Break on Trusted Type violation
(including report-only mode)

Attention: Externally visible, non-confidential
Authors: alcastano@google.com, sigurds@chromium.org
Status: Done

Created: 2020-10-27 / Last Updated: 2020-11-19

One-page overview

Summary

For debugging and fixing trusted type violations, it is useful to inspect the JavaScript
environment at the violation site. For this purpose, we are proposing a new DOM breakpoint
category: break on Trusted Type violation. This breakpoint triggers whenever a specific trusted
type violation occurs, independent of whether CSP is in report-only or enforced mode (note that
an exception triggers in enforced mode).

Platforms
Desktop

Team
alcastano@google.com, sigurds@chromium.org

Tracking issue
h Jlcr m/1142804

Value proposition

This feature helps improve the debugging story for Trusted Types by making it easier for
developers to figure out what went wrong and why by leveraging DevTools' JavaScript debugging
features.

Code affected

DevTools front-end, DOM Debugger, Chrome DevTools Protocol, V8 PausedReasone nums and
Trusted Types implementation in the back-end.

mailto:alcastano@google.com
mailto:sigurds@chromium.org
mailto:alcastano@google.com
mailto:sigurds@chromium.org
https://crbug.com/1142804

Signed off by

Name

Write (not) LGTM in this row

bmeurer@chromium.org

vogelheim@chromium.org

sigurds@chromium.org

LGTM

koto@google.com

caseg@chromium.org

yangguo@chromium.org

Core user stories

e As a developer, | want to break on the first Trusted Type violation that occurs in

report-only mode

e As a developer, | want to break on the first Trusted Type violation that occurs before the

exception is raised.

e As a developer, when a break occurs due to a Trusted Type violation, | want to know what
type of violation triggered the error.

Preliminary Work

Providing accurate TT violation information

The current backend implementation of Trusted Types does not have a straightforward way of
finding out whether a Trusted Type policy violation occurred, which is fundamental to know in
order to break on Trusted Type violations. Such a limitation already led to some suboptimal
workarounds in the code for detecting whether the violation was due to a duplication.

Therefore, in order to add support for breakpoints on Trusted Violations in a clean way, while
also improving the organization of the existing code, it is required to refactor Trusted Type policy
creation to provide an output enumerator providing accurate information about the exact

violation that occurred, regardless of being report-only or enforced.

CL: https://chromium-review.googlesource.com/c/chromium/src/+/2517061

https://chromium-review.googlesource.com/c/chromium/src/+/2517061

Design

The main goals of this design are to add support for breakpoints on Trusted Type violation in a
way that it integrates seamlessly with the codebase, while making it easily extensible for future
CSP violations that could be useful for setting breakpoints.

We are currently not considering more fine grained conditions such as break on report only
violation as we don't have a good use-case.

Front-end design

The front-end needs to expose the function to set/unset this breakpoint in the Ul. Currently,
there are several sections for different kinds of issues like DOM Breakpoints or Even Listeners
breakpoints. We introduce a new section in the right sidebar for CSP Violations. Currently the
section will only contain Trusted Type violation but in the future it could be easily extended to
contain breakpoints on other CSP or Security violations.

In particular, the Ul follows the same approach as Event Listener having collapsible categories
with breakpoint options inside. In this case, the category is Trusted Type violations and the
options Sink and Policy violations.

Finally, alike the rest of breakpoint types, when a breakpoint is triggered the corresponding
breakpoint item in the category is highlighted and contextual information is added in the right
upper box of the panel.

DevTools - tt-report-only.glitch.me/ - & =

ments Console Sources Network Performance Memory Application » 93 B3 o

wew

[(index) x b~ Tt e O

var script = document.createElement("scripta © Paused on CSP violation
document .body . appendChild({script); i E
var divCustomPolicy = document.getElementBy Trusted Type Sink Vig
var divDefaultPolicy = document.getElementE

» Watch
Properly escaped HTML, ScriptURL » C
) all Stack
divCustomPolicy.innerHTML = generalPolicy.c
» Scope

script.src = generalPolicy.createScriptURL{ -
» Breakpoints

» XHR/fetch Breakpoints
» DOM Breakpoints
» Global Listeners

Vielations HTML, ScriptURL

divDefaultPolicy.innerHTML = “"Hello"; @

script.src = "script.js";

Method not defined in policy
el b ooty i A » Event Listener Breakpoints
var escapedglustoms = emplyFollcy.createn

» CSP Violation Breakpoints
Assigning wrong trusted type
divCustomPolicy.innerHTML = generalPolicy.c * (=] Trusted Type Violations
</script= - Sink Violations
b

-)] Policy Violations
{} Line 72, Column 34 Coverage: n/a

For the implementation:

- Update CDP to expose DOMDebugger.setBreakOnCSPViolation and the required
parameter types.

ClLs:

Create the abstract classes CategorizedSidebarPane & CategorizedBreakpoint to group
code that is common to EventListener and CSPViolations breakpoints, and other future
sections which could use breakpoints grouped into categories.

Introduce a new SidebarPane based on the new CategorizedSidebarPane. For that
purpose (browser debugger.js) and (module.json) should be extended.

The SidebarPane will interact with DebuggerManager to send the setBreakpoint message
to the backend.

Introduce the list of CSP breakpoints in DebuggerManager.

Update DebuggerPausedMessage to show a custom message when the Paused::Reason
is CSPViolation.

Protocol update: 2520824

CSP Pause reason (Devtools) 2520827

Abstract class refactoring: 2529160

Breakpoint on CSP violations (DevTools): 2517571

The back-end design

CLs:

Introduce Paused::Reason::CSPViolation in V8 to be able to distinguish in the frontend
those events related to a break coming from a Trusted Type violation.

Add a new CDP method DOMDebugger.setBreakOnCSPViolation() taking a subset of the
strings ["TrustedTypeSinkViolation", "TrustedTypePolicyViolation"] as argument. Passing
the empty list clears the breakpoints. Passing invalid arguments would also lead to
clearing the breakpoints. The implementation of the method stores the passed flags in an

appropriate way on the InspectorDOMDebuggerAgent object.

Introduce a new probe (core_probes.pidl) with the name
OnContentSecurityPolicyViolation(ExecutionContext*,
ContentSecurityPolicyViolationType). Such a probe will be used in the functions

rustedTypeFail and TrustedTypePolicyFactory::.createPolicy after we have determined
that there was a violation (but independently of whether it was allowed, and before we
throw the exception).

Modify core_probes.json5 to indicate that the InspectorDomDebuggerAgent handles the
probe.

Add to InspectorDOMDebuggerAgent the member function
OnContentSecurityPolicyViolation where we check whether the violation type is in the list
of stored flags, and if so, we break the program.

Introduce a new Paused::Reason::CSPViolation enum in V8 to use on breaks due to CSP
violations.

CSP Pause reason (V8) 2519513
Breakpoint support on Blink: 2517519

https://source.chromium.org/chromium/chromium/src/+/master:third_party/devtools-frontend/src/front_end/browser_debugger/EventListenerBreakpointsSidebarPane.js
https://source.chromium.org/chromium/chromium/src/+/master:out/Debug/gen/devtools/browser_debugger/browser_debugger.js
https://source.chromium.org/chromium/chromium/src/+/master:third_party/devtools-frontend/src/front_end/browser_debugger/module.json
https://source.chromium.org/chromium/chromium/src/+/master:third_party/devtools-frontend/src/front_end/sdk/DOMDebuggerModel.js;l=613
https://source.chromium.org/chromium/chromium/src/+/master:out/Debug/gen/devtools/sources/DebuggerPausedMessage.js;l=104
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2520824
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2520827
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2529160
https://chromium-review.googlesource.com/c/devtools/devtools-frontend/+/2517571
https://source.chromium.org/chromium/chromium/src/+/master:v8/include/js_protocol.pdl;l=508
https://source.chromium.org/chromium/chromium/src/+/master:out/Debug/gen/devtools/sources/DebuggerPausedMessage.js;l=104
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/inspector/inspector_dom_debugger_agent.h;l=59
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/probe/core_probes.pidl
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/trustedtypes/trusted_types_util.cc;l=158
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/trustedtypes/trusted_type_policy_factory.cc;l=49
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/probe/core_probes.json5;l=1
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/inspector/inspector_dom_debugger_agent.h;l=59
https://chromium-review.googlesource.com/c/v8/v8/+/2519513
https://chromium-review.googlesource.com/c/chromium/src/+/2517519

Rollout plan

Waterfall

Core principle considerations

Speed

This will introduce a core probe on the failure path of trusted types. Since this should only
trigger in case of a failure, and the probe only does something if DevTools is attached, we don't
expect a speed impact for Chrome users, and negligible impact for DevTools users.

Security

This will make it easier for Web Developers to improve security on their sites. No impact other
than that is expected.

Simplicity

The implementation is in line complexity-wise with the implementation of similar features.

Accessibility

Standard Ul elements will be used for this feature, so no impact is expected.

Testing plan

Inspector-protocol tests for the back-end interface, and e2e tests for the front-end.

Followup work

e This work can easily be extended for the other (i.e. non-trusted-type) CSP-violation
features. However, we don't have a strong use-case for wanting to break on violations
that are not related to Trusted Types, so we are holding off on this. Should we decide that
we want this, the changes to the implementation should be minor (i.e. mainly moving the
core probe to a better suited place).

e Allow to break only on report-only or non-report only TT violations. Can be useful if there
are different headers or simply if the user only cares about one type of violation.

e Integrate with existing CSP breakpoint (from probe::ScriptExecutionBlockedByCSP)

Observations

e Since we reuse the same logic for CSP Violations as for Event listeners, we send one
message to the backend per violation selected. That can be non optimal when you select
a group of checkboxes at the same time, since you could just send a message with all the
selected violations. However, since such a feature is only supported in CSP for the

moment we leave it as it since the negative implications are small while allowing better
code reuse.

	Break on Trusted Type violation (including report-only mode)
	One-page overview
	Summary
	Platforms
	Team
	Tracking issue
	Value proposition
	Code affected

	Signed off by
	Core user stories
	●​As a developer, I want to break on the first Trusted Type violation that occurs in report-only mode
	Preliminary Work
	Providing accurate TT violation information

	Design
	Front-end design
	CLs:

	The back-end design
	CLs:

	Rollout plan
	Core principle considerations
	Speed
	Security
	Simplicity
	Accessibility

	Testing plan
	Followup work
	Observations

