>%
 mutate(name = trimws(name)) %>%
 pluck("name")
t_1_raw_headers
t_1_clean <-
 t_1_raw[[4]] %>%
 as_tibble() %>%
 tail(-2)
names(t_1_clean) <- t_1_raw_headers
t_1_clean
t_1_clean <- t_1_clean %>%
 mutate(across(c(`New Tests (last 7 Days)`,
 `New Tests (last 8-14 Days)`,
 `Test/100K/ Week`,
 `Test/Case`),
 ~ as.numeric(gsub('\\s','',.x))),
 across(c(`% change in new tests`,
 `% of new tests`,
 `Test Positivity`,
 `% change in test positivity`),
 ~ as.numeric(gsub('%','',.x,fixed=T))))
t_1_clean

The tabulizer package correctly identified and parsed the table. Some additional code was
required to clean and format the data, including accounting for column headers that spanned
multiple rows. This approach was applied to additional examples with similar results. With
relatively simple modifications to the cleaning and formatting code, tabulizer was also able to
handle tables that spanned multiple pages and columns that included merged cells.

Text Parsing
This approach extracts the texts from the pdf (using the package pdftools) and tries to parse
the texts into tables. To separate rows, we are using line returns “\n”. To separate columns, we
use a changeable regex. We found that in most cases, 2 or more spaces was the best approach
("\\s{2,}"), however we found that this doesn’t work well in some cases where tables had missing
values replaced by spaces. In that case an upper bound limit can be used (e.g. "\\s{2,15}"),
however we found that this was not always working because different rows could use different
amount of spaces to delimit columns.

When it works, the advantages of this approach are speed and simplicity. This is useful for
cases where hundreds of pdf’s need to be parsed rapidly.
It can also be used when tabulizer is not available (java issues).


```  
pacman::p_load(dplyr, pdftools, stringr) 
 
pdftable_to_dataframe = function(files, keeppages, start, end, setcols=c(), 
splitcolsregex="\\s{2,}", debug=FALSE){ 
  if(debug) print(paste('going to extract' ,length(files), "file(s)")) 
  
  for(file_i in 1:length(files)){ 
    file = files[file_i] 
    # print(paste0('file #', file_i, ': ', file)) 
    
    pages = pdf_text(file)                      ## EXTRACT ALL TEXT INTO PAGES 
    # print(paste('pages:',length(pages))) 
    pages = pages[keeppages]                    ## TRIM SELECTED PAGES 
    alltext = paste(pages, collapse = '\n')     ## MERGE ALL PAGES 
    # print(alltext) 
 
 
    lines = alltext %>% strsplit(split="\n")    ## SPLIT INTO LINES 
    lines = lines[[1]]                          ## UNLIST 
    lines = lines[start:end]                    ## TRIM SELECTED LINES 
    if(debug==2) print(lines) 
    
    splittedlines = lines%>%strsplit(split=splitcolsregex)          ## SPLIT VALUES INTO COLS 
(default: 2 or more spaces) 
    splittedlines = splittedlines[lapply(splittedlines,length)>0]   ## REMOVE E:PTY LINES 
    # if(debug) print(splittedlines) 
    
    ### FIND MAX NUMBER OF COLS ----- 
    ncols = 0 
    for (line_j in splittedlines){ 
      # print(length(line_j)) 
      if(ncols < length(line_j)) ncols = length(line_j) 
    } 
    
    
    if(file_i==1) df = data.frame()               ## INIT EMPTY DF 
    for (line_i in splittedlines){ 
      if(debug) print(paste(length(line_i), 'cols: ', paste(line_i, collapse = " | "))) 
      if(length(line_i) == ncols ) {              ## KEEP ONLY LINES WITH ALL VALUES 
(alternative would be to complete vector of values to make sure the length is the same) 



        df_i = data.frame(t(line_i))              ## CONVERT TO SINGLE LINE DF 
        df = rbind(df, df_i)                      ## APPEND TO MAIN DF 
      } 
    } 
  } 
  
  if(debug) print(paste('keeping only row with', ncols, 'columns')) 
  
  if(length(setcols) > 0) names(df) = setcols     ## SET COL NAMES 
  
  return(df) 
} 

``` 


```  
### PDF 1 > PAGE 4 > TABLE 1 ----- 
setwd(dirname(rstudioapi::getSourceEditorContext()$path)) 
pdftable_to_dataframe(c('Examples/PDF-1.pdf'), 4, 5, 25, c('Division' 
                                                           ,'New Tests (last 7 Days)' 
                                                           ,'New Tests (last 8-14 Days)' 
                                                           ,'Test/100K/Week' 
                                                           ,'% change in new tests' 
                                                           ,'% of new tests' 
                                                           ,'Test Positivity' 
                                                           ,'% change in test positivity' 
                                                           ,'Test/Case')) %>%   
  mutate( 
    `Test/Case` = as.numeric(`Test/Case` ),                                                    
## e.g. as numeric 
    `New Tests (last 7 Days)` = as.numeric(gsub('\\s', '', `New Tests (last 7 Days)` )),       
## e.g. thousands as numeric 
    `New Tests (last 8-14 Days)` = as.numeric(gsub('\\s', '', `New Tests (last 8-14 Days)` )), 
    
    `% change in new tests` = as.numeric(gsub('%', '', `% change in new tests` )) / 100,       
## e.g. percent as numeric 
    `% of new tests` = as.numeric(gsub('%', '', `% of new tests` )) / 100, 
    `Test Positivity` = as.numeric(gsub('%', '', `Test Positivity` )) / 100, 
    `% change in test positivity` = as.numeric(gsub('%', '', `% change in test positivity` )) 
/ 100 
    ) 
``` 


Result:

OCR based approach with img2table (python)

An approach based on OCR techniques implemented in python was tested. The strategy was to
import PDF files as images and then apply common OCR techniques to extract tables. The first
can be done by means of the function convert_from_path of the python library {pdf2image},
which creates a list-like object containing the corresponding images for each page in the PDF
file. By means of the Tesseract OCR implementation provided by the {img2table} library, along
with the extract_tables method, it was possible to extract tables both in English and
Bengali .

{img2table} relies on an optical character recognition (OCR) engine called Tesseract. This can
be installed running:

sudo apt install tesseract-ocr

Tesseract supports a compelling list of languages. To install a particular language, you need to
specify its language code. For instance for Bengali:

sudo apt-get install tesseract-ocr-ben

The python version used by {img2table} is python 3.7. To run the code in a controlled
environment, it is recommended to create a virtual environment in your local machine, e.g. with
conda:

conda create –name py37 python=3.7
conda activate py37

The {img2table} and {pdf2image} packages can easily be installed using pip:

pip install img2table

https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html

pip install pdf2image

In order to tryout the effect of applying filters to the images

Code example:

Install tabulizer package (requires a local installation of Java)
devtools::install_github("ropensci/tabulizer")

Example 1:
from Scripts.ocr_functions import *

import pdf2image

import cv2

from img2table.document import Image

from img2table.ocr import TesseractOCR

imgs = pdf2image.convert_from_path('./Examples/PDF-1.pdf')

img = imgs[3]

img_array = np.asarray(img)

cv2.imwrite('./Images/PDF-1_orig.jpg', img_array)

table extraction

image = Image(src = './Images/PDF-1_orig.jpg')

ocr = TesseractOCR(lang = "eng")

tables = image.extract_tables(ocr = ocr)

image.to_xlsx('./Tables/PDF-1_orig.xlsx', ocr = ocr)

Example 2 (Bengali):

imgs = pdf2image.convert_from_path('./Examples/PDF-2.pdf')

img = imgs[6]

img_array = np.asarray(img)

cv2.imwrite('./Images/PDF-2_6.jpg', img_array)

image = Image(src = './Images/PDF-2_6.jpg')

ocr = TesseractOCR(lang = "ben")

tables = image.extract_tables(ocr = ocr, borderless_tables =

borderless_tables)

image.to_xlsx('./Tables/PDF-2_6.xlsx', ocr = ocr)

Use of LLMs for PDF scraping
LLMs may represent a novel method of PDF scraping. This approach would ideally remove the
need for custom code, and allow for non-coding users to perform PDF scraping.

The number of LLMs that are available are increasing rapidly - however, most cannot accept file
uploads and execute code. For this reason, we largely focus on OpenAI Advanced Data
Analytics.

OpenAI advanced data analytics
OpenAI advanced data analytics is a beta feature for GPT-4. At the moment, to use this requires
the use of ChatGPT Plus (20USD/month), and is only possible in-browser. This feature accepts
file uploads and can execute python code in-browser. It can also export CSV extracts from PDF
files.

We tested several approaches with this feature:

1.​ A simple text-based table was uploaded, and we asked for an extract of the data to csv.
Note this table could be successfully pasted into excel. This was tried twice - in one instance,
the table was extracted very poorly, and once with some of the columns retained. Performance
may have been improved by specifying what columns were in the table.
2.​ We supplied an image of the same table, and asked for an OCR-based extraction of the
table. Again, this led to inconsistent results, where numbers were occasionally misread, and not
all columns were captured. Decimals were particularly hard to read, and in some cases were
ignored.

3.​ We supplied a simple line chart within a PDF, and asked for an extraction of the
underlying values in the chart. When doing so, values of axes were misidentified, and not all
data values were captured.

Overall, GPT-4 currently does not appear to be sufficiently capable of extracting data from PDFs
even in simple cases. Ultimately, the python code executed by GPT-4 does not appear tailored
to the specific context of the PDF being extracted, which makes it unreliable. There may be
some scope to use GPT-4 or other LLMs as a tool for learning code to extract PDFs, especially
if the end user is proficient in python.

Other considerations

Use of OpenAI API
For ideal integration into a pipeline, PDF extraction via LLMs could be called via an API. OpenAI
currently offers an API function, although it does not currently allow for advanced data analytics
to be run, and therefore cannot execute python code. Use of the API requires use of paid tokens
separate from the GPT Plus account, although individual API calls cost 0.01-0.03USD.

Privacy considerations
The majority of LLMs collect and store data to train their models. While this is likely not a
problem for publicly available PDFs, in many cases data shared via PDF are not public, and
therefore should not be used where privacy concerns are present. Organizational policies may
also prevent the use of LLMs in everyday work.

Alternative models
While LLMs tested do not appear to be capable of extracting data from PDFs, close attention
should be paid to the developing landscape of available models.

Conclusion and way forwards

Contribution

To continue exploring and testing additional new solutions for PDF scraping, we recommend
that users follow the following approach:

· Identify the specific PDF documents or datasets you want to analyze. Consider using
publicly available PDFs or documents with varying degrees of complexity to assess the
performance of new methods.
· Define clear metrics and criteria for evaluating the effectiveness of the solution (eg: data
extraction accuracy, processing speed, and the ability to handle different PDF layouts and
formats).
· Test the solution on a sample of target PDFs to have an initial assessment of its
performance and any potential challenges or limitations.
· Establish a baseline for comparison, which may include existing PDF scraping tools or
methods, and assess how the new method compares in terms of accuracy, efficiency, and
reliability.
· Test the solution on a sample of target PDFs to have an initial assessment of its
performance and any potential challenges or limitations.
· Document your findings, including a detailed description of the new method, its strengths,
weaknesses, and any modifications made during testing. Provide clear instructions for its
implementation.
· Share your findings and insights with the broader community, such as through blog posts,
or open-source contributions. Collaboration with others in the field can lead to further
refinements and improvements.

xxx

	Exploration of PDF Scraping solutions
	Background/Rational
	Objective

	Approach
	Target PDFs
	Summary of evaluated tools
	Tabulizer R package
	Text Parsing
	OCR based approach with img2table (python)
	Use of LLMs for PDF scraping
	OpenAI advanced data analytics
	Other considerations
	Use of OpenAI API
	Privacy considerations
	Alternative models

