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1. Scope 
The scope of this document is  
 
 
 
 

2. Normative reference 
This document has no normative reference.  
 

3. Terms and definitions 
This document uses the following terms as the shortcut for more complete wording provided 
as the definition. When the term appears within this document, it should be read as being 
replaced by the term.  
 
3.1  
Confidentiality 
amount of information about the plaintext remains unchanged before and after 
viewing the ciphertext​
 
3.2 ​
Finite Field 
mathematical structure where all values are the remainder when divided by an order 
n 
 
EXAMPLE: For an order of 5, it's represented as F_5. In this case, 7 in F_5 is 
equivalent to 2​
​
a%n + b%n = (a+b)%n ​
a%n x b%n = ab%n​
 
3.3​
Extension Field 
structure formed when a value not present in a field is added 
 
Note to entry: When real numbers are termed as a Field, complex numbers are 
considered an extension of real numbers by adding a value i. Similar values can be 



added to a finite field, adding dimensions akin to complex numbers. In this context, 
"extension field" refers to the extension of a finite field.​
 
3.4​
Elliptic Curve 
equation that can be represented as y^2 = x^3 + ax + b 
 
Note to entry: In this context, an elliptic curve refers to one over a finite field. Points P 
and Q on the elliptic curve have a defined addition operation, making P + Q = R. While 
direct multiplication, such as P x Q, isn't defined, scalar multiplication like P+P=2P 
and nP (n times P) is defined. Due to the discrete logarithm problem, it's challenging 
to derive n from nP.​
​
3.5 
order 
order of the finite field that defines the elliptic curve​
​
3.6 
characteristic 
total number of points on that curve given an elliptic curve's functions and its order 
 
Note to entry: If the characteristic is q, then for any point P on that curve, qP equals 
P.​
 
3.7​
hash function 
function that ensures different outputs with high probability for different inputs, is 
challenging to discern the input from its output, and always produces the same 
output for the same input 
​
3.8​
bit Commitment 
verification system that guarantees the committed value remains unchanged and 
remains unknown (hiding) until it's revealed. It can be described that most of today's 
blockchains are this system with a timestamp added​
​
3.9 
hiding 
state of commitment without revealing 
 
Note to entry: If various verifications can be done without revealing, it can be applied 
to confidentiality.​



​
3.10 
arithmetic circuit 
circuit that performs arithmetic operations on the input, not a digital circuit 
 
Note to entry: The operation receiving each input is called a gate, and in the context 
of ZKP, this operation's equation becomes a constraint. In many NIZK systems, 
there's a strong positive correlation between the number of constraints and the proof 
time.​
​
3.11 
polynomial problem 
problem of whether one knows a polynomial that meets certain conditions 
 
Note to entry: In many cases of ZKP, knowing certain input eventually gets converted 
or reduced to a polynomial problem.​
​
3.12 
witness 
value needed for proof that can be obtained during the calculation process when 
input into a circuit​
​
3.13 
instance 
dataset where the witness is actually substituted for the gate​
 
3.14​
fiat-shamir transformation 
method to convert interactive ZKP where a random oracle is used into a 
non-interactive format 
 
Note to entry: Using a hash function, the prover side can produce a value that they 
cannot control during the computation process, allowing the verifier side's random 
oracle role to be transferred to the prover side. 
​
 

4. Abbreviations and symbols 
In this document, the following abbreviations and symbols are used.  
 
IPA — 



FRI —  
NIZK — non-Interactive zero-knowledge 
R1CS —  
ZKP — zero-knowledge proof 
zkSNARKs —  
 
 
 
 

5 Definition of ZKP 
​
The invention and explicit mention of Zero Knowledge Proof (ZKP) was first demonstrated in 
1985 in "The Knowledge Complexity of Interactive Proof Systems" by authors Shafi 
Goldwasser, Silvio Micali, and Charles Rackoff.​
​
The features generally defined for it can be described as follows:​
​
For a given statement, within a protocol where a Prover and Verifier exist, a ZKP satisfies 
the following:​
​
Completeness: When the statement is true, the verifier can be convinced of its truthfulness 
by the prover.​
​
Soundness: If the statement is false, the prover cannot convince the verifier to accept it as 
true.​
​
Zero-Knowledge: The verifier learns only the truth of the statement and no other information.​
​
・NIZK​
​
Among ZKPs, those where the verifier and prover do not require interactive communication 
and it concludes solely with the verifier checking the proof sent by the prover are called 
Non-Interactive Zero-Knowledge (NIZK). zkSNARKs, zkSTARKs, and BulletProofs fall under 
this NIZK category​
​
・Common reference string generated from random numbers​
​
The defining features for this can be described as:​
​
Procedure: ​
​
・There exists a value called a common reference string (crs) that is generated from random 
numbers.  
・From the crs, input, and witness, the prover calculates a proof.  



・The verifier either accepts or rejects the proof.​
​
For this procedure's protocol, what satisfies the characteristics of a NIZK is the 
following. 
​
 
Completeness: ​
When the proof holds true, the verifier can be assured of its accuracy by the prover.​
 
Non-Adaptive Soundness: ​
If the proof isn't true, the prover cannot make the verifier accept it as such.​
 
 
Adaptive Soundness: ​
If the proof isn't true, the prover cannot make the verifier accept it as such, even 
when the prover makes a proof after seeing the crs. 
  
Non-Adaptive Zero-Knowledge: ​
The verifier only learns about the proof's truthfulness and no additional information. 
  
Adaptive Zero-Knowledge:​
Even the best attacker can not make any proof distinguishable from another after 
seeing the crs. 
​
End of definition.​
​
In many cases, a Non-Interactive ZKP can be obtained by applying the Fiat-Shamir 
transformation to an Interactive ZKP. 
 

​
 

​
​
​

6.Composition and Characteristics of 
NIZK 
 ​
​



NIZK (Non-Interactive Zero-Knowledge) is a protocol within ZKP (Zero-Knowledge 
Proof) that has the characteristic of reducing the computational cost for the verifier 
while increasing the computational cost for the prover. Also, the communication 
costs for both sides have been significantly reduced. Many developers are trying to 
improve the high computational cost of the prover. At the same time, many are 
attempting to ensure that the verification cost remains within a tolerable range, even 
on inherently inefficient computational systems like blockchains.​
​
Given these characteristics, it's a system that offers significant benefits to both 
verifiers and provers, which can be summarized as:​
​
Verifier: Low computational cost, ability to verify input or properties of the prover. 
Prover: High computational cost, can undergo verification while avoiding disclosure 
of sensitive or unnecessary data.​
​
It's evident that while the verifier gains pure efficiency, the prover benefits from 
privacy and efficiency through data omission.​
​
Many methods make up the properties of zkSNARKs, a representative of NIZK. While 
there are many types of zkSNARK schemes, most of them commonly follow this 
structure:​
​
​
1)Circuit: A circuit representing constraints related to the input.​
​
2)Transformation: Converts the circuit into polynomial problems or SAT problems.​
​
3)Proving: The prover demonstrates that they know the solution to the transformed 
problem.​
​
4)Verifying: The verifier checks the proof and decides to accept or reject it.​
​
1)and 2) are sometimes referred to as the frontend, while 3) and 4) are called the 
backend.​
​
-Regarding Trusted Setup:​
​
In some NIZKs, when generating the Proving key or Verifying key from the circuit, if 
one abuses the process information, there's a possibility to forge the proof and lose 
the zero-knowledge property of the proof. This kind of information is called "toxic 
waste," and sometimes circuit creators are obliged to discard this information. There 
are mechanisms, like ptau ceremony, to ensure that toxic waste can't be abused 



unless all participants collude. It's a system where multiple people produce toxic 
waste.​
​
There are cases where this toxic ceremony is produced for each circuit and cases 
where it can be reused across various circuits worldwide, with the latter particularly 
called the Universal Trusted Setup. In practical applications, with mechanisms that 
allow this, such as PlonK, security can be significantly enhanced, leading to the state 
where having a Trusted Setup does not directly compromise Trustlessness. 

​
​

7. Recursive zkSNARKs 
 
​
In zkSNARKs, when a circuit that represents constraints can be expressed in a 
Turing-complete language or in a generic manner, it becomes possible to write the 
code for zkSNARKs verification within that circuit. This means that within a 
zkSNARKs proof, the verification of another zkSNARKs' Proof can be incorporated.​
​
Such Recursive zkSNARKs are vital in many zkSNARKs applications because of 
improved versatility, the ability to split and parallelize proof computations, and the 
ability to customize data confidentiality. As a result, most of the ZKP libraries used in 
recent applications have this recursive feature implemented.​
​
Previously, this recursive characteristic was seen as rare and challenging. The 
difficulties can be described as follows:​
​
Consider the task of performing the computation for zkSNARKs verification, 
specifically the pairing computation, within a circuit. The pairing computation itself is 
a calculation in the context of elliptic curves. However, when executed within the 
circuit, the calculation is done within the bounds defined by the elliptic curve. Just 
like how 9 behaves differently in F5 compared to F7, calculations might not match 
due to discrepancies, causing a loss of information and making verification 
impossible.​
​
Given this, it might seem preferable at first to compute the pairing within a ZKP 
circuit using elliptic curves that have matching orders. But this approach results in 
curves that are vulnerable to the SSSA attack. A solution was to create two sets of 
elliptic curves. The first set, E1, has an order of p and a characteristic of q. The 



second set, E2, has an order of q and a characteristic of p. The challenge was to find 
a pair in which the order from E1 would match the characteristic from E2, and vice 
versa. This is where the Pasta Curve comes into play. Even though the order and 
characteristic aren't identical, by using the alternating nature of these numbers, it 
became possible to achieve recursion without repetition.​
​
In contrast, zkSTARKs doesn't rely on elliptic curves, so there's no risk of the SSSA 
attack. This makes it feasible to construct a Recursive ZKP that can undergo any 
number of repetitions within the bounds of a single finite field. 

​
​
7.1 On Cyclic Recursive ZKP 
​
​
Even when performing Recursive ZKP an unlimited number of times, usually a 
different ZKP circuit is required for each layer, necessitating the preparation of a 
circuit for each of those layers. However, when the proof being verified originates 
from that very circuit, it is possible to generate an infinite hierarchical Recursive 
Proof using just a single circuit. This is called a Cyclic Recursive ZKP. In the case of a 
Recursive ZKP, it is customary to embed a verifying key within the circuit. However, 
for Cyclic Recursive ZKP, it is not possible to embed its own verifying key when 
creating the circuit, so this issue is addressed by verifying the identity of the circuit.​
​
Here are the defining features of Cyclic Recursive ZKP: 

●​ A proof P, produced by a given circuit C, can be reintroduced into C to generate 
the subsequent proof P'. 



​
​

8. Classification of NIZKs 

​
The development of practical NIZKs, such as zkSNARKs and zkSTARKs, has been 
taking place over the past decade, notably beginning with the Pinocchio Protocol in 
2013, and greatly propelled by Groth16 in 2016.​
​
In the Pinocchio Protocol, constraints represented in the R1CS format were 
converted to QAP, achieving verifiable computing. Although it lacked properties of 
confidentiality and non-interactiveness, Groth16 effectively addressed these issues, 
becoming, in practice, the first widely-used NIZK system.​
​
While Groth16 utilized pairings, zkSTARKs in 2017 replaced this with FRI, leading to a 
significant improvement in the computation speed of proof creation. In 2019, PlonK 
addressed a major inefficiency in Groth16's R1CS, where the polynomial degree 
increased inefficiently for constraints (Copy Constraints) using the same variables. 
This inefficiency was dramatically optimized using a technology called coordinate 
accumulator. Additionally, Ultra PlonK made it possible to write constraints in 
higher-degree polynomials, allowing for the assembly of various free gates and 
custom gates.​
​
Subsequent NIZK developments have mainly focused on the previously mentioned 
achievement of Recursive ZKP. Notable systems include Redshift, a combination of 
FRI and PlonKish, Plonky2, Halo2 which backs Ultra PlonK with IPA, and Nova, which 
can sum the computational processes of R1CS. Plonky2, renowned for significantly 
accelerating the generation speed of Recursive ZKP, achieved faster processing 
performance by reducing the number of finite fields in the definition body while 
ensuring security did not fall below 100 bits. By expanding the definition body and 
increasing the dimensions, it was made possible to perform individual 
computational costs within a smaller finite field.​
​
 

8.2 Backend 



​
​
On Pairing and PCS 
​
​
Pairing refers to the operation between points on the elliptic curve, characterized by its 
bilinearity. The bilinearity can be expressed as:​
​
For points P, P', Q, Q' on the twisted elliptic curve group concerning pairing: en(P+P’,Q’) = 
en(P,Q) en(P’,Q) en(P,Q+Q’) = en(P,Q) en(P,Q’)​
​
en(P,P) = 1​
​
en(P,Q≠O)=1 => P=O​
​
This can verify equations containing both addition and multiplication once each, allowing 
calculations to be performed while data remains confidential. This meets the requirements of 
zkSNARKs. Specifically, in the QAP format after converting polynomial problems in 
zkSNARKs, it allows for the verification of polynomial equations at a single point while the 
polynomial remains concealed.​
​
For A(x)B(x)-C(x) = Z(x)H(x), verification is conducted at point x=s. In this instance, the 
equation can be resolved with a single multiplication, hence the use of pairing.​
​
For more flexible polynomial equations like in PlonK, Polynomial Commitment Schemes 
(PCS) are employed. Unlike regular bit commitments, polynomial commitments can commit 
to functions, allowing for the insertion of various values to obtain flexible outputs. 
 

​
​
​
​
​
​
About FRI 

​
​
FRI is an algorithm to ascertain and verify knowledge of a polynomial. It leverages 
the difficulty of interpolating a high-degree polynomial using a small number of 
points for those unfamiliar with the polynomial.​
​



Example: For values between 0 and n, if a polynomial satisfies the condition P(Q(x)) 
= 0, then P(Q(x)) can be represented as Z(x)H(x).​
​
To prove knowledge of such a Q(x) when P and Z are known, one needs to 
demonstrate: "I am aware of several points on Q and the corresponding points on H 
for the same x values."​
​
However, given Z is known, for each point x=s, one can compute P(t) and divide it by 
Z(s). This allows even arbitrary values of t to satisfy the equation. Thus, proving 
these points lie on the same polynomial becomes essential. The difficulty of 
ensuring many sample points belong to a lower-degree polynomial unless you're 
aware of that polynomial forms the core of the security concept. This concept is 
foundational to FRI.​
​
Among mechanisms that ensure ZKP's security, FRI is rare in its quantum resilience 
and does not depend on security assumptions like the discrete logarithm problem.​
​
 

About the Folding Scheme 
​
​
In R1CS, the expression a times b equals c is termed an instance. Combining 
different instances born from different witnesses within the same circuit, like 
through addition, is tricky. Yet, this becomes possible when applying an extended 
R1CS called Relaxed R1CS. This method of merging two instances into one is 
termed the Folding Scheme. By continually merging two into one, the final proof 
becomes highly compact.​
​
 

About the sumcheck protocol 
​
​
It's a succinct zero-knowledge proof protocol. By repeatedly substituting boolean 
values and random values into the target polynomial, one obtains the proof. It's 
employed within the Folding Scheme.​
​
About IPA​
​



IPA is a security mechanism for zero-knowledge proofs, reliant solely on elliptic 
curve point computations. Suitable for straightforward computation verifications like 
Bullet Proof, it's also used in blockchain…​
​
 

8.3 Front-end 
​
​
About R1CS​
​
R1CS is the foundational ZKP form, where the constraints a circuit must satisfy are 
denoted as a times b equals c.​
​
About Plonkish gate​
​
Plonkish denotes constraints of circuits presented in pioneering papers like PlonK or 
its extensions. Initially denoted as XXX in the paper, it can transition to higher-degree 
polynomials, and these flexible constraints for high-degree polynomials are dubbed 
custom gates. PlonK encompassing custom gates is commonly called Ultra PlonK.​
​
About lookuptable​
​
It's an Ultra PlonK feature, drawing inspiration from digital circuit lookuptables. It's 
essentially a truth table correlating input and output bits. Instead of conducting 
intricate bit computations unsuited for PlonK, it directly fetches the resultant boolean 
value, thereby downsizing the circuit. This is notably valuable when calculating 
hashes using PlonK.​
​
About AIR​
​
It's a format to inscribe constraints of zkSTARKs-provable polynomials.​
​
About CCS​
​
CCS is a constraint system crafted to simultaneously depict R1CS, Plonkish, and AIR.​
​
 



8.4 Classification 
​
​
Using the front-end and back-end, they can be classified as follows:​
​
ps) Pedersen commitment 
 
 

front \ back Paring/PCS FRI Sumcheck IPA 

R1CS/ Relaxed 
R1CS 

Groth16/​
Marin/ Sonic 

Aurora Nova​
Spartan 

 

Plonkish PlonK Plonky2/ 
Redshift 

 Halo/Halo2 

AIR  zkSTARKs   

CCS   HyperNova  

Simpler one    Bullet Proofs 

 
 

 

9 Tools for ZKPs 
1. Library 
2. language 
3. security​
4. IDE​
5. acceleration (GPU/ASIC)​
​
​
Bellman​
Bellman is an initial Rust library that made it somewhat straightforward to implement 
zero-knowledge proofs. With it, Groth16 circuits could be implemented. Later 
community forks incorporated support for PlonK, among others. 

●​ Circom​
Circom is the most widely-used dedicated language for zero-knowledge 
proofs, capable of outputting R1CS. In tandem with snark.js, it allows for easy 
generation of zero-knowledge proofs. Both Groth16 and PlonK are supported. 



Additionally, compilations from Circom to various zero-knowledge proofs like 
zkSTARKs or Halo2 are separately supported by diverse communities. 

●​ Cairo​
Cairo is a language dedicated to zkSTARKs and compiles to AIR. 

●​ Lurk​
Lurk is the most suitable language for producing Nova outputs. 

●​ Winterfell​
Winterfell is an open-source zkSTARKs library in Rust. 

●​ Solidity/zkEVM​
Originally a language for smart contracts, Solidity, with the introduction of a 
new compilation environment, can now be translated into various zkEVM 
circuits for diverse zero-knowledge proofs. Translations to Halo2 and PlonK 
are particularly renowned. 

●​ Aleo 
 

10 ZKP Performance​
​
When evaluating the performance of ZKPs, it is clear to consider the following basic 
criteria:​
​
1) Shortness of proof generation time relative to the number of constraints.​
2) Shortness of verification time.​
3) Smallness of proof data relative to the number of constraints​
​
As a note, the proof generation time is generally constant in each ZKP and does not 
depend on the size of the circuit. Each of these metrics can be hard to quantify 
definitively since they can be parallelized and made redundant by Recursive Proofs. 
Whether Recursive Proof is feasible can also affect these metrics.​
​
With this in mind, generally speaking, if we disregard Recursion, a negative 
correlation can be observed between proof generation time and proof data size.​
​
A negative correlation is also observed between the shortness of verification time 
and the shortness of proof generation time relative to the number of constraints. For 
instance, in cases like FRI, a trade-off can be manipulated with parameters. This 
means it's adjustable whether to burden the verification side or the proof side.​
​
From a security standpoint, whether a trusted setup is needed, or if a global one-time 
trusted setup suffices, or if it's unnecessary, can also be considered a performance 
criterion. 



 

 

11 Vulnerability of ZKP 
​
https://github.com/0xPARC/zk-bug-tracker​
​
1) Parameters​
​
Even if the ZKP scheme itself is secure and has a security proof, depending on how 
the parameters are set, a vulnerable ZKP proof can emerge. There's often a 
significant incentive in many cases to set parameters that might decrease security 
for purposes like speeding up proof generation.​
​
Example:​
​
2) Mistake in the Fiat-Shamir Transformation​
​
There are instances where vulnerabilities arise when converting to non-interactive 
proofs. Moreover, it's not uncommon for the security degradation in the Fiat-Shamir 
process to go unchecked. Discussions frequently revolve around a conjectured 
security, which assumes the post-transformation bit security is the same as the 
pre-transformation bit security.​
​
Example:​
​
3) Trusted Setup​
​
For ZKP schemes that require a trusted setup, if the toxic waste is misused, fake 
proofs might get verified, or secrets could be leaked. Especially concerning fake 
proofs, due to the entire scheme's zero-knowledge nature, external observers cannot 
detect the fakes. Therefore, for protocols employing zero-knowledge proofs for 
privacy, detecting attacks and estimating their scale is challenging, potentially 
leading to catastrophic long-term damage. Using ZKPs without a trusted setup or 
conducting a universal setup is decisively crucial for such applications.​
​
4) Mistakes in Circuit Design​
​
Even if the ZKP is secure, those designing circuits using it can introduce 
vulnerabilities at that stage, which is quite common. A typical example in Circom 

https://github.com/0xPARC/zk-bug-tracker


would be confusing substitutions and constraints. Mistakes in circuit design, much 
like bugs in smart contracts, are expected to be frequent. Consequently, in the 
cryptocurrency industry, there's a thriving practice of code audits specifically for 
ZKPs. 
​
 

 

 

12 Applications of ZKPs 

 
​
About ZCash:​
​
ZCash, launched in 2016, is a cryptocurrency focusing on privacy, aiming to 
completely conceal the sender, receiver, and transfer amount. It was one of the first 
attempts in cryptocurrency to employ zero-knowledge proofs, using Groth16.​
​
About pay2sudoku:​
​
This was an application experiment on Bitcoin using zero-knowledge proofs by core 
developer Gregory Maxwell. It allowed someone who knew the solution to a Sudoku 
puzzle to prove it using a zero-knowledge proof and receive coins. Notably, since the 
Bitcoin script doesn't have a function to verify zero-knowledge proofs, the Sudoku 
challenge was guaranteed using a zero-knowledge proof by substituting knowing the 
solution to the puzzle with knowing the preimage of a hash. Therefore, unlike 
conventional zero-knowledge proofs, where the circuit creator doesn't necessarily 
need to know the answer that meets the constraints, the pay2sudoku scheme 
presupposes that the challenger knows the solution to the Sudoku.​
​
About Tornado Cash:​
​
Tornado Cash is a mixing application on Ethereum, created with a focus on privacy 
like ZCash. It was written and deployed with Circom and was the first 
zero-knowledge proof application to attract many users.​
​
How it works: https://github.com/tornadocash/tornado-core?tab=readme-ov-file​
​
About Aztec Protocol/zkMoney:​



​
zkMoney is a private cryptocurrency on Ethereum developed by the Aztec team. The 
main distinction from ZCash is whether it's Layer 1 or an application on Layer 1. 
Ideally, expressing it in ERC20 would be optimal for user-friendliness, but this is 
technically challenging, so it was implemented using an entirely new token standard.​
​
About Mina Protocol:​
​
Mina is a Layer 1 focused on zero-knowledge proofs and has an extremely small 
blockchain size, even smaller than Bitcoin's. It uses Cyclic Recursive ZKP, making the 
entire blockchain verification instantaneous. Similar methods could also be applied 
to Bitcoin's full nodes, and several such projects are currently identified.​
​
About ID & KYC:​
​
IDs using ZKP and blockchain are often referred to as DID/KYC. They range from 
those complying with regulations like KYC to non-compliant ones. Project Zuzalu, 
which began under the concept of a Network State aiming for a position equivalent 
to a nation by appointing diplomats to a DAO, used ZKP for its virtual nation member 
passports.​
​
About Selective Disclosure:​
​
With ZKP, selective disclosure can be implemented by introducing a trapdoor in the 
proof. Digital credentia​
​
About Credit Score:​
​
About NFT:​
​
Since NFTs serve as proofs of ownership, their owners' addresses and on-chain 
histories are easily trackable by many. ZKP is applied to anonymize possession and 
address this issue.​
​
About Data Availability Sampling:​
​
Conceived by Vitalik Buterin for the purpose of completing zkRollup and detailed by 
Bankrad Fiest, Data Availability Sampling is a mechanism to prove data retention for 
a certain period. It allows nodes to efficiently prove that they're holding data 
fragments, utilizing two-variable polynomial commitments.​
​
About Bridges:​



​
With ZKP, it's possible to construct trustless 2-way peg bridges between many public 
blockchains. However, both chains must be capable of verifying ZKP. If generic smart 
contracts are implemented, this condition can be automatically met. Conversely, a 
trustless bridge between Ethereum and Bitcoin using ZKP hasn't been discovered yet 
and is said to require Witness Encryption.​
​
About zkML:​
​
zkML refers to systems that guarantee, through NIZK, that a model was constructed 
using a specific algorithm and dataset.​
​
About AML:​
​
The "Proof of No Crime" concept, proposed and implemented by Tornado Cash, is a 
mechanism that, while possessing the properties of mixing, allows one to prove that 
no funds were received from a specific address. It's a system that seeks a balance 
between privacy and AML.​
​
Secret Voting:​
​
Games:​
​
zkOracle​
​
funny category:​
​
​
 
​
​
 
 

12.1 zkRollup 
 



12.1.1 General​
​
・Definition of zkRollup​
​
zkRollup is a network that secures the bridge between Layer1 and off-chain using 
ZKP while retaining the security of Layer1.​
​
・History of zkRollup​
​
It was conceived by Vitalik Buterin in 2018, and currently, there are more than 10 
networks that are its improved versions. Before Vitalik Buterin's idea, there was a 
proposal called Plasma snap which applied zkp to the Layer2 solution Plasma, and 
Barry Whitehat performed the MVP implementation. In 2019, Loopring first 
implemented and launched a DEX using zkRollup, and in 2020, zkSync launched the 
remittance network zkSync v1. In 2023, the Polygon team developed zkEVM and 
launched a zkRollup fully compatible with Ethereum VM, i.e., Solidity.​
​
・Classification of zkRollup​
​
zkRollup can be classified into the following three based on the uniqueness of the 
state:​
​
Stateful zkRollup - Manages bit commitments of the state of users and smart 
contracts with Layer1 smart contracts. Examples: Starknet, zkSync Era, Polygon 
zkEVM, Scroll, Taiko, Loopring​
​
Succinct zkRollup - Allows everyone to calculate bit commitments of the state of 
users and smart contracts from Layer1 data. Example: Sovereign Rollup​
​
Stateless zkRollup - Users only compute their own bit commitment without fetching 
from Layer1 data. Example: Intmax​
​
Furthermore, the most prominent zkRollup, the Stateful zkRollup, can be classified 
as:​
​
Type1 Exactly equivalent to the Ethereum Network. Example: Taiko​
​
Type2 Fully compatible with EVM bytecode but not equivalent to Ethereum Network. 
Example: Scroll​
​
Type3 Mostly compatible with EVM and many Solidity codes are portable. Example: 
Polygon zkEVM​
​



Type4 Compatibility with EVM is not guaranteed, and there's no guarantee that many 
Solidity codes are portable. Examples: StarkNet, zkSync​
​
These classifications by zkEVM are important in the Ethereum community due to 
their impact on security during porting from Solidity code.​
​
Additionally, there are zkp solutions that do not meet the requirements of zkRollup:​
​
・zkPorter​
​
A solution proposed by zkSync to sacrifice zkRollup security to achieve scalability. It 
was proposed to offset the DA cost bottleneck in zkRollup by a new token-carrying 
network, eliminating the need to pay Ethereum Layer1 DA costs. A DA attack by a 
coalition of 2/3 token holders can freeze user assets but cannot confiscate them, so 
there is no incentive for the attacker. Since the security assumption of a new token is 
included, it does not inherit the security of Ethereum Layer1.​
​
While not classified as zkRollup, it's debatable whether it's a Layer2 or a sidechain:​
​
・Validium​
​
A system developed by zkSync. It is a mechanism that trusts a validator group not to 
carry out a DA attack, foregoing DA cost payments.​
​
・Volition​
​
Proposed by Starkware, it is a mechanism where individuals can choose the 
trustlessness level, i.e., security level, of DA storage. There's a trade-off between 
price and security.​
​
-zkRollup Concerns and Solutions​
​
 

11.1-2 Rollup != Bridge Argument​
 

 



​
If a token is natively issued on Rollup (Layer2) and is not the subject of a 
bridge with Ethereum Layer1, there has been a claim that this token may 
not inherit Ethereum Layer1's security if it conducts its own forks or 
governance.​
​
However, even tokens on Ethereum Layer1 that have their governance 
or references with projects, or lack liquidity, often do not represent 
Layer1's trustlessness. It was suggested that Rollup inherits not only the 
security of Ethereum Layer1 but also the reduced security properties by 
each community, affirming Rollup's role as a pure extension of 
Ethereum. Currently, this argument isn't seen as very valuable, so it 
rarely comes up.​
​
11.1-3 Does zkRollup use Zero-Knowledge? 

 

Most zkRollups are not confidential. Therefore, some argue that 
zkRollups only utilize the non-interactive nature of zkSNARKs. The 
validity of this claim boils down to:​
​
"When there are many inputs that, while not a security issue if made 
public, are kept confidential for efficiency, is ZK being utilized?"​
​
In other words, in Stateful zkRollups, the prover hides data not because 
they want to but because making it public wastes computational 
resources.​
​
 

 

11.1-4 Decentralization of zkRollup's block producers 

​
 



Many Stateful zkRollups have not decentralized block producers due to 
the high computational cost of zkp and the risk of bugs. While this 
doesn't pose a security risk given zkRollup's inheriting properties, it does 
raise concerns about service continuity. 
 

​
​
11-1-5 Potential for Decreased Security via proto-danksharding/danksharding​
​
 

The use of time-limited data, such as those provided by proto-danksharding, for 
periods like one month, is a very novel approach in the blockchain industry. With this, 
while effectively preventing block withholding attacks, rollup nodes can transfer Data 
Availability (DA) from Layer1. This is possible within rollups because if even one 
node is an honest node, it can prevent a DA attack. This is known as the 1/N security 
assumption, and it's considered a method to scale Layer2 trustlessly. Whether 
writing all data into Layer1's call data or moving the data storage to rollup nodes 
through proto-danksharding, both approaches operate on the 1/N assumption. 
However, the value of N differs significantly between them. When writing to Layer1, N 
might be the number of Ethereum nodes, say 5000, but when using 
proto-danksharding, N might be the number of candidate nodes, perhaps around 20.​
​
For major Layer2/Rollups with high public trust and significant value concentration, 
maintaining a large N might be possible. However, for rollups crafted through 
mechanisms like "Rollup as a service," it's challenging to predict what this N number 
might be. 
 

13. Security considerations 
This document has no security considerations.  

1.​ 2FA 
2.​ AI 
3.​ QC 
4.​ bit 
5.​ conjecture 
6.​ formal method​

 



14. Privacy considerations 
The acknowledgement section contains PII of those people. Editors SHALL make sure to 
obtain the consent of the people to be included. Sometimes, a contributor MAY want to 
remain pseudonymous and just appear as an initial etc.  
 

15. Regulatory considerations 
1.​ How law enforcements use zkp for verification legally 
2.​ Audit 
3.​ Credential 
4.​ anonymity revocation (!= proof of crime) 

​
  

Legal Consideraiton​
​
16. Informative reference 
This document has no informative reference.  
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