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1 Definition of ZKP



1. Scope

The scope of this document is

2. Normative reference

This document has no normative reference.

3. Terms and definitions

This document uses the following terms as the shortcut for more complete wording provided
as the definition. When the term appears within this document, it should be read as being
replaced by the term.

31

Confidentiality

amount of information about the plaintext remains unchanged before and after
viewing the ciphertext

3.2

Finite Field

mathematical structure where all values are the remainder when divided by an order
n

EXAMPLE: For an order of 5, it's represented as F_5. In this case, 7in F_5 is
equivalent to 2

a%n + b%n = (a+b)%n
a%n x b%n = ab%n

3.3
Extension Field
structure formed when a value not present in a field is added

Note to entry: When real numbers are termed as a Field, complex numbers are
considered an extension of real numbers by adding a value i. Similar values can be



added to a finite field, adding dimensions akin to complex numbers. In this context,
"extension field" refers to the extension of a finite field.

3.4
Elliptic Curve
equation that can be represented as y*2 = x*3 +ax+b

Note to entry: In this context, an elliptic curve refers to one over a finite field. Points P
and Q on the elliptic curve have a defined addition operation, making P + Q = R. While
direct multiplication, such as P x Q, isn't defined, scalar multiplication like P+P=2P
and nP (n times P) is defined. Due to the discrete logarithm problem, it's challenging
to derive n from nP.

3.5
order
order of the finite field that defines the elliptic curve

3.6
characteristic
total number of points on that curve given an elliptic curve's functions and its order

Note to entry: If the characteristic is g, then for any point P on that curve, gP equals
P.

3.7

hash function

function that ensures different outputs with high probability for different inputs, is
challenging to discern the input from its output, and always produces the same
output for the same input

3.8

bit Commitment

verification system that guarantees the committed value remains unchanged and
remains unknown (hiding) until it's revealed. It can be described that most of today's
blockchains are this system with a timestamp added

3.9
hiding
state of commitment without revealing

Note to entry: If various verifications can be done without revealing, it can be applied
to confidentiality.



3.10
arithmetic circuit
circuit that performs arithmetic operations on the input, not a digital circuit

Note to entry: The operation receiving each input is called a gate, and in the context
of ZKP, this operation's equation becomes a constraint. In many NIZK systems,
there's a strong positive correlation between the number of constraints and the proof
time.

3.11
polynomial problem
problem of whether one knows a polynomial that meets certain conditions

Note to entry: In many cases of ZKP, knowing certain input eventually gets converted
or reduced to a polynomial problem.

3.12

witness

value needed for proof that can be obtained during the calculation process when
input into a circuit

3.13
instance
dataset where the witness is actually substituted for the gate

3.14

fiat-shamir transformation

method to convert interactive ZKP where a random oracle is used into a
non-interactive format

Note to entry: Using a hash function, the prover side can produce a value that they
cannot control during the computation process, allowing the verifier side's random
oracle role to be transferred to the prover side.

4. Abbreviations and symbols

In this document, the following abbreviations and symbols are used.

IPA —



FRI —

NIZK — non-Interactive zero-knowledge
R1CS —

ZKP — zero-knowledge proof
zkSNARKs —

5 Definition of ZKP

The invention and explicit mention of Zero Knowledge Proof (ZKP) was first demonstrated in
1985 in "The Knowledge Complexity of Interactive Proof Systems" by authors Shafi
Goldwasser, Silvio Micali, and Charles Rackoff.

The features generally defined for it can be described as follows:

For a given statement, within a protocol where a Prover and Verifier exist, a ZKP satisfies
the following:

Completeness: When the statement is true, the verifier can be convinced of its truthfulness
by the prover.

Soundness: If the statement is false, the prover cannot convince the verifier to accept it as
true.

Zero-Knowledge: The verifier learns only the truth of the statement and no other information.
*NIZK

Among ZKPs, those where the verifier and prover do not require interactive communication
and it concludes solely with the verifier checking the proof sent by the prover are called
Non-Interactive Zero-Knowledge (NIZK). zkSNARKSs, zkSTARKS, and BulletProofs fall under
this NIZK category

-Common reference string generated from random numbers

The defining features for this can be described as:

Procedure:

*There exists a value called a common reference string (crs) that is generated from random

numbers.
*From the crs, input, and witness, the prover calculates a proof.



*The verifier either accepts or rejects the proof.

For this procedure's protocol, what satisfies the characteristics of a NIZK is the
following.

Completeness:
When the proof holds true, the verifier can be assured of its accuracy by the prover.
Non-Adaptive Soundness:

If the proof isn't true, the prover cannot make the verifier accept it as such.

Adaptive Soundness:
If the proof isn't true, the prover cannot make the verifier accept it as such, even
when the prover makes a proof after seeing the crs.

Non-Adaptive Zero-Knowledge:
The verifier only learns about the proof's truthfulness and no additional information.

Adaptive Zero-Knowledge:
Even the best attacker can not make any proof distinguishable from another after
seeing the crs.

End of definition.

In many cases, a Non-Interactive ZKP can be obtained by applying the Fiat-Shamir
transformation to an Interactive ZKP.

6.Composition and Characteristics of
NIZK



NIZK (Non-Interactive Zero-Knowledge) is a protocol within ZKP (Zero-Knowledge
Proof) that has the characteristic of reducing the computational cost for the verifier
while increasing the computational cost for the prover. Also, the communication
costs for both sides have been significantly reduced. Many developers are trying to
improve the high computational cost of the prover. At the same time, many are
attempting to ensure that the verification cost remains within a tolerable range, even
on inherently inefficient computational systems like blockchains.

Given these characteristics, it's a system that offers significant benefits to both
verifiers and provers, which can be summarized as:

Verifier: Low computational cost, ability to verify input or properties of the prover.
Prover: High computational cost, can undergo verification while avoiding disclosure
of sensitive or unnecessary data.

It's evident that while the verifier gains pure efficiency, the prover benefits from
privacy and efficiency through data omission.

Many methods make up the properties of zkSNARKSs, a representative of NIZK. While
there are many types of zkSNARK schemes, most of them commonly follow this
structure:

1)Circuit: A circuit representing constraints related to the input.

2)Transformation: Converts the circuit into polynomial problems or SAT problems.

3)Proving: The prover demonstrates that they know the solution to the transformed
problem.

4)Verifying: The verifier checks the proof and decides to accept or reject it.

1)and 2) are sometimes referred to as the frontend, while 3) and 4) are called the
backend.

-Regarding Trusted Setup:

In some NIZKs, when generating the Proving key or Verifying key from the circuit, if
one abuses the process information, there's a possibility to forge the proof and lose
the zero-knowledge property of the proof. This kind of information is called "toxic
waste," and sometimes circuit creators are obliged to discard this information. There
are mechanisms, like ptau ceremony, to ensure that toxic waste can't be abused



unless all participants collude. It's a system where multiple people produce toxic
waste.

There are cases where this toxic ceremony is produced for each circuit and cases
where it can be reused across various circuits worldwide, with the latter particularly
called the Universal Trusted Setup. In practical applications, with mechanisms that
allow this, such as PlonK, security can be significantly enhanced, leading to the state
where having a Trusted Setup does not directly compromise Trustlessness.

7. Recursive zkSNARKS

In zkSNARKSs, when a circuit that represents constraints can be expressed in a
Turing-complete language or in a generic manner, it becomes possible to write the
code for zkSNARKSs verification within that circuit. This means that within a
zkSNARKSs proof, the verification of another zkSNARKSs' Proof can be incorporated.

Such Recursive zkSNARKSs are vital in many zkSNARKs applications because of
improved versatility, the ability to split and parallelize proof computations, and the
ability to customize data confidentiality. As a result, most of the ZKP libraries used in
recent applications have this recursive feature implemented.

Previously, this recursive characteristic was seen as rare and challenging. The
difficulties can be described as follows:

Consider the task of performing the computation for zkSNARKs verification,
specifically the pairing computation, within a circuit. The pairing computation itself is
a calculation in the context of elliptic curves. However, when executed within the
circuit, the calculation is done within the bounds defined by the elliptic curve. Just
like how 9 behaves differently in F5 compared to F7, calculations might not match
due to discrepancies, causing a loss of information and making verification
impossible.

Given this, it might seem preferable at first to compute the pairing within a ZKP
circuit using elliptic curves that have matching orders. But this approach results in
curves that are vulnerable to the SSSA attack. A solution was to create two sets of
elliptic curves. The first set, E1, has an order of p and a characteristic of g. The



second set, E2, has an order of q and a characteristic of p. The challenge was to find
a pair in which the order from E1 would match the characteristic from E2, and vice
versa. This is where the Pasta Curve comes into play. Even though the order and
characteristic aren't identical, by using the alternating nature of these numbers, it
became possible to achieve recursion without repetition.

In contrast, zkSTARKs doesn't rely on elliptic curves, so there's no risk of the SSSA
attack. This makes it feasible to construct a Recursive ZKP that can undergo any
number of repetitions within the bounds of a single finite field.

7.1 On Cyclic Recursive ZKP

Even when performing Recursive ZKP an unlimited number of times, usually a
different ZKP circuit is required for each layer, necessitating the preparation of a
circuit for each of those layers. However, when the proof being verified originates
from that very circuit, it is possible to generate an infinite hierarchical Recursive
Proof using just a single circuit. This is called a Cyclic Recursive ZKP. In the case of a
Recursive ZKP, it is customary to embed a verifying key within the circuit. However,
for Cyclic Recursive ZKP, it is not possible to embed its own verifying key when
creating the circuit, so this issue is addressed by verifying the identity of the circuit.

Here are the defining features of Cyclic Recursive ZKP:

e A proof P, produced by a given circuit C, can be reintroduced into C to generate
the subsequent proof P'.



8. Classification of NIZKs

The development of practical NIZKs, such as zkSNARKs and zkSTARKSs, has been
taking place over the past decade, notably beginning with the Pinocchio Protocol in
2013, and greatly propelled by Groth16 in 2016.

In the Pinocchio Protocol, constraints represented in the R1CS format were
converted to QAP, achieving verifiable computing. Although it lacked properties of
confidentiality and non-interactiveness, Groth16 effectively addressed these issues,
becoming, in practice, the first widely-used NIZK system.

While Groth16 utilized pairings, zkSTARKs in 2017 replaced this with FRI, leading to a
significant improvement in the computation speed of proof creation. In 2019, PlonK
addressed a major inefficiency in Groth16's R1CS, where the polynomial degree
increased inefficiently for constraints (Copy Constraints) using the same variables.
This inefficiency was dramatically optimized using a technology called coordinate
accumulator. Additionally, Ultra PlonK made it possible to write constraints in
higher-degree polynomials, allowing for the assembly of various free gates and
custom gates.

Subsequent NIZK developments have mainly focused on the previously mentioned
achievement of Recursive ZKP. Notable systems include Redshift, a combination of
FRI and PlonKish, Plonky2, Halo2 which backs Ultra PlonK with IPA, and Nova, which
can sum the computational processes of R1CS. Plonky2, renowned for significantly
accelerating the generation speed of Recursive ZKP, achieved faster processing
performance by reducing the number of finite fields in the definition body while
ensuring security did not fall below 100 bits. By expanding the definition body and
increasing the dimensions, it was made possible to perform individual
computational costs within a smaller finite field.

8.2 Backend



On Pairing and PCS

Pairing refers to the operation between points on the elliptic curve, characterized by its
bilinearity. The bilinearity can be expressed as:

For points P, P', Q, Q' on the twisted elliptic curve group concerning pairing: en(P+P’,Q’) =
en(P,Q) en(P’,Q) en(P,Q+Q’) = en(P,Q) en(P,Q’)

en(P,P) =1
en(P,Q#£0)=1 => P=0

This can verify equations containing both addition and multiplication once each, allowing
calculations to be performed while data remains confidential. This meets the requirements of
zkSNARKS. Specifically, in the QAP format after converting polynomial problems in
zkSNARKS, it allows for the verification of polynomial equations at a single point while the
polynomial remains concealed.

For A(x)B(x)-C(x) = Z(x)H(x), verification is conducted at point x=s. In this instance, the
equation can be resolved with a single multiplication, hence the use of pairing.

For more flexible polynomial equations like in PlonK, Polynomial Commitment Schemes
(PCS) are employed. Unlike regular bit commitments, polynomial commitments can commit
to functions, allowing for the insertion of various values to obtain flexible outputs.

About FRI

FRI is an algorithm to ascertain and verify knowledge of a polynomial. It leverages
the difficulty of interpolating a high-degree polynomial using a small number of
points for those unfamiliar with the polynomial.



Example: For values between 0 and n, if a polynomial satisfies the condition P(Q(x))
= 0, then P(Q(x)) can be represented as Z(x)H(x).

To prove knowledge of such a Q(x) when P and Z are known, one needs to
demonstrate: "| am aware of several points on Q and the corresponding points on H
for the same x values."

However, given Z is known, for each point x=s, one can compute P(t) and divide it by
Z(s). This allows even arbitrary values of t to satisfy the equation. Thus, proving
these points lie on the same polynomial becomes essential. The difficulty of
ensuring many sample points belong to a lower-degree polynomial unless you're
aware of that polynomial forms the core of the security concept. This concept is
foundational to FRI.

Among mechanisms that ensure ZKP's security, FRI is rare in its quantum resilience
and does not depend on security assumptions like the discrete logarithm problem.

About the Folding Scheme

In R1CS, the expression a times b equals c is termed an instance. Combining
different instances born from different withesses within the same circuit, like
through addition, is tricky. Yet, this becomes possible when applying an extended
R1CS called Relaxed R1CS. This method of merging two instances into one is
termed the Folding Scheme. By continually merging two into one, the final proof
becomes highly compact.

About the sumcheck protocol

It's a succinct zero-knowledge proof protocol. By repeatedly substituting boolean
values and random values into the target polynomial, one obtains the proof. It's
employed within the Folding Scheme.

About IPA



IPA is a security mechanism for zero-knowledge proofs, reliant solely on elliptic
curve point computations. Suitable for straightforward computation verifications like
Bullet Proof, it's also used in blockchain...

8.3 Front-end

About R1CS

R1CS is the foundational ZKP form, where the constraints a circuit must satisfy are
denoted as a times b equals c.

About Plonkish gate

Plonkish denotes constraints of circuits presented in pioneering papers like PlonK or
its extensions. Initially denoted as XXX in the paper, it can transition to higher-degree
polynomials, and these flexible constraints for high-degree polynomials are dubbed
custom gates. PlonK encompassing custom gates is commonly called Ultra PlonK.

About lookuptable

It's an Ultra PlonK feature, drawing inspiration from digital circuit lookuptables. It's
essentially a truth table correlating input and output bits. Instead of conducting
intricate bit computations unsuited for Plonk, it directly fetches the resultant boolean
value, thereby downsizing the circuit. This is notably valuable when calculating
hashes using PlonK.

About AIR

It's a format to inscribe constraints of zkSTARKs-provable polynomials.

About CCS

CCS is a constraint system crafted to simultaneously depict R1CS, Plonkish, and AIR.



8.4 Classification

Using the front-end and back-end, they can be classified as follows:

ps) Pedersen commitment

front \ back Paring/PCS | FRI Sumcheck IPA

R1CS/ Relaxed | Groth16/ Aurora Nova

R1CS Marin/ Sonic Spartan

Plonkish PlonK Plonky2/ Halo/Halo2
Redshift

AIR zkSTARKs

CCS HyperNova

Simpler one Bullet Proofs

9 Tools for ZKPs

1. Library

2. language

3. security

4. IDE

5. acceleration (GPU/ASIC)

Bellman

Bellman is an initial Rust library that made it somewhat straightforward to implement
zero-knowledge proofs. With it, Groth16 circuits could be implemented. Later
community forks incorporated support for PlonK, among others.

e Circom
Circom is the most widely-used dedicated language for zero-knowledge
proofs, capable of outputting R1CS. In tandem with snark.js, it allows for easy
generation of zero-knowledge proofs. Both Groth16 and PlonK are supported.



Additionally, compilations from Circom to various zero-knowledge proofs like
zkSTARKSs or Halo2 are separately supported by diverse communities.

e C(Cairo
Cairo is a language dedicated to zkSTARKs and compiles to AIR.

e Lurk
Lurk is the most suitable language for producing Nova outputs.

e Winterfell
Winterfell is an open-source zkSTARKSs library in Rust.

e Solidity/zkEVM
Originally a language for smart contracts, Solidity, with the introduction of a
new compilation environment, can now be translated into various zkEVM
circuits for diverse zero-knowledge proofs. Translations to Halo2 and PlonK
are particularly renowned.

e Aleo

10 ZKP Performance

When evaluating the performance of ZKPs, it is clear to consider the following basic
criteria:

1) Shortness of proof generation time relative to the number of constraints.
2) Shortness of verification time.
3) Smallness of proof data relative to the number of constraints

As a note, the proof generation time is generally constant in each ZKP and does not
depend on the size of the circuit. Each of these metrics can be hard to quantify
definitively since they can be parallelized and made redundant by Recursive Proofs.
Whether Recursive Proof is feasible can also affect these metrics.

With this in mind, generally speaking, if we disregard Recursion, a negative
correlation can be observed between proof generation time and proof data size.

A negative correlation is also observed between the shortness of verification time
and the shortness of proof generation time relative to the number of constraints. For
instance, in cases like FRI, a trade-off can be manipulated with parameters. This
means it's adjustable whether to burden the verification side or the proof side.

From a security standpoint, whether a trusted setup is needed, or if a global one-time
trusted setup suffices, or if it's unnecessary, can also be considered a performance
criterion.



11 Vulnerability of ZKP

https://github.com/0xPARC/zk-bug-tracker

1) Parameters

Even if the ZKP scheme itself is secure and has a security proof, depending on how
the parameters are set, a vulnerable ZKP proof can emerge. There's often a
significant incentive in many cases to set parameters that might decrease security
for purposes like speeding up proof generation.

Example:
2) Mistake in the Fiat-Shamir Transformation

There are instances where vulnerabilities arise when converting to non-interactive
proofs. Moreover, it's not uncommon for the security degradation in the Fiat-Shamir
process to go unchecked. Discussions frequently revolve around a conjectured
security, which assumes the post-transformation bit security is the same as the
pre-transformation bit security.

Example:
3) Trusted Setup

For ZKP schemes that require a trusted setup, if the toxic waste is misused, fake
proofs might get verified, or secrets could be leaked. Especially concerning fake
proofs, due to the entire scheme's zero-knowledge nature, external observers cannot
detect the fakes. Therefore, for protocols employing zero-knowledge proofs for
privacy, detecting attacks and estimating their scale is challenging, potentially
leading to catastrophic long-term damage. Using ZKPs without a trusted setup or
conducting a universal setup is decisively crucial for such applications.

4) Mistakes in Circuit Design

Even if the ZKP is secure, those designing circuits using it can introduce
vulnerabilities at that stage, which is quite common. A typical example in Circom


https://github.com/0xPARC/zk-bug-tracker

would be confusing substitutions and constraints. Mistakes in circuit design, much
like bugs in smart contracts, are expected to be frequent. Consequently, in the
cryptocurrency industry, there's a thriving practice of code audits specifically for
ZKPs.

12 Applications of ZKPs

About ZCash:

ZCash, launched in 2016, is a cryptocurrency focusing on privacy, aiming to
completely conceal the sender, receiver, and transfer amount. It was one of the first
attempts in cryptocurrency to employ zero-knowledge proofs, using Groth16.

About pay2sudoku:

This was an application experiment on Bitcoin using zero-knowledge proofs by core
developer Gregory Maxwell. It allowed someone who knew the solution to a Sudoku
puzzle to prove it using a zero-knowledge proof and receive coins. Notably, since the
Bitcoin script doesn't have a function to verify zero-knowledge proofs, the Sudoku
challenge was guaranteed using a zero-knowledge proof by substituting knowing the
solution to the puzzle with knowing the preimage of a hash. Therefore, unlike
conventional zero-knowledge proofs, where the circuit creator doesn't necessarily
need to know the answer that meets the constraints, the pay2sudoku scheme
presupposes that the challenger knows the solution to the Sudoku.

About Tornado Cash:

Tornado Cash is a mixing application on Ethereum, created with a focus on privacy
like ZCash. It was written and deployed with Circom and was the first
zero-knowledge proof application to attract many users.

How it works: https://github.com/tornadocash/tornado-core?tab=readme-ov-file

About Aztec Protocol/zkMoney:



zkMoney is a private cryptocurrency on Ethereum developed by the Aztec team. The
main distinction from ZCash is whether it's Layer 1 or an application on Layer 1.
Ideally, expressing it in ERC20 would be optimal for user-friendliness, but this is
technically challenging, so it was implemented using an entirely new token standard.

About Mina Protocol:

Mina is a Layer 1 focused on zero-knowledge proofs and has an extremely small
blockchain size, even smaller than Bitcoin's. It uses Cyclic Recursive ZKP, making the
entire blockchain verification instantaneous. Similar methods could also be applied
to Bitcoin's full nodes, and several such projects are currently identified.

About ID & KYC:

IDs using ZKP and blockchain are often referred to as DID/KYC. They range from
those complying with regulations like KYC to non-compliant ones. Project Zuzalu,
which began under the concept of a Network State aiming for a position equivalent
to a nation by appointing diplomats to a DAO, used ZKP for its virtual nation member
passports.

About Selective Disclosure:

With ZKP, selective disclosure can be implemented by introducing a trapdoor in the
proof. Digital credentia

About Credit Score:

About NFT:

Since NFTs serve as proofs of ownership, their owners' addresses and on-chain
histories are easily trackable by many. ZKP is applied to anonymize possession and
address this issue.

About Data Availability Sampling:

Conceived by Vitalik Buterin for the purpose of completing zkRollup and detailed by
Bankrad Fiest, Data Availability Sampling is a mechanism to prove data retention for
a certain period. It allows nodes to efficiently prove that they're holding data

fragments, utilizing two-variable polynomial commitments.

About Bridges:



With ZKP  it's possible to construct trustless 2-way peg bridges between many public
blockchains. However, both chains must be capable of verifying ZKP. If generic smart
contracts are implemented, this condition can be automatically met. Conversely, a
trustless bridge between Ethereum and Bitcoin using ZKP hasn't been discovered yet
and is said to require Witness Encryption.

About zkML:

zkML refers to systems that guarantee, through NIZK, that a model was constructed
using a specific algorithm and dataset.

About AML:

The "Proof of No Crime" concept, proposed and implemented by Tornado Cash, is a
mechanism that, while possessing the properties of mixing, allows one to prove that
no funds were received from a specific address. It's a system that seeks a balance
between privacy and AML.

Secret Voting:

Games:

zkOracle

funny category:

12.1 zkRollup



12.1.1 General

- Definition of zkRollup

zkRollup is a network that secures the bridge between Layerl and off-chain using
ZKP while retaining the security of Layer1.

*History of zkRollup

It was conceived by Vitalik Buterin in 2018, and currently, there are more than 10
networks that are its improved versions. Before Vitalik Buterin's idea, there was a
proposal called Plasma snap which applied zkp to the Layer2 solution Plasma, and
Barry Whitehat performed the MVP implementation. In 2019, Loopring first
implemented and launched a DEX using zkRollup, and in 2020, zkSync launched the
remittance network zkSync v1. In 2023, the Polygon team developed zkEVM and
launched a zkRollup fully compatible with Ethereum VM, i.e., Solidity.

- Classification of zkRollup

zkRollup can be classified into the following three based on the uniqueness of the
state:

Stateful zkRollup - Manages bit commitments of the state of users and smart
contracts with Layerl smart contracts. Examples: Starknet, zkSync Era, Polygon

zKEVM, Scroll, Taiko, Loopring

Succinct zkRollup - Allows everyone to calculate bit commitments of the state of
users and smart contracts from Layerl data. Example: Sovereign Rollup

Stateless zkRollup - Users only compute their own bit commitment without fetching
from Layerl data. Example: Intmax

Furthermore, the most prominent zkRollup, the Stateful zkRollup, can be classified
as:

Typel Exactly equivalent to the Ethereum Network. Example: Taiko

Type2 Fully compatible with EVM bytecode but not equivalent to Ethereum Network.
Example: Scroll

Type3 Mostly compatible with EVM and many Solidity codes are portable. Example:
Polygon zkEVM



Type4 Compatibility with EVM is not guaranteed, and there's no guarantee that many
Solidity codes are portable. Examples: StarkNet, zkSync

These classifications by zkEVM are important in the Ethereum community due to
their impact on security during porting from Solidity code.

Additionally, there are zkp solutions that do not meet the requirements of zkRollup:
-zkPorter

A solution proposed by zkSync to sacrifice zkRollup security to achieve scalability. It
was proposed to offset the DA cost bottleneck in zkRollup by a new token-carrying
network, eliminating the need to pay Ethereum Layerl DA costs. A DA attack by a
coalition of 2/3 token holders can freeze user assets but cannot confiscate them, so
there is no incentive for the attacker. Since the security assumption of a new token is
included, it does not inherit the security of Ethereum Layer1.

While not classified as zkRollup, it's debatable whether it's a Layer2 or a sidechain:

=Validium

A system developed by zkSync. It is a mechanism that trusts a validator group not to
carry out a DA attack, foregoing DA cost payments.

-Volition
Proposed by Starkware, it is a mechanism where individuals can choose the
trustlessness level, i.e., security level, of DA storage. There's a trade-off between

price and security.

-zkRollup Concerns and Solutions

11.1-2 Rollup != Bridge Argument



If a token is natively issued on Rollup (Layer2) and is not the subject of a
bridge with Ethereum Layer1, there has been a claim that this token may
not inherit Ethereum Layer1's security if it conducts its own forks or
governance.

However, even tokens on Ethereum Layer1 that have their governance
or references with projects, or lack liquidity, often do not represent
Layer1's trustlessness. It was suggested that Rollup inherits not only the
security of Ethereum Layer1 but also the reduced security properties by
each community, affirming Rollup's role as a pure extension of
Ethereum. Currently, this argument isn't seen as very valuable, so it
rarely comes up.

11.1-3 Does zkRollup use Zero-Knowledge?

Most zkRollups are not confidential. Therefore, some argue that
zkRollups only utilize the non-interactive nature of zkSNARKSs. The
validity of this claim boils down to:

"When there are many inputs that, while not a security issue if made
public, are kept confidential for efficiency, is ZK being utilized?"

In other words, in Stateful zkRollups, the prover hides data not because

they want to but because making it public wastes computational
resources.

11.1-4 Decentralization of zkRollup's block producers



Many Stateful zkRollups have not decentralized block producers due to
the high computational cost of zkp and the risk of bugs. While this
doesn't pose a security risk given zkRollup's inheriting properties, it does
raise concerns about service continuity.

11-1-5 Potential for Decreased Security via proto-danksharding/danksharding

The use of time-limited data, such as those provided by proto-danksharding, for
periods like one month, is a very novel approach in the blockchain industry. With this,
while effectively preventing block withholding attacks, rollup nodes can transfer Data
Availability (DA) from Layer1. This is possible within rollups because if even one
node is an honest node, it can prevent a DA attack. This is known as the 1/N security
assumption, and it's considered a method to scale Layer2 trustlessly. Whether
writing all data into Layer1's call data or moving the data storage to rollup nodes
through proto-danksharding, both approaches operate on the 1/N assumption.
However, the value of N differs significantly between them. When writing to Layer1, N
might be the number of Ethereum nodes, say 5000, but when using
proto-danksharding, N might be the number of candidate nodes, perhaps around 20.

For major Layer2/Rollups with high public trust and significant value concentration,
maintaining a large N might be possible. However, for rollups crafted through
mechanisms like "Rollup as a service," it's challenging to predict what this N number
might be.

13. Security considerations

This document has no security considerations.
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14. Privacy considerations
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15. Regulatory considerations
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