
The Web Performance WG invites the broader web performance community to discuss
A/B testing and ways we can collectively work to make it faster! The goal of this open
meeting is to explore the problem space, try to reach common understandings on the
benefits and shortcomings of the current approaches, and brainstorm a brighter future
and how we can get there.

We plan to have representatives from across the web performance and A/B testing community,
including:

●​ WebPerf WG members
●​ A/B testing providers
●​ Web performance consultants
●​ CDNs
●​ Content platforms

Logistics

When
Thursday February 4th, 12-2:30pm PST (9-11:30pm CET, 8-10:30pm GMT, 5-7:30am JST)

Where
Online!
As always with WG calls, the meeting will be recorded and recordings as well as minutes will be
posted online.

Attendees
To register, simply add your name, email and employer (if relevant) below.

●​ Yoav Weiss - yoav@yoav.ws - Google
●​ Nicolás Peña Moreno - npm@google.com - Google
●​ Michael Hood - michaelhood@gmail.com
●​ Naina Raisinghani - nainar@google.com, - Google
●​ Bing Chen - bingc@google.com - Google
●​ Dimitris Dimitropoulos - ddimitrop@google.com - Google
●​ Nathan Tate - nathantate@google.com - Google
●​ Kristofer Baxter - kbax@google.com - Google
●​ Ishan Anand - ishan@moovweb.com - Moovweb
●​ Patrick Meenan - pmeenan@webpagetest.org - Catchpoint
●​ Addy Osmani - addyo@google.com - Google
●​ Kenji Baheux - kenjibaheux@google.com - Google
●​ Noam Helfman - noamh@microsoft.com - Microsoft

http://meet.google.com/bqq-bouy-ghz
mailto:yoav@yoav.ws
mailto:npm@google.com
mailto:michaelhood@gmail.com
mailto:nainar@google.com
mailto:bingc@google.com
mailto:nathantate@google.com
mailto:kbax@google.com
mailto:ishan@moovweb.com
mailto:pmeenan@webpagetest.org
mailto:addyo@google.com
mailto:kenjibaheux@google.com
mailto:noamh@microsoft.com

●​ Peter Perlepes - p.perlepes@gmail.com - trivago
●​ Carine Bournez- carine@w3.org - W3C
●​ Palash barua - palash.barua@aamra.com.bd - aamra technologies limited
●​ Andy Davies, hello@andydavies.me - Independent Consultant
●​ Keith Freund, brainwavescode@gmail.com - Freelance Web Developer
●​ Tim Kadlec, tim@timkadlec.com - Catchpoint
●​ Ryan Townsend, ryan@ryantownsend.co.uk – SHIFT Commerce
●​ Nirbhab Barat, nirbhab@lambdatest.com - LambdaTest.com
●​ Mayank Bhola mayank@lambdatest.com - LambdaTest.com
●​ Srivishnu Ayyagari srivishnua@lambdatest.com - Lambdatest.com
●​ Melissa Mitchell - ellemitchell@google.com - Google
●​ Deeksha Agarwal- deekshaa@lambdatest.com- LambdaTest
●​ Nic Jansma - njansma@akamai.com - Akamai
●​ Benjamin De Kosnik - bdekoz@mozilla.com - Mozilla
●​ Johan Aldor - jaldor@akamai.com - Akamai
●​ Tim Dresser - tdresser@google.com - Google
●​ Dharani Govindan - dharani@google.com - Google
●​ Shubhie Panicker panicker@google.com - Google
●​ Philip Walton - philipwalton@google.com - Google
●​ Naidu Venkat- naiduvr@lambdatest.com- Lambdatest
●​ Harry Roberts – csswizardry@gmail.com – N/A
●​ Andrew Galloni - andrew@cloudflare.com - Cloudflare
●​ Colin Bendell - colin.bendell@shopify.com - Shopify
●​ CP Clermont - cp.clermont@shopify.com - Shopify
●​ Warren Maresca - warrengm@google.com - Google
●​ Ilya Grigorik — ilya@grigorik.com
●​ Leo Lamprecht – leo@vercel.com – Vercel
●​ Bel Curcio - bel@vercel.com - Vercel
●​ Eric Smyth - esmyth@mozilla.com - Mozilla
●​ Lucas Pardue - lucas@cloudflare.com - Cloudflare
●​ Hong Xiao - jeffhongxiao@gmail.com - N/A
●​ Michelle Vu - michellevu@pinterest.com - Pinterest
●​ Scott Connelly- sconnelly@sitespect.com -SiteSpect
●​ Greeshma Yellareddy - greeshmay@gmail.com - Optimizely
●​ Shalom Volchok - shalom@outsmartly.com - Outsmartly
●​ Jay Phelps - jay@outsmartly.com - Outsmartly
●​ Sam Fischgrund - sfischgrund@google.com - Google
●​ Aly Cabral - aly@cloudflare.com - Cloudflare
●​ Glen Maddern - glen@cloudflare.com - Cloudflare
●​ Mark Moeckel - mark.moeckel@dominos.com - Domino’s
●​ Patrick Hamann - patrick@fastly.com - Fastly
●​ Aditya Punjani - aditya.punjani@airbnb.com - Airbnb
●​ Aman Nanner - ananner@akamai.com - Akamai
●​ Rachel Wilkins Patel - rachel@bridgeandswitch.com - n/a

mailto:p.perlepes@gmail.com
mailto:carine@w3.org
mailto:-palash.barua@aamra.com.bd
mailto:brainwavescode@gmail.com
mailto:tim@timkadlec.com
mailto:ryan@ryantownsend.co.uk
mailto:nirbhab@lambdatest.com
mailto:mayank@lambdatest.com
mailto:srivishnua@lambdatest.com
mailto:ellemitchell@google.com
mailto:deekshaa@lambdatest.com
mailto:njansma@akamai.com
mailto:bdekoz@mozilla.com
mailto:jaldor@akamai.com
mailto:tdresser@google.com
mailto:dharani@google.com
mailto:panicker@google.com
mailto:philipwalton@google.com
mailto:naiduvr@lambdatest.com
mailto:csswizardry@gmail.com
mailto:andrew@cloudflare.com
mailto:colin.bendell@shopify.com
mailto:cp.clermont@shopify.com
mailto:warrengm@google.com
mailto:bel@vercel.com
mailto:esmyth@mozilla.com
mailto:lucas@cloudflare.com
mailto:jeffhongxiao@gmail.com
mailto:michellevu@pinterest.com
mailto:sconnelly@sitespect.com
mailto:greeshma@optimizely.com
mailto:shalom@outsmartly.com
mailto:jay@outsmartly.com
mailto:sfischgrund@google.com
mailto:aly@cloudflare.com
mailto:mark.moeckel@dominos.com
mailto:patrick@fastly.com
mailto:aditya.punjani@airbnb.com
mailto:ananner@akamai.com
mailto:rachel@bridgeandswitch.com

●​ James Russell - james.russell@dominos.com - Domino’s
●​ Utkarsh Goel - ugoel@akamai.com - Akamai
●​ Katie Hempenius - khempenius@google.com
●​ Michal Mocny - mmocny@google.com
●​ Marcel Duran - marcelduran@google.com - Google
●​ Dave Pifke - dpifke@wikimedia.org - Wikimedia Foundation
●​ Paul Bernier - pbernier@sitespect.com - SiteSpect

Reading material
Real-Life Performance and Client-Side A/B Testing Challenges
Client side A/B testing outside of the client
Client-side A/B Testing and Performance (a match made somewhere other than heaven)

Agenda
Times in PST

Timeslot Subject POC

12:00-12:10 Intro Yoav

12:10-12:30 Client-Side A/B Testing &
Performance​
​
Real life problems with
client-side A/B testing

Tim Kadlec - CatchPoint,
Melissa Mitchell - Google

12:30-13:00 How client-side A/B testing
works - Optimizely
Google Optimize

Greeshma Yellareddy - Optimizely,
Dimitris Dimitropoulos - Google Optimize

13:00~13:05 Break

13:05-13:15 Client-side A/B testing outside
the client??

Yoav Weiss - Google

13:15-14:30 Brainstorming

W3C’s Code of Ethics and Professional Conduct

Conclusions
●​ A/B testing providers need better ways to load their scripts

mailto:james.russell@dominos.com
mailto:ugoel@akamai.com
mailto:khempenius@google.com
mailto:dpifke@wikimedia.org
mailto:pbernier@sitespect.com
https://docs.google.com/document/d/1tUePot24bqpZmW31jmGa1FHMJ12YkXXubD3S1tnih0M/edit
https://docs.google.com/document/d/1SVRl4qwr5sVUsAITkrvMJPTMSuJatNRFfUKgx4P1rH8/edit#
https://docs.google.com/presentation/d/11mHDr3u4py1zOlq5Fd1ub0335rXYfxjp8wMfXF0--E0/edit?usp=sharing
https://docs.google.com/presentation/d/11mHDr3u4py1zOlq5Fd1ub0335rXYfxjp8wMfXF0--E0/edit?usp=sharing
https://docs.google.com/presentation/d/11mHDr3u4py1zOlq5Fd1ub0335rXYfxjp8wMfXF0--E0/edit?usp=sharing
https://docs.google.com/presentation/d/15AA_4_aJJxH3qckVUu6FSRzKotCSapEteSM8PJKEiSE/edit?usp=sharing
https://docs.google.com/presentation/d/15AA_4_aJJxH3qckVUu6FSRzKotCSapEteSM8PJKEiSE/edit?usp=sharing
https://docs.google.com/presentation/d/1QwEP4m-EneSYkW1QtD8SN7eAyjxsaobo6XIXMU3tDcU/edit?usp=sharing
https://docs.google.com/presentation/d/1QwEP4m-EneSYkW1QtD8SN7eAyjxsaobo6XIXMU3tDcU/edit?usp=sharing
https://docs.google.com/presentation/d/1M414_RHF--1IVyYb6V_9wxCsa-yRO5_HGsIvkY__sas/edit?usp=sharing
https://docs.google.com/presentation/d/1rmVcHJtfJhFvASGfsbPjwguW7kP9D8Le0YW6zx_vk-0/edit#slide=id.p
https://docs.google.com/presentation/d/1rmVcHJtfJhFvASGfsbPjwguW7kP9D8Le0YW6zx_vk-0/edit#slide=id.p
https://www.w3.org/Consortium/cepc/

○​ The library+experiment code would benefit from “render blocking but not parser
blocking” semantics, potentially with a developer defined timeout.

■​ That would enable to improve performance and eliminate SPOF and need
for anti-flicker snippets.

○​ Analytics code would benefit from a simpler way to load the code at idle time
●​ Browser support for a standard-track transformation language could benefit the industry

○​ A/B testing providers seemed willing to support such a language
○​ At the same time, there was some skepticism about the potential performance

benefits
●​ Web shared libraries could reduce the amount of code each A/B tested page loads
●​ There’s appetite for native support for an “experiment variant” primitive, over today’s use

of cookies for this purpose, for both convenience as well as caching reasons.
●​ The definition of First Paint could take anti-flicker snippets into account and surface

cases where UX is degraded by them (e.g. by turning the page blank)
●​ May be interesting to explore avoiding the paint of specific elements on the page, rather

than blocking the full render.
●​ There’s interest in being able to surface the impact of A/B testing to the people making

the decisions. There may be room for an A/B testing User Timing convention that can
help on that front.

●​ The A/B testing providers present (Optimizely and Google Optimize) have an API that
would enable CDNs to e.g. remove the A/B testing script in case no experiments are
running.

Recordings
Part 1 - Talks
Part 2 - Brainstorming

Minutes

Intro
●​ Yoav: A lot of misunderstanding between web performance and A/B testing

communities
●​ … We have common goals of making sites faster and better for users
●​ … Try to figure out a solution
●​ … Today we have talks from Tim and Melissa on real-life problems we see today
●​ … Greeshma and Dimitris talk about how A/B testing works today
●​ … Will have a short proposal as well
●​ … This meeting is covered by W3C Code of Professional Conduct

https://youtu.be/2XIVI1jcztY
https://youtu.be/b8fjyAf9veY

Client-Side A/B Testing & Performance - Tim Kadlec
●​ Tim: Work on WPT at Catchpoint!
●​ … Prior to that was performance consulting, and this is from things I was seeing
●​ … Client-side A/B testing works by providing some JS to browser, which may manipulate

DOM or CSS to apply A/B testing
●​ … As you would expect, any time we’re doing this, we want to try to avoid shifts or

flickering of content
●​ … Challenge for A/B providers is finding a way to combat this: how do we get

experiments down to browser as efficiently as possible to ensure shifting/flickering
doesn’t occur

●​ … Easiest option is to drop in a synchronous script
●​ … Gets higher priority on the network, blocks page until experiments are applied
●​ … From a performance perspective, we’ve now moved that 3P into the critical path
●​ … e.g. on example site w/ Optimizely the script causes a block of 2.3+seconds
●​ … HTML parsing is completely paused during that time
●​ … There’s predictable correlation between engagement and conversion rates and first

paints, and this slows it down significantly
●​ … A blocking script also introduces a SPOF failure risk
●​ Kenji: I would like to know how often that happens
●​ Tim: Yes we can try to look into that
●​ … Recommended reading on self-hosting vs. third-party domains
●​ … Alternative approach is to use an async script, to mitigate SPOF risk
●​ … But now the page could be displayed before those experiments are applied, risking

shifts and flicker
●​ … Typically when we see this, it’s paired with some CSS by setting opacity:0 or

something similar to avoid flicker
●​ … Introduces its own type of risk, where CSS hides content and JavaScript never loads,

page remains blank
●​ … Google Optimize default snippet sets 4 seconds timeout for JavaScript to load
●​ … If it doesn’t come in within that window, then page will be displayed and experiments

won’t run
●​ … Google Optimizer, Adobe Target, Visual Web Optimizer have different default timeouts

of 4/3/2.5s
●​ … These timeouts may seem high. 4s is a lot
●​ … We’re potentially pushing out render for that many of seconds
●​ … But timeouts have to be high because the async script may come late (low priority)
●​ … Example from Andy Davies where VWO has low priority, in second loading phase,

contents with other body content (and is uncacheable)
●​ … Page is hidden for two seconds before that script arrives and executes
●​ … Can be hard to catch with RUM as FCP may fire early because opacity:0 is contentful
●​ … Some examples where RUM looks great and only when we look at WPT that you can

see a problem
●​ … Gets worse when using a tag manager for doing experiments

https://docs.google.com/presentation/d/11mHDr3u4py1zOlq5Fd1ub0335rXYfxjp8wMfXF0--E0/edit?usp=sharing
https://csswizardry.com/2019/05/self-host-your-static-assets/

●​ … One audit shown had the 86th request on the page be the request that applies the
experiments and renders the page

●​ … They were reaching Google Optimize timeout of 5 seconds about 30% of the time
●​ … Andy wrote a great post on anti-flickr snippets
●​ … A single snippet can include many events, pages and experiments
●​ … Experiments may have a tendency to linger on and may be inefficiently written
●​ … We’ll often see large JS payload for the experiment, resulting in Long Tasks
●​ … Observing the DOM can be expensive
●​ … A/B testing is the perfect marriage of third-party risk and JavaScript bottlenecks
●​ … Why people use it? Some data is only on the client, can be used to workaround dev

cycles
●​ … Perceived cost that Client-side A/B is cheaper than perf
●​ … But has to be offset by the cost of lost conversions because of performance

degradation
●​ … Can also be simpler to setup

Chat conversation
○​ Kenji: Does anyone have data about how often SPOF is actually failing?
○​ Michal: Does the anti-flicker timeout result in population bias for the test?

■​ Michael Hood: performance (user experience) itself introduces population bias
into A/B tests. I think you could consider the timeout as resulting in a "trimmed"
population. If the statistical accuracy is that deeply important to the administrator
of the test, it's one of many things they'd need to consider that current tools don't
natively take into account.

■​ Dave Pifke: Timeouts won't be evenly distributed across the population, though.
Users on slow connections will be under-represented in the test.

■​ Nathan Tate: The problem is a little more complicated than that. Users on slow
connections may even only timeout some of the times, which means you have a
group of users who are getting an inconsistent experience, sometimes seeing the
original, and sometimes seeing the variant

Real life problems with client-side A/B testing - Melissa Mitchell
●​ Melissa: Web Ecosystem Consultant from Google focused on Core Web Vitals
●​ … A/B testing almost always comes up, one of the struggles they’re working around in

meeting CWV
●​ … Example of zales.com using Maximiser AMP+PWA
●​ … FCP increases by 4 seconds (likely hitting timeout)
●​ … LCP delayed by a second as well
●​ … Additional shift of 0.17 just from this A/B testing library
●​ … Another example for NPR, best-case scenario from out of the box A/B testing
●​ … React SPA (not AMP) with their A/B testing they see about a second impact on their

pages

https://andydavies.me/blog/2020/11/16/the-case-against-anti-flicker-snippets/
https://docs.google.com/presentation/d/15AA_4_aJJxH3qckVUu6FSRzKotCSapEteSM8PJKEiSE/edit?usp=sharing

●​ … LCP is last piece for meeting CWV, and they’re right on the edge
●​ … That A/B impact is the factor in meeting CWV
●​ … Challenges: Primary A/B test creators are typically not in technical roles, using

WYSIWYG editors to bypass internal bureaucracy

●​
●​ … Universal Truth: Users are never going to use software in the way developers intend
●​ … Corollary: Your users may not be who you think and intend them to be
●​ … Business Use Cases for Client-Side Testing:

●​

●​ … Increase conversions/revenue, reduce workload on marketing teams (not often
technical),

●​ … Reduce outsourced engineering costs
●​ … Allows tests independent of release cycles (many companies slow with cycles, every

2 weeks or every 2 months). Businesses use A/B testing to adjust to this, rather than put
chages in through code deployments.

●​ … Successful tests live until development work is done
●​ … Avoid excess design work for tests, can be extra burden in some processes
●​ … Can double as personalization library
●​ … Avoid tech debt, 70% of tests are unsuccessful or inconclusive, so not adding them to

the code base permanently helps
●​ … A/B testing is solving these pain points
●​ Yoav: Questions from chat:
●​ Alex: Is solution to serve content A/B from first-party and eliminate all third-party delay
●​ Melissa: Need some JavaScript to decide is person is in group A or B, someone else

may be able to talk about whether 1P could help
●​ Alex: One thing I noticed from scraping websites is they’d often respond with content A

or B if there was no cookie. I wonder why we’re not pushing people towards that model
●​ Melissa: If you have to have page A and B written, then engineering resources have to

write those pages. Teams doing these tests are not engineers, and may not get
engineering resources allocated fast enough.

●​ Andy: Many people use platforms that just don’t support it, i.e. using ecommerce
platforms or publishing platforms that don’t have any concepts of experimentation built
into them.

●​ Melissa: Kenji’s point that it has to be free or cheap enough, there’s always a
cost-benefit

Chat conversation
●​ Alex: I may be naive, but isn't the obvious solution to all of this to just serve either

content A or content B from the first party and eliminate all this third party timeout delay?
○​ Andy: Many sites use ecommerce / publish platforms that don't support it
○​ Greeshma: Also typically, there can be anywhere between 1-5 experiments per

page, each with a different targeting conditions. And further, with SPA, navigation
means you will have to apply experiments without loading from server side

○​ Kenji: Probably also increases the IT bureaucracy factor / implementation
burden, which makes it less appealing than the current 3P + client-side
approach.

○​ Ilya: I can't think of any platforms that support A/B testing as a first-class thing.
For those that have dedicated dev teams, this is plausible but not easy; most of
the web doesn't have access to developer time and resources. Plus other bits
that Melissa and Tim mentioned: speed, access to client-side data, WYSIWG,
etc.

○​ Andy: Sitespect is the only CMS I know of that supports testing as a first class
thing

○​ Michael Hood :What Greeshma said is the biggest fundamental issue from my
POV, the proliferation of SPA / client-side hydration makes it all but impossible to
do complex testing without venturing into the browser-side

○​ Kenji Baheux: wondering if A/B vendors have data on how often experiments are
launched at 100% as a fix, feature, etc.

●​ Aly Cabral: what are examples of client data that could not be passed to the server or
edge?

○​ Ilya Grigorik: Aly: For example, if you want to have a conditional experiment
based on your analytics (which is often outsourced and not accessible on the
server), your ad provider, etc.

○​ Michael Hood: what Ilya said, plus "data layers" to use tag manager parlance,
targeting info that's brought in via JS and made available in some JS object/API

○​ ... it's actually worsening with the restrictions from ITP and similar browser
mitigations. more stuff is injected in the page now, harming cacheability

○​
●​ Ishan Anand: Agree strongly with the SPA comments. Gets extra complex when folks

are using SSR + SPA. So you need to change both the SSR and the SPA navigation
content.

●​ Dave Pifke: Product idea for CDNs. ;)
○​ Ilya Grigorik: CDNs can help but don't solve this problem
○​ Kenji Baheux: Gotta be free (or cheap enough) too.
○​ Ilya Grigorik: Server side testing: possible and great, for those that have access

to all necessary signals on the server *and* engineering resources to setup and
run this.

○​ Dave Pifke: The CDN could segment the population and serve different A and B
versions. They're independent of the platform used by the origin.

○​ Michael Hood: That supposes that there is simply an "A" and "B" version - people
who pay for e.g. Optimizely are not testing this way

○​ … imagine there are 3 experiments on a page with 2 variations each. it's a
combinatorial explosion of permutations of every single page. if you fragment
your CDN cache enough you might as well just turn off caching

○​ Kenji Baheux: As in A1+B1+...+Z2 vs. A2+B2+...Z1 vs ... , right?
○​ Michael Hood: If a given page has 3 experiments, but the entire site has 2

"global" experiments (let's say a change to the masthead, and whether to pop
some kind of promotion in a modal) - now you've got 5 on that page. and it's not
uncommon for them all to have 2-4 variations.

○​ Scott Connelly: you could intercept the request and the server response to
modify changes via reverse proxy

○​ Michael Hood: (Also, to be clear to those who don't know me well: I'm not trying
to shoot down any ideas! These are all great considerations. just adding
proprietary context I might have from working with big users A/B tests, and walls I
ran into.)

○​ Scott Connelly: No optimizely moves the script to the CDN

○​ Michael Hood: @Scott yes that's how Optimizely's web product works, I meant
what we prototyped internally that was never productized :)

How client-side A/B testing works - Optimizely - Greeshma
Yellareddy

●​ Greeshma: Here to present how Optimizely implements A/B testing
●​ … In addition to previous benefits, short lived experiments can be done much faster

without engineering input
●​ … Personalization - Using third-party integrations, if someone is from Microsoft, show

this. These examples make it harder when it comes to server-side experiments.
●​ … Constraints: Has to preserve user experience, flashing can undermine integrity of the

experimentation results. We cannot split the JS without risking it loading after the page is
rendered.

●​ … Another constraint is customers don’t want to deal with nitty gritty details. Zero
knowledge delivery.

●​ … Targeting decisions based on client-side attributes (cookies, IP, geo, device, browser,
query string, URL, DOM, JS condition, Element present, localStorage, etc)

●​
○​ … Experiments that execute on certain DOM changes or JS conditions
○​ … Depend on localStorage for behavior changes (e.g. on 3rd visit)

●​ … How does it work? One JavaScript snippet in the <head> of the website. Marketing
folks can ask engineer to implement once, then perform all experiment changes throught
the WYSIWYG editor

●​ … JS includes all code and data required to run tests (not just framework but the data as
well), so all the experiments and variations

https://docs.google.com/presentation/d/1QwEP4m-EneSYkW1QtD8SN7eAyjxsaobo6XIXMU3tDcU/edit?usp=sharing

●​ … Performance challenges: Code necessary to evaluate is not cheap.
●​ … Can be any number of experiments (5-50+).
●​ … Changes themselves can be very large (non-engineers may not write optimized code)
●​ … Sync JavaScript is required to be effective
●​ … Experiment data changes frequently so JavaScript itself cannot be cached
●​ … CloudFlare Workers gives us a chance to improve our product
●​ … Edge node can execute faster, enables to send down just the minimal amount of

Javascript
●​ … Many visitor attributes can still be done at the edge (IP, etc)
●​ … This is Optimizely Edge, first-party JS snippet loaded sync in the HEAD. Fetches

from CloudFlare Worker CDN. Includes only code to execute in the current context of the
visitor. That also means that there are a few things that cannot be done on the edge.
Some of them can be done using a followup snippet.

●​ … Customers inject a small first-party script to avoid flicker
●​ … 230 KB of JavaScript is now close to 5-10 KB range, execution takes less than 5ms

because it’s just applying
●​ … Inject a follow-on JavaScript snippet asynchronous, for tracking and other use cases

that are not render blocking and can only be done on the client side (SPA related
changes, JS conditions)

●​ … Removes some of the challenges, but there’s still a need to some sync JS loading,
which changed frequently, so cannot be cached.

●​ … Still challenges around Security and evolving browser frameworks/platforms
●​ Yoav: One question from Pat is do we have a sense for how much pain is coming from

A/B testing library plus data versus running client side code.
●​ Patrick: Try to figure out where the source of the pain is. Serving from 3P origin is some

of the pain (SPOF, scheduling and stuff). If we can 1P serve and get it quickly in cache,
how much of the A/B testing goes away, or is there still a lot of work going in the
browser.

●​ Greeshma: I think we have to solve both problems. Serving from 1P reduces download
time, but especially on mobile browsers JS execution time becomes a problem.

●​ … Some of our customers have about 100 experiments, which could be hundreds of
milliseconds to evaluate

●​ … Edge takes all of that out (moves it to the edge)
●​ … Compute time on the edge is faster, and reduces bytes sent to client

Chat conversation
●​ Patrick Meenan: Do we have a sense for how much of the pain is in delivering the A/B

library+configs vs running the client-side code? If it was all still client-side but
same-origin we could keep all of the tooling and logic but would the gains be "enough"?

○​ Michael Hood: Optimizely prototyped this pretty substantially, the combinatorial
explosion still harmed the CDN cache hit rate sufficiently to make it not
worthwhile for the customers operating at the scale that need this

○​ Kenji, Ilya, Tim: +1

○​ Michael Hood: Optimizely has substantial data on delivery vs. execution, perhaps
we could ask Greeshma to share some with the group after

○​ Ilya Grigorik: I'd love to hear more on Tim's earlier comment of poorly
implemented + large JS bundles that execute the transforms. Are there any
low-hanging fruits there?

○​ Greeshma: Optimizely's split between download + execution: Based on
12.5B data points, Download(p50): 52.8ms p75: 250ms JS Execution p50:
109ms p75: 226ms. This is for the non-Edge product

○​ Ilya Grigorik: Super interesting, thanks Greeshma. Based on what you said
earlier, it sounds like the edge product distribution should be significantly lower
for the JS execution? Lower JS bundle, etc? Are we looking at order of
magnitude diff?

○​ Addy Osmani: Would love to see any quantitative data on where we're seeing the
highest perf "cost" (cold fetch + exec A/B testing library? active transformations?
hard to generalize?). Anti-flicker timeouts could obviously be shorter.
Edge-approach seems compelling for shrinking some of the JS bundle size at
least.

○​ Kristofer Baxter: @Greeshma when you say "download" do you mean the entire
network connection including DNS resolution? Or is this purely transfer for
established connections?

○​ Michael Hood: @Kristofer it includes the end-to-end resource timing phases
○​ Greeshma Yellareddy: For edge, p50 for download is 160ms, p75: 237; p50

for execution is 3ms, p75: 9ms
○​ Tim Kadlec: Whew that execution improvement! :)
○​ Greeshma Yellareddy: @kristofer, by download I mean resource timing's duration

metric, which includes everything including DNS, SSL cert etc..
○​ … I might have missed some questions, please @ me if you have any more

questions/request for data about Optimizely's implementation.
●​ Yoav: That list of constraints on client-side only information seems critical for thinking

about this problem space. Thanks for that!
○​ … Would be interesting to get data on how often those "client side only"

constraints are actually used and cannot be replaced with something more
efficient

●​ Andy Davies: Watching the DOM while it's being built leads to a *lot* of Mutation Events
being fired

○​ … Something that more specifically targets DOM nodes would help in my view -
lolhtml's method of using CSS selectors to target DOM nodes might be more
effective

●​ Tim Kadlec: There's been a lot of variance there, as you probably would expect, from org
to org in my experience

○​ Michael Hood: yes, you'd definitely have to segment it by customer. it's hard even
then because the content of the payload is constantly changing.

●​ Andy Davies: Providers to adding User Timing marks for key milestones would be hugely
helpful

○​ Michael Hood: Optimizely adds a couple I believe. I suspect Greeshma would be
amenable to adding your specific requests Andy :)

●​ Kenji Baheux: Wondering about what fraction of Optimizely customers are taking
advantage of this (Performance Edge). Is it free, or does one have to pay for the edge
worker CPU time?

○​ Scott Connelly: upgrade
○​ Michael Hood: It's a paid product, they don't charge for CPU time or anything. It's

a rather inexpensive add-on to their existing product lineup.
○​ Addy Osmani: +1. Curious to hear more about the limitations of Edge-based A/B

testing. Anecdotally I've heard concern about CPU times leading to higher costs
on the customer. Less insight into this for Optimizely.

○​ Michael Hood: The bigger issue is that there is not feature parity, due to the
limitations she mentioned about targeting etc

●​ Scott Connelly: edge based compliant?
○​ Michael Hood: @Scott like PCI or?
○​ Scott Connelly: yes-not sure
○​ Michael Hood: It could be. Optimizely's Edge-based product does not offer PCI

compliance, but that was merely a product decision
●​ Kristofer Baxter: As CWV evolves: Do we also need to solve the concern over the course

of a visit versus an individual document visit?
○​ Ilya Grigorik: @Kristofer: yes. :)
○​ Ishan Anand: @kristofer are you referring to how SPAs are treated by CWV? or

for all sites in general (non SPAs as well) ?
○​ Kristofer Baxter: Yes, all sites independent of technologies used by the domain.

●​ Andy Davies: Testing page-to-page flows on sites with anti-flicker snippets the blank
screens are noticeable (often 1-2 secs)

●​ Kenji Baheux: Wondering if A/B solutions do anything fancy for subsequent navigations,
I assume that the A/B selection would more or less result in the same outcomes but
maybe not. Are there any optimizations done, if not should there be?

○​ Michael Hood: @Kenji depends if you mean SPA or non-SPA
○​ Kenji Baheux: non-SPA
○​ Michael Hood: Optimizely doesn't do any optimizations in that case, then. It

doesn't know if the payload (experiments, targeting) changed between page
navigations, so things need to be re-evaluated. It just relies on the fact that the
bucketing decisions will be the same (consistent hashing on an ID in a first-party
cookie). Optimizations could be done here, yeah.

○​ Andy Davies: VWO generates a unique script for each page in a non-SPA case
○​ Andrew Galloni: Subsequent navigations or any event data is more part of the

customer experience suite of products that decide the best next interaction or
image to show.

Google Optimize - Dimitris Dimitropoulos - Google Optimize
●​ Dimitris: Google Optimize launched in July 2016
●​ … Google Optimize also provides server-side experiments, but we’ll cover just

Client-side today
●​ … Marketing and UX improvements efforts do matter a lot to performance of the site
●​ … Finding solutions to improve sites is better for the site and for users
●​ … Usage - 35% of top sites
●​ … How things works - marketer uses the editor to produce changes in the page, served

in script to the browser to implement personalization.
●​ … Editor needs some knowledge, but there’s always a range of skills out there, and this

tool can help bypass the bureaucracy
●​ … Targeting: URL and Audience based
●​ … Due to referrer policies the page’s URL can’t be reliably detected server-side (for a 3P

script)
●​ … URL fragment also used for SPA sites
●​ … Abilities of a marketer to ask developer to only experiment in a particular city, they

value the flexibility of the tool
●​ … Why do we need to go to the client for the targeting? Some signals are only in the

client, integration with other 3P systems. Also is the user logged in?
●​ … Users install snippet in whole site
●​ … Many users prefer flexibility of installing via Google Tag Manager. Suboptimal

situation from a performance point of view.
●​ … Make experiments in the Optimize UI and editor
●​ … Guide users to help limit harm to sites.
●​ … The script started as async, a module of Google Analytics. We now offer both async

and sync. No dependency to Analytics.
●​ … Flicker: Use this term to refer to “flash of wrong content” -- Re-rendering is often

unavoidable.
●​ … Where user sees wrong content and it changes
●​ … Once Optimize container loads, it adds CSS to hide (via opacity) all future unloaded

content that will have to be changed. Also has the ability to hide only parts of the page.
●​ … But if the page renders first, there’s nothing that can be done
●​ … For SPAs you would hope developers would have more agency to perform page

changes, but there’s still a need from marketers to perform page changes
●​ … How many experiments? Optimize free allows for up to 5 experiments running, that’s

one of the reasons we don’t see a lot of parallel experiments. Users used to do few
things with high impact.

○​ … Story: targeted a feature for COVID banners, with different banners based on
geo. Difficult through the development process, but easy with personalization
solutions.

●​ … See very often that businesses have inactive installs, where they don’t run
experiments. Installing with Tag Manager gives them the flexibility to disable that.

https://docs.google.com/presentation/d/1M414_RHF--1IVyYb6V_9wxCsa-yRO5_HGsIvkY__sas/edit?usp=sharing

●​ Yoav: One question regarding usage, with GTM is due to convenience, but adds extra
hop or two to actually load the render-blocking content. Are users using GTM aware of
the cost that the convenience adds? Or are they not aware of implications?

●​ Dimitris: There’s a range, we try to warn in our documentation. Users may pay the cost
of GTM if they’re just running the experiment for a week, then being able to remove it.
So there’s a tradeoff there. We do try to warn them that they’ll get better performance
using it directly.

●​ Kenji: Sometimes people don’t run experiments for a long time, though they may have
machinery in place. Can 3P respond with 204 No Content but a revalidate, where they
could pick up new experiments when they run.

●​ Dimitris: Might make sense. Some details that have prevented us from doing that.
Empty script is small, 20 KB or so. Might get more users wondering why it doesn’t work
as they expect.

●​ … Also have an API client-side to know if experiments are running. Might be good for
SPAs where experiments aren’t on the first rendering path.

Chat conversation
●​ Michael Hood: Interesting that Optimize puts an actual upper limit on file size. Optimizely

probably should do that, haha.
●​ Kenji Baheux: Does optimizely also do the "single JS" approach (IIUC, this is packing all

the experiments in one response)? Maybe that only works if the payload has a
reasonable max size though.

○​ Michael Hood: It does.
○​ Paul Bernier: @Kenji there are scenarios where the experience is dependent on

mid-session actions (e.g. log-in, add to cart, ...). You often need additional logic
and evaluation - past the first page load - to determine what the experience
should be. This is not necessarily used to determine which variant to show, but to
determine which Test user should fall in.

○​ Michael Hood: The payload grows to whatever size the customer grows it to..
(empty is around 100kB gzipped)

○​ Kenji Baheux: why is empty so big?
○​ Michael Hood: Insufficiently granular engine for change application, event

dispatching, etc.
●​ Kenji Baheux: if there are expensive things (bytes, time) that the engine does because of

gaps in the platform, we would love to learn more details.
○​ Michael Hood: Greeshma is the expert on that, would highly encourage you two

to talk :)
●​ CP Clermont: Common problem: Anti-flicker snippet is there even if no experiments are

running.
○​ Nathan Tate: The anti-flicker snippet must be installed directly on the page, you

don't want that loading asynchronously otherwise it defeats the purpose
○​ ...Which naturally conflicts with the desire to know whether or not there's an

experiment running

○​ CP Clermont: Indeed. I only want to highlight that we're ill equipped since usually
the experiment definition is defined on the A/B testing platform, whereas the
HTML is being served from another.

○​ Michael Hood: you just need another anti-flicker snippet for that one... /s
○​ CP Clermont: There's no good way of conditionally having an anti-flicker snippet

if and only if an experiment is running on that page.
○​ Nathan Tate: Agreed. I'd be interested in a solution to that if possible, but some

kind of network request would need to be made somewhere
○​ Andy Davies: I think there's a question of how often the anti-flicker snippet is

actually needed even when there are experiments running
○​ CP Clermont: @Andy +1
○​ Andy Davies: @CP looks like Gymshark have removed their anti-flicker snippet

●​ Kenji Baheux: On the "no experiments" running for some time, I'd love to know if the
runtime script could update its response with a noop response + S-W-R to revive it when
an experiment becomes available.

○​ Michael Hood: @Kenji it's pretty rare that someone has *no* experiments
running, in my experience. having some with targeting conditions that ~never fire
is more common, which can't be known until runtime, unfortunately

○​ CP Clermont: @Michael. But usually the snippet is installed on all pages. So
whether you have experiments or not might be irrelevant. It's more about are you
running experiments on _the current page?_

○​ Michael Hood: @CP Yes if it could be detected. That's how the Optimizely Edge
product works. Serves like a couple hundred bytes or less if there's nothing on
that page.

○​ CP Clermont: @Michael that is pretty great.
●​ Michal Mocny: To anyone who has used such products: What exactly do the

WYSIWGYG editors look like? Is it like devtools editor where you can manipulate
dom/css? Is it specific to WYSIWYG editors for the original site impl/CMS?

○​ Peter Perlepes: @Michal They are more like a mix, you could rearrange stuff
even by drag & drop. But you can even modify the innerHTML of any element,
add extra CSS & JS on top. More oriented to a webmaster I would say

○​ Michael Hood: +1 what @Peter said - I'd add that some have functionality that
allows developers to create reusable components for less technical operators of
the software. "Widgets" to deploy things like modals, etc.

Client-side A/B testing outside the client?? - Yoav Weiss
●​ Yoav: As we heard, client side A/B testing has tradeoffs. Can we as an industry do

better, provide the benefits without the downsides?
●​ … Goals: Enable code-free experimentation
●​ … Enable the HTML to be transformed before reaching the browser
●​ … cacheing - When running multiple server-side experiments, we’re running risk of

exploding the caching granularity and forcing caches to save a copy of transformed
HTML per experiment

https://docs.google.com/presentation/d/1rmVcHJtfJhFvASGfsbPjwguW7kP9D8Le0YW6zx_vk-0/edit#slide=id.p

●​ … Either we abandon caching altogether, or we have caches for each experiments
which results in reduced hit rates

●​ … Would like CDN flexibility, Greeshma talked about Edge side delivery, but if they
depend on a single CDN that limits them from moving or using multi-CDN. This can
reduce adoption.

●​ … Would like a solution that works for all CDNs or no CDN at all
●​ … Performance-oriented experimentation. Performance impact can throw off whatever

results you get. Andy Davies wrote a blog post on such experimentation, but frameworks
don’t give you that ability.

●​ … Two places we could perform transformations before they get to the user: at Edge, or
before the HTML leaves the origin’s network, but after it leaves its caches

●​
●​ … Option 1: Experiment proxy on origin network. Sub-options for each A/B framework

implements, or a common code-base with plugins, or a common transformation
language that a single proxy could apply at the origin

○​ … Pros: Low-level of industry consensus, doesn’t require a CDN.
○​ … Cons: Past experience (Mod_PageSpeed) is not encouraging, per-site

install/maintenance costs
●​ … Option 2: CDN transformation service. Either provide off-the-shelf per-framework

implementation for edge-side transformation, or for a common transformation language
●​ … Pros: CDNs can facilitate installation, cost is shared.

○​ Cons: Requires industry consensus (transformation language), per-site maint
const (transferred to customers), per-site activation (slow adoption curve)

●​ … Alternatives: Can the browser help current frameworks?
○​ Render-blocking but not parser-blocking script loading?
○​ Primitives for client-side HTML transformation (that worked on first load).

○​ Could use network-wide solution as a serviceworker, but not viable because
first-load doesn’t have SW active

●​ … Options are not necessarily mutually exclusive
●​ … Some transformations will always be on client side because there’s some info the

client has (and we don’t want to send to the server)
●​ … Work towards both of those solutions
●​ … Brainstorm!
●​ … Questions to A/B providers: If there is a single transformation language that A/B

testing frameworks emit, that can be run either client-side or edge/origin network, is that
something that would be feasible/appealing or could this work?

●​ Greeshma: We had a hack project at Optimizely, for CMS. Created a language with
CMSs could hook into and create their own implementation. But you still had WYSIWYG
to make changes. It’s a possibility, but getting adoption would be biggest problem. Most
customers don’t have the resources to create specific server side implementations.

●​ Dimitris: A standard language: Most tools have primitives that are equivalent I would
guess, if that language would be something that the browser implemnts, that would
always work, and then in some cases could also be done server side. There are other
cases where you don’t really have the content on the server, but maybe it’s something
that can work.

●​ Ishan: For a common transformation language, you want it to work flexibly across client
and server and across SPA lifecycle. We have a lot of clients that need A/B testing in the
context of SPAs. Our clients are IT dev teams, so it may be easier for them, but we still
want a WYSIWYG solution. Intuition is there’s not one solution that solves all. Might be
useful to prioritize.

●​ Paul: RE “Is this crazy” I don’t think it is. I think it goes back to the idea of compromise,
between ease-of-use, comes with higher performance cost, or you go with performance
and you’re typically on the developer side of things. I think it’s hard to rule out client-side
techniques, to manipulate or create the experience. You can manipulate the HTML
before it gets to the browser - in our case it’s regex on the HTML source before it
reaches the browser. One thing is to use JS to modify an existing page, and it’s
something else to swap the JS (HTML?) before it gets to the browser. A lot of gain in
terms of performance, while maintaining ease of use. There’s a lot there.

●​ … The friction we see is you’re now talking to IT departments to get it in place, where the
end-user (consumer) is more on the marketing side.

●​ Yoav: You’re applying Regex on JavaScript is that on edge/origin/browser with hacks?
●​ Paul: Could be either-or -- anything in the flow of traffic (HTML, XML, JSON). Either

on-prem (right after origin cache). Or it’s a private cloud or public cloud and you
interface directly with CDN, but you’re modifying the source of the page (rather than
modify JS).

●​ Michael: Constraints with having a transformation language, I agree and also wonder if
there are a few primitives supported but have an escape hatch for running custom
JavaScript. Multiple sides of support needed here. CMS transforms. You also need
customers that just need to paste in CSS or JavaScript, and not providing that would
result in adoption issues. Providing an escape hatch that enables you to run arbitrary

CSS or JS transforms would be good. Could be used to mitigate shortcomings, but point
to happy path towards more performant things. Also helps gather use-cases for what
transforms to support.

●​ Yoav: In terms of what can browsers do to help. Something else browsers can do to
load faster, consume less CPU, minimize towards zero the cost.

●​ … How do current implementations work? Are you registering MutationObservers and
when DOM node is added you’re modifying them?

●​ Greeshma: Yes, MO is registered and you mark it as already changed so you don’t
re-apply. Before that, it was polling for an element to be present.

●​ Michael: Are there additional lifecycle hooks that the browser could provide that could
allow for mechanical simplicity where A/B test could apply things at times where it’s more
agreeable to the page?

●​ Greeshma: A few hooks, tracking itself when after everything is done. Most cases
tracking is async but it can happen at a very critical event.

●​ Yoav: On that front, if we were able to defer scripts and use perf APIs with buffered flags,
is that sufficient?

●​ Greeshma: Deferred is too early for tracking sometimes even. It’s not that critical. Use
Perf APIS to find LongTasks. It doesn’t seem like a clean way. There should be a cleaner
way to load those scripts.

●​ Michael: Question for browser folks: We talked about content-addressable JavaScript,
inline snippets, there are discussions are around proxies and MITM rewriting. There’s a
compromise in the case where a proxy injects the content especially in the SPA case
where you can’t do the transformations yet. Problem with that is there’s some tipping
point where putting it inline is worse that a script src tag from a CDN. To me a cacheable
script could help parsing and execution as well as the bytes itself. Could the browser
take into account hints that JS content provided on that front?

●​ Yoav: Currently a proposal for Web Shared libraries that can help with
content-addressable content delivery. Main problem we haven’t solved yet are the
privacy implications of having that resource in cache. Cached libraries can reveal
information about the user, or the collection of them can be used as fingerprinting
surface.

●​ … We've been thinking about the list of things that can be shared and prefetching those,
so all users will have them in their caches in some sense. Not a trivial problem, but
would help reduce download sizes here.

●​ Dimitris: Idea of some sort of transformation language. If browsers start implementing
that - CMS should have been playing bigger role in A/B experimentation story. There is
no standard language for A/B tools to provide, so having one could help.

●​ … Persistence of experiment variance for users, most are using cookies. Raises
questions about consent. Maybe it makes sense for browsers to help in that area? So
we don’t have to touch cookie or localStorage for purposes of experimentation.

●​ Yoav: If you wanted an arbitrary number of bits for variant ID, it could look an awful lot
like a cookie.

●​ Kristofer: We keep talking about a split between different responsibilities. Marketing vs
engineering. Is there a browser based solution that could take advantage of the different

groups. Side-channel attached to HTML that applies as the document is streaming. This
would allow those groups to work independently and would not require client-side JS to
execute.

●​ … Also, we need to decide what are we trying to solve. Keep mixing concerns: solving
for SPA, MPA, JAMstack. Can we limit the solution space to solve for a subset of those.
Maybe won’t apply to SPA, which tends to need more framework knowledge, pretty
complex. MPA solutions may be more simple, impact wider audiences faster.

●​ Yoav: Regarding first thought, sounds like common transformation language
implemented in the browser. Is that what you had in mind?

●​ Kris: The idea is to reduce the JS impact, and enable the browser to implement
mutations in C++

●​ Yoav: Browser would block rendering on this transformation language, but execution
would be faster than arbitrary JavaScript, though JS could be added for things not
accomplished by this. Interesting!

●​ Kristofer: We’re using already established web tech, MutationObserver output.
●​ Dimitris: For things only working on server-side, there’s a big variety in the dynamic

portions of sites, where SPAs are an extreme example. I did a lookup of a big sample of
sites, large percentage of them are changing DOM in one way or another (social button,
re-find your cart). This is a problem from A/B tools perspective, as you can’t tell users
that they can change some parts because they are server-side generated but not other
parts that are client-side generated, and often the tools don’t even know which is which.

●​ Kristofer: Idea is transformation language is implemented in the browser and applied on
mutations as well, so can apply to dynamic parts. Probably problems with that but it’ll be
an interesting space to pursue, because it will allow the browser to do work but be
independent of backend technical implementation.

●​ Dimitris: Sounds great!
●​ Dave: How would this proposed transformation language differ from CSS, because we’re

already doing things like media-queries and responsive design.
●​ Kristofer: One example is how could CSS change the attribute of a custom element? An

example I see frequently
●​ Dave: We could have elements hidden or shown based on cohort. Same way CSS does

media queries but just based on a cookie.
●​ Yoav: I think DOM transformation are key to what people are trying to do and it’s not a

capability we want to give CSS
●​ Paul: CSS I think would cover some of the use cases around look and feel, styling, but

when you get into functionality the solutions go into DOM manipulation
●​ Ryosuke: Not possible to add a new button somewhere with CSS. XSLT maybe it could

do that.
●​ … Another thing missing is an async script that delays initial painting. The fact that

scripts are doing it manually : avoid blocking parsing yet apply CSS to avoid painting.
Seems like an API we could add and the browser could decide the script is taking too
long, let’s not wait for them. One example shown was a page broken because the script
took too long to load.

●​ Yoav: Agree. The only expectation is that I don’t think async is correct primitive, which is
race-y. Fact that people resort to blocking scripts is a failure that doesn’t seem too hard
to correct.

●​ Ryosuke: We need something that’s more async than sync but delays painting. What
the exact timing is.

●​ Yoav: Conclusion: Revive XSLT </sarcasm>
●​ … Would like to develop transformation language further
●​ … Kris, you mentioned MutationObserver output. Is that a thing?
●​ Kristofer: It’s the way the tool that we use work. We gather mutations and then apply the

results on the client. May be overly chatty to adopt as is.
●​ Yoav: Would be interesting to study that. Is that part of the AMP project?
●​ Kristofer: The AMP project can use this from AMP caches as part of its experimentation

framework
●​ Yoav: Is it open source?
●​ Kris: Not sure
●​ Kenji: Idea that you have a blocking script that is considered optional, useful to have a

way for developer to say it should not take more than X milliseconds where then the
browser would give up.

●​ Yoav: Thoughts on script loading that are not super baked. Today, developers need to
say how script is meant to be loading where blocking/async are suboptimal and defer
gives you a single point in time.

●​ … IMO, what we need are more options for defer semantics where browser can still
render but not block parsing, or execute after first paint, or execute after onload on idle
time. Move from “what” semantics to “when” and give people more control over the
“when” and browsers can have more flexibility to when/how they’re loading for them to
be ready on time.

●​ … Would allow for A/B testing to be render-blocking async with timeout
●​ Kristofer: One other part not covered is what signal of variants to put a person in when

they’re on the page. Sounds like this is something done in-script. If we’re delivering
experiments through a “mutation” payload, it would need to support bucketing users into
different experiments.

●​ Yoav: Talking about client-side variants?
●​ Kristofer: Mostly client-side. Currently there a script doeing mutation work. if the browser

takes over that work, it needs to make decisions on which experiment the user belongs
to. How would that be articulate?

●​ Yoav: I’m guessing a lot of that is cookie-based, as well as additional checks done on the
client.

●​ Greeshma: Targeting is done cookie based, but decisions are done via JavaScript.
Transformation would purely be client side. Would require some JavaScript for tracking
purposes.

●​ Yoav: Goal is not necessarily to eliminate JavaScript altogether, but to remove HTML
transformation and move that to a DSL. But if we need client-side code to decide which
of the transformations should be applied. Potentially we could define buckets in

transformation language, and then client-side JavaScript just says which bucket is
picked.

●​ Greeshma: I would say that is not significantly less code, it’s the evaluation logic that
takes the most time. So application of changes while slow, is not the biggest factor.
Quoted numbers in chat RE application of changes in the Edge case, it takes only 5 ms,
compared to 250ms.

●​ Yoav: Can you clarify evaluation logic?
●​ Greeshma: Evaluation logic figures out which URL the visitor comes from, how many

experiments are defined for this, if valid, which experiment does the user fall into. Then
once you define that, you apply the logic.

●​ Yoav: That’s the part that consumes the most on the client, and won’t change in the
“transformation language” case.

●​ … Is there a way to delegate that logic to serving infrastructure. Assuming you had a list
of client-side-only criteria. If someone doesn’t use them, server can decide on variant at
serving time instead of the client

●​ Greeshma: PerformanceEdge kinda does that. Lacks certain attributes like localStorage
(behavioral).

●​ Yoav: Do you know/can share how much pushback can you have from customers for not
supporting client-only logic in those scenarios

●​ Greeshma: Hadn’t supported SPA features (URL changed and DOM conditions)and that
had a lot of pushback, since the major pushback is security (and we don’t support PCI
on edge).

●​ … Other features - not a whole lot, any customer who cares about performance is willing
to make that change. On landing page they implement Edge, on other pages they use
traditional Optimizely. Most customers have been receptive. We do charge for it, so not
all customers are moving to it.

●​ Yoav: Customers biased towards that solution are willing to tradeoff losing that
customization for the performance

●​ Andy: Going back to Melissa’s presentation and the business people creating these
experiments, but we need to persuade testing providers to expose data about the impact
of those experiments at runtime. So they know what impact their actions are having on
their visitor. Give data to provide more informed decisions.

●​ … Interesting to understand how people doing edge-based testing (with Fast, Cloudflare,
Akamai) are getting along and what restrictions they’re finding from that approach.

●​ Yoav: Regarding the first point, it may be hard to get data without turning off A/B test
completely

●​ Andy: I’ve helped customers instrument this
●​ Kenji: Could A/B providers have standardized UserTiming?
●​ … Better if we had a common language
●​ Nic: Maybe we can address some of the limitations of FCP/LCP to make sure the UX is

reflected in the RUM data?
●​ Yoav: So if the first paint is followed by a blank page paint, maybe we should ignore the

first one? Interesting!
●​ Michael: Thanks to Yoav for getting us together today

●​ Ishan: In the realm of A/B testing and you want to preserve caching, no standard way for
edge to cache for specific sub-cookie in cookie string. So having a separate header for
experiments would help. May make that type of splitting a lot more plausible to get better
cache hit rates.

●​ Yoav: There was a Key proposal from mnot that might have helped over cookies, but
that’s no longer a thing

●​ Kenji: Idea to have browser avoid painting of specific elements that would be affected by
experimentation. Another thing we can explore.

Chat conversation

Avoid blocking when no experiments are running
●​ Ilya Grigorik: One question that came up earlier: how to avoid loading the blocking

snippets if/when there are no experiments running? Any creative solutions?
○​ Michal Mocny: First one to adopt it get the perf wins.
○​ Greeshma Yellareddy: @ilya That's something CDN could help with. If there was

a CDN pragma that could say easily, don't load this, would that suffice as a
solution

○​ Michal Mocny: @Ilya Inline script that picks a random number to segment
population out of experiments altogether? Otherwise, are we just asking for
server segmentation?

○​ Colin Bendell: is there a possibility of a Server-Hint that be standardized so that a
platform like Shopify could utilize to noop the ab script injection?

○​ Ilya Grigorik: @Greeshma: not sure I follow, that seems reversed? The question
is not "don't load please" but "if there are no experiments, please don't inject
yourself".

○​ Kenji Baheux: @ilya I think the problem is that the script/snippet is included by
the customer, either the CDN should remove it based on a "no experiment
running, remove me" signal obtained async or, as I suggested, the script itself
could respond with a "204 and a stale-while-revalidate: 1 day" so that it can
auto-update itself when a new

○​ Ilya Grigorik: Right, the mechanics of that is what I'm curious about.. CDN/edge
node needs to know that there are no active experiments: what is that signaling
mechanism?

○​ Kenji Baheux: needs a way to know the backend endpoint, maybe it could just be
fetching the script and seeing a 204 with some cache-control headers to know
when to recheck.

○​ Ilya Grigorik: @Greeshma, @Dimitris: would love to hear your take on this. Is this
plausible in practice?

○​ ...From what I heard today, sounds like it *may* be possible in case of Optimizely
Edge version, but afaik, it doesn't work with other implementations?

○​ Patrick Meenan: Maybe a hint for the prioritization of some kind ;-)
○​ Kenji Baheux: "priority hints" but better (to be defiined).

○​ Greeshma: @Ilya, even with Optimizely Edge, it's not possible from Optimizely's
end. It will have to be the customer that implements something like it. What is
easier for Optimizely or similar vendor, is to return an empty file.

○​ Ilya Grigorik: @Greeshma: interesting. If one wanted to implement the check at
the edge, how would go about that today? I can hit Optimizely's... API to query
status? Auth?

○​ CP Clermont: RE: knowing if there's an experiment running on a page for
anti-flicker snippets. I don't think there's a way out of having the origin being
aware of the A/B testing platform.

○​ … Unless... it was possible for the anti-flicker snippet to know inline whether or
not it should apply itself. Maybe with a resource hint? But then again, the origin
would still need to be platform aware, because the origin would need to send the
header.

○​ ... + the CDN approach makes it so the A/B testing platform is part of the origin.
Which might not work for reasons laid down earlier.

○​
○​ Greeshma Yellareddy: @Ilya: There is no one API for Optimizely currently. But

Customer's experiment data is currently available on our CDN, because that's
part of the code that is injected as part of the JS. So, auth should be no problem

○​ Ilya Grigorik: @Greeshma: I see, replaying just to make sure I grok it.. Given
some customer ID in the current snippet, the edge can fetch experiment data
from a well-known URL and check if it's empty. If so, ... X, otherwise, Y.

○​ Greeshma Yellareddy: @Ilya: Yes. That's pretty much what edge does. Fetch the
data from a well-defined URL

Solution adoption
●​ Patrick Hamann: I don't see how our past experience from Mod Pagespeed is

comparable in this instance.
○​ Michael Hood: I think Yoav was just comparing the experience of getting

technology changes in folks origin stacks
○​ Ishan Anand: @Patrick i took it to mean he's saying in terms of adoption

●​ Nathan Tate: any solution that requires a client to "install" something correctly is a major
pain-point.

Client Side HTML transformation
●​ Ishan Anand: XSLT was a client side & server side transformation language. it even had

a point in the page lifecycle though Chrome removed it.
●​ Paul Bernier: SiteSpect essentially works like solution #1 and #2, leveraging a proxy to

transform a page before it hits the browser. On-prem (on origin network), or
Public/Private cloud, CDN integrated.

●​ Greeshma Yellareddy: I am curious about primitives for client-side HTML transformation.
This could also help solve transformations in SPA frameworks, which is a big problem for
A/B testing

○​ Ishan Anand: @Greeshma we've done a lot on that. XSLT, Tritium, Cheerio, etc.
(eg.
https://www.smashingmagazine.com/2014/02/applying-xsl-transformations-to-res
ponsive-web-design/)

○​ Ishan Anand: client side HTML transformation frameworks that is
●​ Dave Pifke: I wonder if there's value in some sort of CSS "cohort" query, where the user

is segmented via a header, cookie, or local storage, and the CSS controls element
display based on it.

○​ Dave Pifke: I think CDNs would have an easier time filtering unused elements out
of a page via CSS queries on the edge than via running Javascript on the edge.

○​ Carine Bournez: CSS does not really transform the DOM. XSLT does
○​ Michal Mocny: Change custom elements to store attribute values as css

variables? :P
○​ Carine Bournez: sounds very hacky to me
○​ Michal Mocny: CSS-data-binding. Very hacky.
○​ Carine Bournez: Isn't it a Pipeline language that's needed then?

●​ Kristofer Baxter: Q: Is there a smaller surface area (reduced type of transformation
capabilities) that would cover a high percentage of the real world usecases but has much
lower cost on the client?

●​ Kristofer Baxter: Q: On standardization, could there be a Web Standard that replays the
output of a MutationObserver? (attached to the network request for the document to
maintain separation of teams we heard about several times)

●​ Ishan Anand: @kristofer that's very interesting. would like to know more if there are
resources about that in AMP

Instrumenting cost of A/B testing
●​ Colin Bendell: Another question related to the CWV discussion - we would love to have a

consistent way to instrument the perf cost of the AB injected experiment. Ideally this
would help us expose the cost of the experiments as implemented in RUM based tools

●​ Nathan Tate: +1 Colin. A simple way of measuring the perf cost would be really useful.
experiment is detected.

●​ Addy Osmani: Has this suggestion (exposing perf "cost" of tests in an understandable
way during runtime) been considered by Optimize or Optimizely before?

○​ Greeshma Yellareddy: It's hard to do from within Optimizely. WE talk a lot about
performance, we have our own RUM infrastructure. But to get the best impact,
they'd have to do something like server side testing with and without Optimizely

○​ Colin Bendell: consistent user-timing nomenclature?
○​ Greeshma Yellareddy: Yeah, standardizing would help. We already have user

timings in Optimizely.
○​ Addy Osmani: Yep. Extremely manual. A common layer would be great.
○​ Colin Bendell: and a common definition of what is being measured

Anti-flicker/better JS loading support
●​ Michael Hood: render-blocking but not parser-blocking is very interesting.

https://www.smashingmagazine.com/2014/02/applying-xsl-transformations-to-responsive-web-design/
https://www.smashingmagazine.com/2014/02/applying-xsl-transformations-to-responsive-web-design/

○​ Tim Kadlec: ^^ That's kinda what Firefox does, right? Parses the HTML in the
background, discards if the script messes with it (something like that at least....)

●​ Kenji Baheux: I can't find any trace of it anymore but at one point we were considering
providing proper anti-flicker support with a way to hold the first paint via JS (modulo
reasonable timeout). Are there any needs on the anti-flicker front?

○​ Michael Hood: Proper support for holding paint, especially if you could optionally
scope it to a container element, would be pretty nice.

○​ Kenji Baheux: Element based would be nice. Especially, if the A/B solution had a
way to quickly know that only Elements X,Y,Z might be impacted.

●​ Patrick Meenan: I was actually thinking the opposite. an "optional" blocking script with a
timeout would avoid the async/opacity dance but doesn't necessarily help perf

●​ Kenji Baheux: On the timeout idea for blocking but optional things, I have something to
float. The other use case I have in mind is fonts (stylesheet => fonts chain) where you
might be willing to wait for up to X but could do without.

●​ Dave Pifke: Load timeout as well as execution timeout attributes for scripts would be
awesome.

○​ Kenji Baheux: execution timeout seems a bit harder to handle though: half done
changes/... ?

○​ Greeshma Yellareddy: Execution timeout would be harder to do from browser
perspective, since it can leave the script in a bad state

○​ Patrick Meenan: Execution timeout might be hard to pull off since they can't be
rolled-back. Stopping execution arbitrarily in the middle of execution could be
bad

○​ Bing Chen: Timeout on the loading only. If execution is slow, it should be
detected in preview.

○​ Addy Osmani: +1. Now that V8 tackles a lot more parse + compilation +
processing work on background threads, setting a cut-off point without causing
breakage would be pretty hard. Can't undo easily either.

○​ Kenji Baheux: Load timeout wise, seems that there is interest. I will draft
something and share back.

○​ Addy Osmani: <script optional timeout=N> may be easier to tackle :)
○​ Andy Davies: Other thing with a timeout is you'd want to know if the script timed

out when analysing the tests results
○​ Greeshma Yellareddy: Yes, having analytics about script time out would be

crucial
○​ Kenji Baheux: makes sense, thanks!
○​ Carine Bournez: @addy that would be the easiest, but more semantics on script

attribute may be better
○​ Michal Mocny: optional scripts probably need an inline fallback? In the case of

a/b, presumably the fallback is to show what's there?
○​ Patrick Meenan: Would onerror/onload be enough for the fallback of a timeout?
○​ Kenji Baheux: I wouldn't say need as in required but that's a neat touch (inline

and/or onerror).

○​ Michal Mocny: @kenji Yeah I guess the "4s timeout" fallback today isn't
implemented with onerror but just global state and conventions?

○​ Addy Osmani: I like the idea of treating timeouts as just an error (modulo unsure
if A/B testing libraries + their customers would need additional signals it was
specifically because of a timeout for RUM needs...)

○​ Michal Mocny: a-b test itself is a "long-task"?
○​ Michael Hood: @Addy there is already a 'survivor bias' of sorts for the providers'

RUM data. a signal raised to customers on-page RUM would be useful. this
already exists for XHR

○​ ... onBigJSStateChange()? heh
○​ Kenji Baheux: I would like to have an option that avoids retagging (updating the

snippet). I was thinking that there could be an HTTP based option which vendors
could use to specify what they believe is a reasonable timeout. This would be
cached/reused perhaps with the cache-control semantics or something specific to
that header. (HTTP purists might tell me that I'm crazy though)

Edge-side experimentation
●​ Andy Davies: @Patrick from Fastly or @Andrew from Cloudflare can you comment on

how customers are experimenting at the edge
○​ Andrew Galloni: @andy from my experience I've seen lots of performance related

experiments to prototype perf improvements , similar to the ones you have tried.
Such as moving 3rd party to 1st party, deferring scripts without having to change
code on the origin. Trying different image formats etc. There is a lot of regional
personalisation.

Other
●​ Michael Hood: *Tons* of unanswered hypotheses around performance impact on UX,

and performance impact of FE approaches.
●​ Carine Bournez: AMP-style A/B testing?

○​ Ishan Anand: @Carine you mean the AMP Cache splits the traffic? or how AMP
does it now? (show/hide) or did you mean something else?

○​ Carine Bournez: @Ishan I meant how AMP works now
●​ Michael Hood: The consent issue is a great callout Dimitris - it causes a lot of inefficient

tag manager based loading approaches. (response to this)
○​ Carine Bournez: +1, we'd need to triage the use cases

●​ Michal Mocny: I think I missed it, what is "PCI"? (was that the right acronym)
○​ Andy Davies: https://www.pcisecuritystandards.org/
○​ Ishan Anand: standard you need to follow to accept credit cards on a website
○​ Melissa Mitchell: PCI is a security standard for a lot of finance transactions.
○​ Michal Mocny: tyvm

●​ Patrick Meenan: I can't remember the name of the CSP-like performance header to
block slow ads, etc. If it's still a thing, could it be extended to specify scripts for specific
origins? Still requires adding a header but it's outside of the markup

○​ Patrick Meenan: Ahh, Feature policy

https://www.pcisecuritystandards.org/

●​ Dave Pifke: Extend NEL for slow loading resources maybe?
●​ Nicolás Peña Moreno: I believe I changed the impl already. Is there an easy way to test?

(referring to this)

	Logistics
	When
	Where
	Attendees
	Reading material

	Agenda
	Conclusions
	Recordings
	Minutes
	Intro
	Client-Side A/B Testing & Performance - Tim Kadlec
	Chat conversation

	Real life problems with client-side A/B testing - Melissa Mitchell
	Chat conversation

	How client-side A/B testing works - Optimizely - Greeshma Yellareddy
	Chat conversation

	Google Optimize - Dimitris Dimitropoulos - Google Optimize
	Chat conversation

	Client-side A/B testing outside the client?? - Yoav Weiss
	Chat conversation
	Avoid blocking when no experiments are running
	Solution adoption
	Client Side HTML transformation
	Instrumenting cost of A/B testing
	Anti-flicker/better JS loading support
	Edge-side experimentation
	Other

