

Consolidated Vulnerability Assessment and
Reporting

Team:

Client:

COS 301
Capstone Project

University of Pretoria

 Name Student Number

Alec Watson u22491351

Aren Repko u04515791

Daniel Geerdink u22556860

Edward Harvey u22517783

Jacques Malan u22554107

Introduction

The COVAR project by BlueVision ITM aims to develop a comprehensive vulnerability
assessment and reporting tool designed to consolidate and analyze data from various
cybersecurity assessment tools. By integrating findings from multiple vulnerability
scanners, COVAR will provide a unified view of an organization's security posture,

enabling clients to identify and mitigate potential risks more efficiently.

Background & Motivation

In the current cybersecurity landscape, organizations rely on a multitude of vulnerability
scanning and assessment tools, each generating reports with unique signatures,
detection techniques, and formats. This diversity often leads to inconsistencies and
requires security engineers to spend significant time correlating and validating findings,
which delays the reporting process and diminishes the value provided to clients. The
COVAR project seeks to streamline this process by consolidating results from various
tools, thereby enhancing the efficiency of vulnerability assessments and increasing the
actionable insights available to clients.

Objectives

The primary objectives of the COVAR project include:

1.​ Development of a Consolidated Reporting Tool: Create a robust and scalable
tool that integrates findings from various vulnerability assessment tools, providing
a comprehensive view of an organization's security risks.

2.​ Enhanced Client Reporting: Enable clients to receive detailed, customizable
reports that highlight their risk exposure, with options to exclude false positives
and add false negatives.

3.​ Visualization of Vulnerability Trends: Present data in a user-friendly, graphical
format, showing vulnerability status over time to help clients track improvements
and emerging threats.

4.​ Periodic Risk Exposure Reports: Provide clients with regular updates on their
security posture, facilitating proactive risk management.

5.​ Role-Based Access Control: Implement a centralized web application with
defined roles and access levels, ensuring secure and appropriate access to
sensitive data.

6.​ Automation and Integration: Allow for automated fetching of reports via API,
integration with threat platforms, and the ability to report critical findings through
ticketing systems or email alerts.

7.​ Risk Quantification and Industry Comparison: Develop a risk model to
quantify potential risks based on observed vulnerabilities, client industry, and
active threat actors, enabling clients to benchmark their security posture against
similar organizations.

Scope of the Project

The scope of the COVAR project is extensive and includes several critical components
necessary for its successful implementation:

●​ Data Consolidation: Importing and standardizing data from popular vulnerability
assessment tools such as GreenBone, OpenVAS/GVM and Nessus, and
establishing a common data model for reporting.

●​ Report Customization and Visualization: Designing a flexible report generation
engine that allows users to customize report layouts and visualize vulnerability
data effectively.

●​ Role-Based Access Management: Ensuring complete segmentation of client
data and implementing strict access controls based on user roles and
responsibilities.

●​ API Development and Integration: Using technologies such as NestJS for the
main API

●​ Database Management: Utilizing PostgreSQL for user management and Redis
for caching, ensuring efficient data handling and retrieval.

●​ Deployment and Documentation: Providing comprehensive documentation for
deploying the final product on Linux-based servers and offering a user manual for
key features and functionalities.

●​ The COVAR project will be deployed within BlueVision ITM's cloud
infrastructure, with development support provided through local or cloud-hosted
servers. The project team will ensure detailed documentation and support to
facilitate the deployment and usage of the final product.

Use Cases
User Characteristics:

1.​ Admin:
○​ Role: Admins are special users who can appoint VAs (Vulnerability

Assessors) and assign them to clients.
○​ Responsibilities: They manage penetration testing allocation, performing

appointments or dismissals of VAs.
○​ Interactions: Admins oversee the coordination between VAs and clients,

ensuring that testing is carried out efficiently across multiple clients within
an organization.

2.​ Vulnerability Assessors (VAs):
○​ Role: VAs are users who perform penetration testing.
○​ Responsibilities: They inspect clients' systems for vulnerabilities,

generate reports, and provide recommendations.
○​ Needs: VAs require tools for quick and easy report generation, tailored to

different clients' needs. They may need to handle multiple clients within
the same organization, conducting comprehensive assessments and
generating consolidated reports.

○​ Appointment: This role is open only to those appointed by the Admin.
3.​ Client:

○​ Role: Clients are users who are interested in the reports generated about
their system by the CoVAR system and the VA.

○​ Types:
■​ Business Executives: Interested in high-level summaries of

vulnerabilities and overall security posture.
■​ Technical Individuals: Responsible for fixing the issues

highlighted in the reports, requiring detailed technical information.
○​ Needs: Clients may be part of larger organizations, and thus, require

reports formatted to meet both executive and technical needs. They need

the capability to view consolidated reports for the entire organization and
detailed reports for individual systems or departments.

○​ Interactions: Clients interact with both the CoVAR system and the VAs to
receive tailored reports, track vulnerability remediation, and ensure
ongoing security improvements.

By incorporating these characteristics, the system can better accommodate the complex
needs of organizations with multiple clients, ensuring that all stakeholders receive the
information they need in the most appropriate format.

.

User Stories

User Story 1: As a VA (Vulnerability Assessor)

1.​ Log in
○​ Story: I want to log into the system securely.
○​ Goal: So that I can access and manage client data and generate reports.

2.​ Fetch client data
○​ Story: I want to feed client data results from different security tools into the

system.
○​ Goal: So that I can consolidate all the data into a single report.

3.​ Consolidate Data
○​ Story: I want to have the system automatically consolidate data from

different security tools.
○​ Goal: So that I can have a unified view of the client's security status.

4.​ Validate and Modify Data
○​ Story: I want to manually validate and change outputs in the consolidated

data.
○​ Goal: So that I can ensure the accuracy and reliability of the final report.

5.​ Resolve Contradictions
○​ Story: I want to resolve contradictions in the consolidated data.
○​ Goal: So that the final report accurately reflects the client's security status.

6.​ Generate a Report
○​ Story: I want to generate the final report in a format of my choosing.
○​ Goal: So that it meets the specific requirements of the client or

stakeholders.

User Story 2: As a Client

1.​ View report
○​ Story: I want to view my security report.
○​ Goal: So that I can understand the status and findings related to my

security.
2.​ Download report

○​ Story: I want to download my security report.
○​ Goal: So that I can keep a local copy for my records.

3.​ Modify report format
○​ Story: I want to change the format of my security report.
○​ Goal: So that I can view or download it in a format that suits my needs.

4.​ Create Organization
○​ Story: I want to create an organization within the system.
○​ Goal: So that I can manage and organize my company's users and

security reports.
5.​ Join Organization

○​ Story: I want to join an organization when invited by another client.
○​ Goal: So that I can collaborate and access shared resources and reports.

User Story 3: As an Admin

1.​ Assign and Unassign VAs
○​ Story: I want to assign VAs to clients and unassign them.
○​ Goal: So that VAs can generate reports for the clients.

2.​ Promote Users to VAs
○​ Story: I want to promote users to VAs.
○​ Goal: So that I can increase the number of VAs available for penetration

testing.

Functional Requirements

1. User Login

1.1 The system shall provide a login page accessible via a web browser. 1.2 The login
page shall require a username and password. 1.3 The system shall support multi-factor
authentication (MFA) for added security. 1.4 The system shall validate user credentials
against a secure database. 1.5 The system shall provide appropriate error messages
for invalid login attempts. 1.6 The system shall allow users to reset their passwords
securely if they forget them. 1.7 Upon successful login, the system shall redirect the
user to their dashboard or home page.

2. Generating Reports

2.1 The system shall accept data inputs from various security tools.

2.1.1 The system shall support multiple file formats (e.g., CSV, JSON, XML).

2.2 The system shall provide a user-friendly interface for uploading and importing data.

 2.3 The system shall merge data from various sources into a single report.

2.3.1 The system shall identify and highlight contradictions in the data.

2.3.2 The system shall allow the VA to manually resolve contradictions and
update the report.

2.4 The system shall allow customization of the report layout and content.

2.5 The system shall generate the report in the selected format and make it available for
download or sharing.

3. Client View/Modify Report

3.1 The system shall display a dashboard with a list of available reports for the client.
3.2 The system shall provide a download option for the client to download their report in
the selected format.

 3.3 Clients shall be able to interact with the report, such as clicking on specific
vulnerabilities to get more detailed information.

3.4 The system shall ensure that clients can only view and modify reports related to
their own organization.

3.5 Role-based access control (RBAC) shall be implemented to restrict access to
certain features based on user roles.

3.6 The system shall notify clients via email or in-app notifications when a new report is
available or when there are updates to existing reports.

4. Admin Assignment and User Management

4.1 The system shall allow an admin user to assign VAs to clients.

4.2 The system shall allow an admin user to unassign VAs from clients.

4.3 The system shall allow an admin user to promote regular users to VAs.

5. Organization Management by Clients

5.1 The system shall allow clients to create new organizations within the system. 5.2
The system shall allow clients to invite other users to join their organization. 5.3 The
system shall provide an interface for clients to manage their organization's member

Subsystems
User Onboarding and Authentication Subsystem

Role Based access of client

User Organization Subsystem

Admin Tools Subsystem

VA Subsystem

Class Diagram
Users/Organization Interactions

App FrontEnd Interaction

Unification into common Data Model

Architecture ​

Reasoning:

Client Server:​

●​ Performance:
○​ Our system is not catering for a large amount of users so client-server will have

enough performance

●​ Security:
○​ Single point of access makes it easier to enable a secure system because there

is only one point to secure
○​ Centralized control allowing client to have control over all security measures in

one place

○​ Log access to resources/information will be in one place
●​ Availability:

○​ Allows for easy logging of issues/errors
●​ Maintainability

○​ Easy to maintain (1 thing to maintain) and the client has control of said resources
●​ Other:

○​ Our client (BITM) allocated a Virtual Private server to which suits the client server
architecture.

○​ Client has singular server resources allocated for the project.​

Gatekeeper:

●​ Security:
○​ All access to the server is sanitised and controlled by the gatekeeper.
○​ There is limited risk and exposure as the gatekeeper has no access to

credentials or keys
○​ Runs in limited privilege mode, if the gatekeeper is compromised, the +attacker

does not get access to any information.
●​ Reliability:

○​ Since the gatekeeper is decoupled from the server, a compromised gatekeeper
does not compromise the system.

○​ DDOS protection provided by the gatekeeper improves reliability and lessens
downtime.

Pipes:

●​ Maintenance:
○​ It is easy to understand each filter that our PDF reports will go through.
○​ Changes to one part of the chain of filtering does not affect any other part,

because of modularity.
●​ Performance:

○​ Multiple reports can be in the pipe simultaneously, thus increasing the throughput
of the report processing.

●​ Security:
○​ At each step, or before entering the pipe, we can validate that the report to be

processed is valid and non-malicious.

Quality Requirements

1. Performance

1.1 The system shall load the report viewing page within 3 seconds under normal
conditions.

1.2 The system shall support simultaneous access by at least 100 users without
degradation in performance.

Architectural Strategies:

●​ Caching: Implement caching strategies to store frequently accessed data in
memory to reduce database load and improve response times.

●​ Spreading load over time through the use of concurrency: Concurrently
processing certain parts of the server operations to increase performance.

●​ Optimized Queries: Optimize database queries and use indexing to speed up
data retrieval.

●​ Data Partitioning: Use partitioning techniques to divide large tables into smaller,
more manageable pieces, improving query performance.

●​ Elastic Scaling: Use of container orchestration systems to automate scaling and
management.

2. Security

2.1 The system shall use encryption (e.g., TLS) for all data transmissions to protect
sensitive client data.

2.2 The system shall implement role-based access control (RBAC) to ensure only
authorized users can view or download reports.

2.3 The system shall log all access and download activities for audit purposes.

2.4 Validating data, vulnerability reports should contain valid data and accurate data
depending on the client and VA.

Architectural Strategies:

●​ Encryption: Utilize TLS for data in transit and AES for data at rest to ensure all
data is protected.

●​ Authentication and Authorization: Implement robust multi-factor authentication
(MFA) and role-based access control (RBAC) with constant authorization for
requests

●​ Least Privilege Principle: Apply the principle of least privilege to ensure that
users and services only have the minimum access necessary to perform their
functions.

●​ Single Access Point: Design the system to have a single entry point for all
users to reduce the number of access channels that need to be secured.

●​ Logging and Monitoring: Implement logging of all access and download
activities using centralized logging solutions and monitor logs for suspicious
activities.

●​ Secure Development Practices: Follow OWASP secure coding practices and
use static analysis tools like SonarQube to identify security issues during
development.

3. Compatibility

3.1 The system shall be compatible with major web browsers (e.g., Chrome, Firefox,
Safari, Edge).

3.2 The system shall support integration with various security tools (Nessus,
GreenBone) for data input.

Architectural Strategies:

●​ Cross-Browser Testing: Regularly test the system on major web browsers
(using tools like Selenium or BrowserStack to ensure compatibility.

●​ Standardized Web Technologies: Use standardized web technologies and
frameworks to ensure cross-browser compatibility.

●​ Containerization: Use containerization to package and deploy microservices
consistently across different environments, ensuring compatibility and simplifying
deployment.

●​ API Standards: Use RESTful APIs with standardized formats to ensure easy
integration with various security tools.

●​ Documentation and Testing: Provide comprehensive documentation for the
integration process and use automated testing to ensure ongoing compatibility.

4. Reliability and Availability

4.1 The system should maintain a high level of reliability, ensuring consistent
performance and minimal downtime.

4.2 The system should achieve at least 99.9% availability, ensuring it is accessible and
operational for users almost all the time.

Architectural Strategies:

●​ Contracts-Based Architecture: Defining clear contracts or interfaces between
different components or services in the system.

●​ Error/Exception Communication: se standardized error messages, and log
errors with relevant details.

●​ Proper Logging: Recording events, errors, and other significant activities in the
system through the use of logging frameworks or other methods to monitor
system health and possible issues.

●​ Maintaining Backups:Ensures data can be recovered in the event of corruption,
accidental deletion, or disaster, thereby maintaining data integrity and availability.

5. Maintainability

5.1 The system shall be designed to facilitate easy maintenance and extension,
allowing for rapid updates and the addition of new features without significant rework.

Architectural Strategies:

●​ Modular Design: Design the system in a modular way, with well-defined
interfaces between components to facilitate easy updates and extensions.

●​ Code Quality: Adopt coding standards and best practices to ensure code quality
and readability. Use linters and conduct code reviews.

●​ Documentation: Maintain comprehensive documentation for both the system
architecture and the codebase to assist new developers and streamline
maintenance.

●​ Automated Testing: Implement automated unit, integration, and end-to-end
tests using tools like Jenkins or GitHub Actions to catch issues early and ensure
that new changes do not break existing functionality.

Constraints

Technology Requirements

Frontend

ReactJS: A declarative JavaScript library for building user interfaces, providing a
component-based architecture and efficient rendering.

Backend

NestJS: A progressive Node.js framework for building efficient and scalable server-side
applications. It will be used for developing the main RESTful API.

Firebase Authentication: For secure and scalable user authentication, including support
for multi-factor authentication.

PostgreSQL: A powerful, open-source object-relational database system for user
management and report data storage.

Redis: An in-memory data structure store, used for caching to improve system
performance.

File Storage and Management

Firebase Storage: For handling file uploads and storage, providing robust and secure
storage capabilities.

Deployment

Docker: To containerize the application, ensuring consistent and reliable deployment
across different environments.

Kubernetes: For orchestrating the deployment, scaling, and management of
containerized applications.

Nginx: As a web server and reverse proxy to manage API requests efficiently.

Development and Documentation

Swagger: For API documentation, enabling easy interaction with the API endpoints
during development and testing.

GitHub: For version control and collaboration, ensuring a streamlined development
workflow.

Cypress : For unit and e2e testing ensuring the reliability and stability of the application.

Service Contracts
API Endpoints

User Authentication

Sign Up

URL: /api/auth/signup

Method: POST

Request Body:

json

{

 "email": "string",

 "password": "string",

 "name": "string"

}

Response:

json

{

 "userId": "string",

 "email": "string",

 "name": "string",

 "token": "string"

}

Sign In

URL: /api/auth/signin

Method: POST

Request Body:

json

{

 "email": "string",

 "password": "string"

}

Response:

json

{

 "userId": "string",

 "email": "string",

 "name": "string",

 "token": "string"

}

Client Management

Add Client

URL: /api/clients

Method: POST

Request Body:

json

{

 "name": "string",

 "email": "string",

 "organization": "string"

}

Response:

json

{

 "clientId": "string",

 "name": "string",

 "email": "string",

 "organization": "string",

 "createdAt": "timestamp"

}

Get Clients

URL: /api/clients

Method: GET

Response:

json

[

 {

 "clientId": "string",

 "name": "string",

 "email": "string",

 "organization": "string",

 "createdAt": "timestamp"

 }

]

Report Management

Upload Report

URL: /api/reports

Method: POST

Request Body:

json

{

 "clientId": "string",

 "reportData": "object",

 "fileType": "string"

}

Response:

json

{

 "reportId": "string",

 "clientId": "string",

 "reportData": "object",

 "fileType": "string",

 "createdAt": "timestamp"

}

Get Reports

URL: /api/clients/:clientId/reports

Method: GET

Response:

json[

 {

 "reportId": "string",

 "clientId": "string",

 "reportData": "object",

 "fileType": "string",

 "createdAt": "timestamp"

 }

]

Download Report

URL: /api/reports/:reportId/download

Method: GET

Response: File download (binary data)

	Introduction
	The COVAR project by BlueVision ITM aims to develop a comprehensive vulnerability assessment and reporting tool designed to consolidate and analyze data from various cybersecurity assessment tools. By integrating findings from multiple vulnerability scanners, COVAR will provide a unified view of an organization's security posture, enabling clients to identify and mitigate potential risks more efficiently.
	
	Background & Motivation
	In the current cybersecurity landscape, organizations rely on a multitude of vulnerability scanning and assessment tools, each generating reports with unique signatures, detection techniques, and formats. This diversity often leads to inconsistencies and requires security engineers to spend significant time correlating and validating findings, which delays the reporting process and diminishes the value provided to clients. The COVAR project seeks to streamline this process by consolidating results from various tools, thereby enhancing the efficiency of vulnerability assessments and increasing the actionable insights available to clients.
	
	Objectives
	The primary objectives of the COVAR project include:
	
	1.​Development of a Consolidated Reporting Tool: Create a robust and scalable tool that integrates findings from various vulnerability assessment tools, providing a comprehensive view of an organization's security risks.
	2.​Enhanced Client Reporting: Enable clients to receive detailed, customizable reports that highlight their risk exposure, with options to exclude false positives and add false negatives.
	3.​Visualization of Vulnerability Trends: Present data in a user-friendly, graphical format, showing vulnerability status over time to help clients track improvements and emerging threats.
	4.​Periodic Risk Exposure Reports: Provide clients with regular updates on their security posture, facilitating proactive risk management.
	5.​Role-Based Access Control: Implement a centralized web application with defined roles and access levels, ensuring secure and appropriate access to sensitive data.
	6.​Automation and Integration: Allow for automated fetching of reports via API, integration with threat platforms, and the ability to report critical findings through ticketing systems or email alerts.
	7.​Risk Quantification and Industry Comparison: Develop a risk model to quantify potential risks based on observed vulnerabilities, client industry, and active threat actors, enabling clients to benchmark their security posture against similar organizations.
	Scope of the Project
	The scope of the COVAR project is extensive and includes several critical components necessary for its successful implementation:
	●​Data Consolidation: Importing and standardizing data from popular vulnerability assessment tools such as GreenBone, OpenVAS/GVM and Nessus, and establishing a common data model for reporting.
	●​Report Customization and Visualization: Designing a flexible report generation engine that allows users to customize report layouts and visualize vulnerability data effectively.
	●​Role-Based Access Management: Ensuring complete segmentation of client data and implementing strict access controls based on user roles and responsibilities.
	●​API Development and Integration: Using technologies such as NestJS for the main API
	●​Database Management: Utilizing PostgreSQL for user management and Redis for caching, ensuring efficient data handling and retrieval.
	●​Deployment and Documentation: Providing comprehensive documentation for deploying the final product on Linux-based servers and offering a user manual for key features and functionalities.
	●​The COVAR project will be deployed within BlueVision ITM's cloud infrastructure, with development support provided through local or cloud-hosted servers. The project team will ensure detailed documentation and support to facilitate the deployment and usage of the final product.
	
	Use Cases
	User Characteristics:

	User Stories
	User Story 1: As a VA (Vulnerability Assessor)
	User Story 2: As a Client
	User Story 3: As an Admin

	Functional Requirements
	1. User Login
	2. Generating Reports
	3. Client View/Modify Report
	4. Admin Assignment and User Management
	5. Organization Management by Clients

	User Organization Subsystem
	
	
	
	
	1. Performance
	2. Security
	3. Compatibility
	4. Reliability and Availability
	5. Maintainability

