

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de Estudios 2026 de la Licenciatura en Matemáticas

SISTEMAS DINÁMICOS DISCRETOS I Clave Área de Semestre Créditos Matemáticas conocimiento A partir del 10 Campo Ecuaciones Diferenciales y Sistemas 5 Dinámicos Etapa Curso (X) Taller () Lab () Sem () Modalidad Tipo | T() P() T/P() Obligatorio () Optativo (X) Carácter Horas Obligatorio E () Optativo E() Semana Semestre Teóricas Teóricas 5 80 **Prácticas** 0 **Prácticas** 0 Total 5 Total 80

Seriación		
Ninguna ()		
Obligatoria ()		
Asignatura antecedente		
Asignatura subsecuente		
Indicativa (X)		
Asignatura antecedente	Álgebra Lineal I, Cálculo Diferencial e Integral IV.	
Asignatura subsecuente	Sistemas Dinámicos Discretos II.	

Objetivos generales:

- Analizar los conceptos fundamentales de los sistemas dinámicos discretos definidos en subconjuntos de los números reales y en el círculo.
- Relacionar modelos matemáticos básicos con fenómenos dinámicos que se presentan en la recta real y en el círculo.

Objetivos específicos:

- Describir las nociones básicas de órbitas, puntos periódicos y conjuntos límite en sistemas dinámicos discretos.
- Contrastar la dinámica de funciones definidas en el círculo con la dinámica de funciones definidas en la recta real.
- Extender la dinámica topológica de funciones definidas en el círculo y la recta real a la de funciones definidas en espacios métricos y analizar los conceptos y resultados en este marco más general.

	Índice temático		
	Tema	Horas semestre	
			Prácticas
1	Primeras definiciones	15	0
2	El teorema de Sharkovskii	10	0
3	Primeros aspectos de la dinámica en el círculo	10	0
4	Sistemas dinámicos caóticos	10	0
5	Equivalencia entre sistemas	10	0
6	Introducción a bifurcaciones	10	0
7	Aplicaciones a otras áreas de las matemáticas y a otras	5	0
	ciencias		
8	Temas optativos	10	0
	Total		80

	Contenido Temático		
	Tema y subtemas		
1	Primo	eras definiciones	
	1.1	Iteradas e iteraciones. Tipos de órbitas: periódicas, pre-periódicas, y asintóticamente periódicas.	
	1.2	Hiperbolicidad de puntos periódicos: Atractores, repulsores y neutros. El papel de la derivada en la caracterización de estos puntos. Primeras ideas de estabilidad.	
	1.3	Los conjuntos ω -límite y α -límite. Puntos no errantes y puntos recurrentes.	
	1.4	Ejemplos en la recta real: La función logística (y su familia $f_{\lambda}(x) = \lambda x(1-x)$), la función tienda (y su familia).	
	1.5	Ejemplos sencillos en el plano y en los números complejos.	
2	El teorema de Sharkovskii		
	2.1	Primeras relaciones entre los distintos períodos en funciones definidas en intervalos.	
	2.2	El teorema de Li y Yorke. La importancia del período 3.	
	2.3	El teorema de Sharkovskii.	

3	Primeros aspectos de la dinámica en el círculo		
	3.1 Rotaciones. Teorema de Jacobi.		
	3.2 Homeomorfismos, levantamientos y número de rotación.		
4	Sistemas dinámicos caóticos		
	4.1 Transitividad topológica. Existencia de órbitas densas.		
	4.2 Estabilidad de Lyapunov. Sensibilidad a las condiciones iniciales.		
	Expansividad.		
	4.3 Definiciones de caos. Ejemplos de sistemas caóticos.		
5	Equivalencia entre sistemas		
	5.1 Conjugación topológica. Propiedades invariantes bajo la conjugación.		
	5.2 Relación entre la función logística y la función tienda.		
	5.3 Dinámica simbólica. Espacio de las sucesiones en dos símbolos. Propiedades dinámicas de la función corrimiento.		
	5.4 La dinámica de elementos de la familia logística y de la tienda donde el conjunto de puntos atrapados es un conjunto de Cantor.		
6	Introducción a bifurcaciones		
	6.1 Bifurcaciones tipo tangente y de duplicación de período. Ejemplos en la		
	familia logística.		
	6.2 Introducción al análisis del diagrama de bifurcaciones de la familia logística:		
	Cascadas de bifurcaciones y ventanas. Utilización de experimentos numéricos para su descripción.		
7	Aplicaciones a otras áreas de las matemáticas y a otras ciencias		

8	Temas optativos	
	8.1	Modelos de poblaciones estructuradas. Matriz de Leslie. Propiedades del
		espectro de las matrices positivas. Clases anisócronas de estructura: Matriz de
		Lefkovich. Teoría de Caswell: Sensibilidad y elasticidad de una matriz.
	8.2	Introducción a sistemas en el plano. Dinámica de transformaciones lineales y
		afines. Una primera mirada a la Herradura de Smale.
	8.3	Transformaciones lineales y caos. Ejemplo de una transformación lineal
		caótica en un espacio de dimensión infinita.
	8.4	Dinámica de la función $f(z) = z^2$ definida en los números complejos.
		Dinámica de otros elementos de la familia cuadrática $f_c(z) = z^2 + c$.
		Presentación del conjunto de Julia y del Conjunto de Mandelbrot.
	8.5	Relación entre la definición de caos de Devaney y conceptos de sistemas
		caóticos: El "conjunto revuelto" de Li y Yorke, las "funciones turbulentas" de
		Block y Coppel, y otros.
	8.6	Ejemplo de funciones en el intervalo cuyos puntos periódicos tienen períodos
		sólo de potencias de 2. Conjugación de estas funciones con la sumadora de
		Misiurewicz en el espacio de las sucesiones de dos símbolos. Dinámica de la
	0.7	sumadora.
	8.7	Exponentes y números de Lyapunov: Una medida de estabilidad de órbitas de
	8.8	funciones en la recta real y el círculo.
	1	Introducción a la entropía topológica. Relación con el concepto de caos.
	8.9	Introducción a la estabilidad estructural. Ejemplos de funciones en la recta real
	8.10	y el círculo con y sin estabilidad estructural. Transformaciones en círculo. Homeomorfismos de Morse Smale y estabilidad.
	0.10	Transformaciones en círculo. Homeomorfismos de Morse-Smale y estabilidad estructural. Transformación de Denjoy. Lenguas de Arnol'd.
		estructurar. Transformación de Denjoy. Lenguas de Afriol d.

Estrategias didácticas		Evaluación del aprendizaje	
Exposición	(X)	Exámenes parciales	(X)
Trabajo en equipo	(X)	Examen final	()
Lecturas	()	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	()
Prácticas (taller o laboratorio)	()	Participación en clase	(X)
Prácticas de campo	()	Asistencia	()
Aprendizaje por proyectos	()	Rúbricas	()
Aprendizaje basado en problemas	(X)	Portafolios	()
Casos de enseñanza	()	Listas de cotejo	()

Otras (especificar)	Otras (especificar)

Perfil profesiográfico		
Título o grado	Licenciatura en Matemáticas, Matemáticas Aplicadas, Física, Actuaría,	
	Ciencias de la Computación o equivalente.	
Experiencia docente	Con experiencia docente en el área o en áreas circundantes.	
Otra característica	Especialista en el área de la asignatura a juicio del comité de asignación	
	de cursos.	

Bibliografía básica:

- 1. Block, L. S., y Coppel, W. A., *Dynamics in One Dimension*, Berlín: Springer Verlag, 1992.
 - https://link-springer-com.pbidi.unam.mx:2443/book/10.1007/BFb0084762
- 2. Brin, M., y Stuck, G., *Introduction to Dynamical Systems*, Cambridge UK: Cambridge University Press, 2002.
- 3. Devaney, R. L., *An Introduction to Chaotic Dynamical Systems (Second Edition)*, New York: Addison Wesley, 1989.
- 4. Devaney, R. L., *A First Course in Chaotic Dynamical Systems: Theory and Experiments*, New York: Addison Wesley, 1992.
- 5. King, J., y Méndez, H., *Sistemas Dinámicos Discretos*, México: Las Prensas de Ciencias, UNAM, 2014.

Bibliografía complementaria:

1. Alligood, K., y Sauer, T., D., y Yorke, J., *CHAOS, an Introduction to Dynamical Systems*, New York: Springer-Verlag, 1996.

https://link-springer-com.pbidi.unam.mx:2443/book/10.1007/b97589

- 2. Anton, H. A., y Rorres, C., Elementary Linear Algebra with Applications, New York: Wiley, 1987.
- 3. Caswell, H., *Matrix Populations Models*, Sunderland, Massachusetts: Sinauer Ass. Inc. Publishers, 2001.
- 4. Hirsch, M., y Smale, S., y Devaney, R. L., *Dynamical Systems and an Introduction to Chaos*, San Diego, California: Academic Press, 2004.
- Holmgren, R. A., A First Course in Discrete Dynamical Systems, New York: Springer-Verlag, 1996. https://link-springer-com.pbidi.unam.mx:2443/book/10.1007/978-1-4419-8732-7

- 6. Robinson, C., *Dynamical Systems: Stability, Symbolic Dynamics, and Chaos*, Boca Raton: CRC Press, 1999.
- 7. Ruette, S., Chaos on the Interval, Rhode Island: American Mathematical Society, 2017.

Recursos digitales y software:

• **Diagramas de bifurcación:** Orbit Diagram Applets. 2014.

http://math.bu.edu/DYSYS/applets/OrbitDgm.html

• Las páginas de Robert L. Devaney: Bob Devaney's Home Page. 2014.

http://math.bu.edu/people/bob

• Java Applets. 2014.

http://math.bu.edu/DYSYS/applets

• Bibliotecas "JuliaDynamics": para sistemas dinámicos en el lenguaje de programación Julia.

juliadynamics.github.io/JuliaDynamics

• Bibliotecas "SDD": para sistemas dinámicos discretos en el lenguaje de programación Julia.

github.com/Colectivo-SDD