pBSM Topical Meeting: Heavy Resonances

Date:October 7, 2025

Indico: https://indico.cern.ch/event/1588457/

Key Takeaways (Post-Meeting Summary)

Will fill in after the meeting (summary of the most important outcomes and decisions.) Detailed real-time minutes at the end of the document / agenda.

Your input goes here!

[Ben Allanach, Theory]: Z' searches for di-leptons could be favoured by the b->s I vertex inferred from comparing experiment to state-of-the-art Standard Model predictions. Currently, the c-quark contributions to the non-local charm-loop contribution are well constrained in the EOS framework, but there is a clear need for estimating the size of various (excited and non-excited) D-meson contributions on top of this. Nevertheless, such scenarios work and have TeV-scale Z' particles and so provide a nice sand-box where one cannot merely tune the Z' to be too weakly coupled or too massive to contribute, if it is to explain the b->sll anomalies. Many of the models are based on a **third family baryon number** symmetry (plus some leptonic part) eg 3B_3-L, which predicts Z' -> ttbar or b bbar.

Xanda in the chat: the spin 0 case more realistic (non vanilla) frameworks are the extended Higgs sectors, that are mostly on the Higgs LHC WG3 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG3

Community Interest & Contact List

Add your name and email if you want to be kept informed, participate in future meetings, or help organize community efforts.

Name	Email	Institution / Role	Interest (Participation, Organization)
Ben Allanach	ben.allanach.work @gmail.com	University of Cambridge / Professor	Participation
Eleanor Jones	eleanor.jones@cer n.ch	DESY / Post-doc	Organisation
Andrea Malara	andrea.malara@ce rn.ch	ULB/Postdoc	All
Ilia Kalaitzidou	ilia.kalaitzidou@cer n.ch	ULB / Postdoc	Both
Felix Yu	yu001@uni-mainz. de	JGU Mainz/Faculty	Participation
Venus Keus	venus@stp.dias.ie	DIAS/Senior Research Fellow	Participation
Farinaldo Queiroz	farinaldo.queiroz@ ufrn.br	International Institute of Physics	Participation
KC Kong	kckong@ku.edu	U of Kansas / Professor	Participation
Inês Ochoa	ines.ochoa@cern.c	LIP/Researcher	Participation
Werner Porod	werner.porod@uni- wuerzburg.de	Uni. Würzburg/Professor	Participation
Shehu AbdusSalam	shehu@cantab.net, abdussalam@sbu. ac.ir	Shahid Beheshti University	Participation
Katharina Behr	katharina.behr@ce rn.ch	DESY/Staff	Both
Jonas Würzinger	jonas.wuerzinger@ cern.ch	TUM / postdoc	Participation

Minutes & Key Points

1. Opening and Meeting Goals

Second topical meeting of the Prompt BSM Working Group, dedicated to **Heavy Resonance** searches (focus on spin-1).

Goals of the topical meeting series:

- Brainstorm what has been done so far, identify next steps and perspectives.
- Form task forces to agree on:
 - Data preservation & reinterpretation
 - Uncertainties
 - Results presentation
 - Benchmarks and model synchronization
- Collect inputs and define guidelines to be summarized in a **public document**.

Upcoming topical meetings:

- Oct 31, 2025 pMSSM
- Later: VLF, LQ, HNL.

Action Items:

- Add names to shared Google Doc to join the Heavy Resonance task force.
- Subscribe to **Ihc-pbswg@cern.ch** mailing list.
- Contact conveners if interested in contributing to specific task forces.

2. Theoretical Overview - Andrea Thamm

Focus: theory motivation and simplified modeling of heavy spin-1 resonances, covering both heavy vector triplets (HVTs) and heavy vector singlets (HVSs).

Key points:

- Motivation:
 - Spin-1 resonances arise in many extensions of the SM:
 - Weakly coupled models (e.g., Z', W' extensions).
 - Strongly coupled models (e.g., composite Higgs, technicolor).
 - Simplified models provide a unified framework to compare theory and experiment.
- Simplified Heavy Vector Triplet (HVT) Model:

- Parameters: coupling to gauge bosons (cH), to fermions (cF), and effective gauge coupling (gV).
- Benchmarks:
 - *Model A:* weakly coupled extended gauge sector.
 - Model B: strongly coupled composite Higgs scenario.
- Enables translation of ATLAS/CMS limits into general coupling space.

Production and Decay:

- Drell-Yan and Vector Boson Fusion (VBF) considered.
- VBF can dominate for large masses and small fermion couplings (cF≤0.05).
- Defined VBF benchmarks for diboson and dilepton final states.
- Highlighted complementarity between Drell-Yan and VBF searches and need for expanded VBF coverage.

• Heavy Vector Singlets (HVS):

- Similar framework with additional couplings; applicable to neutral and charged states.
- Benchmark "Model C" introduced (extended U(1) gauge sector).
- Branching ratios shift between quark and bosonic final states depending on the coupling regime.
- For strongly coupled cases, VBF may again dominate.

Outlook:

- Simplified models remain powerful tools for reinterpretation and cross-experiment comparison.
- Encouraged experiments to explore VBF production modes and broaden coupling scans (both larger gHgHand smaller cF).
- Collider probes complement electroweak precision constraints.

Discussion and Q&A

Daniel Hayden (ATLAS):

- Asked whether Randall-Sundrum (RS) models mapped onto the HVT framework could allow interpreting spin-2 limits using spin-1 parameters.
- Franceschini: clarified this is not directly possible spin-1 and spin-2 simplified models remain distinct; while some parameter analogies exist, bounds cannot be sharply transferred without assumptions that are not testable elsewhere.

• Mihail Chizhov (Sofia):

- Noted that SU(2) doublet vectors can couple to quarks via higher-order (non-renormalizable) operators.
- Thamm: agreed, clarifying that her talk is restricted to dimension-4 (renormalizable) terms; such effective couplings are possible but suppressed by the high energy scale.
- Chizhov added these could appear in heavy-quark associated production (ttH-like) processes.

 Thamm requested the relevant papers for reference and agreed to add this caveat to her slides.

• Chizhov (follow-up):

- Questioned why exclusion plots start at 1 TeV and not lower masses.
- Thamm: replied that below ~500 GeV the simplified model loses validity and lower-mass regions are already experimentally constrained; noted that most LHC analyses start at a few hundred GeV.
- Franceschini: added that literature often omits references for sub-TeV limits, and urged experiments to document lower-mass coverage explicitly for clarity.

• Daniel Hayden (follow-up):

- Asked about the upper and lower bounds of coupling scans: whether it is meaningful to go beyond gH=3 or down to very small cF values (~0.01).
- O Thamm:
 - Large couplings (gH≤4π) are **physically motivated** in strongly-coupled models (e.g., composite Higgs).
 - Very small fermionic couplings are also relevant, since models exist with near-zero cF; both ends of parameter space are interesting to probe experimentally.

3. ATLAS Overview - Daniel Hayden

Presentation summarized the **ATLAS heavy resonance combination** and ongoing efforts to harmonize interpretations across spin hypotheses (spin-1, spin-0, spin-2)

Main Points:

- Reviewed ATLAS combinations of bosonic (VV/VH) and leptonic final states:
 - 8 TeV (36 fb⁻¹, 2018) first full combination across spin-0/1/2 interpretations.
 - 13 TeV (139 fb⁻¹, 2024) extended to τ, top, and jet channels; focused on spin-1 (HVT) interpretation with first exploration of VBF production.
- Emphasized potential of **combined fits across channels** to reveal smaller excesses or rule out fluctuations.
- Shared mock coupling scans (cF-cH planes) for exclusion sensitivity at 4–5 TeV masses.
- Discussed previous ATLAS-CMS coordination, including:
 - Exchange of VBF generation jobOptions for consistent sample production.
 - Cross-checks of cross-sections and PDF/theory uncertainties.
 - No combined paper yet, but ongoing interest in readiness for a discovery scenario.

- Highlighted desire to publish likelihoods and correlation matrices to allow reinterpretation; constrained by legacy format of 2024 workspaces.
- Proposed further model extensions: adding VLQ couplings, additional Higgs, or other spin frameworks (0, 2).
- Briefly outlined prospects for EFT-based reinterpretations of resonances (SM ↔ BSM EFT transition).

Discussion and Q&A

- Haleem: For VBF studies, should Model C be extended to enable leptonic couplings (e.g., to electrons), or should there be a separate benchmark with both gauge and leptonic couplings on?
 - Hayden: Prior work looked at near-zero fermionic coupling and where leptonic sensitivity enters; VBF still tends to be more competitive at high gHgH. If one turns down bosonic couplings too much, VBF production turns off; suggests theory guidance to define a motivated benchmark with nonzero leptonic couplings.
- Hayden (clarifying VBF reach): To see VBF "closing in" on small cF regions, ATLAS found they needed to go to lower masses (~1 TeV) and likely scan beyond gH=3; plans to zoom to smaller couplings in low-mass plots.
- Gustavino: Asked whether VBF is the best approach both for higher masses (small couplings) and to probe lower masses; raised trigger threshold concerns and whether very low masses are already ruled out.
 - Hayden: At 3 TeV already quite constrained; they looked at 1 TeV but would need to "zoom in"; ATLAS can go sub-TeV, but the practical floor needs study.
- Franceschini: Noted much of the older literature isn't expressed in the HVT language; suggested "archaeology & translation" to map prior constraints into current parameter spaces.
- Hayden (follow-on): Mentioned overlaying electroweak precision constraints (shown earlier in theory talk) as additional context on coupling planes.

Takeaways / Next steps (from discussion):

- Consider a leptonic-enabled VBF benchmark if theory can motivate it (interplay of production vs decay when gH is small).
- For VBF coverage, extend scans to higher gH and zoom low-mass planes to smaller cF values
- Document/translate relevant sub-TeV constraints from older literature into the HVT parameter space.

4. CMS Overview - Andrea Malara

Scope:

CMS presented a Run-2 heavy-resonance combination, "just made public last week," combining 16 channels; orthogonality across channels was enforced (some channels excluded) and both DY & VBF production were considered.

- Dileptons: Combination improved sensitivity by ~20–50% relative to single channels; earlier 2–3σ tensions in dileptons were reduced to just above ~2σ (around the ~3 TeV region).
- Dijets: Overall sensitivity dominated by the inclusive dijet search; other sub-channels help recover low-mass coverage up to ~1 TeV.
- Dibosons (VV/VH): All-hadronic channel strongest at high mass; 1-lepton modes add modest gain between ~2–4 TeV.
- VBF coverage: In the combination, VBF interpreted only for diboson channels; no VBF results yet for dilepton/dijet. Sensitivity suggests (re)study of the VBF parameter space.

Coupling scans & non-universality: CMS performed 2D scans (fermion vs. Higgs couplings), explored non-universal fermion couplings, and a third-generation-only benchmark; showed complementarity between light-flavor and tt¯tt¯constraints, with some regions entirely excluded at 95% CL.

Discussion and Q&A (after CMS presentation)

- Mihail Chizhov: Asked whether production via heavy quarks could be relevant for the searches shown.
 - Pointed out that in some models, new vector bosons (such as the V') may couple to third-generation quarks, leading to processes like associated production with tt⁻ or bb⁻ pairs.
 - Suggested that these couplings could significantly affect the phenomenology and might deserve to be considered within the simplified model.
 - Cited examples from his earlier works on non-universal gauge interactions and possible "chiral" vector couplings, emphasizing that such effects could manifest even when the HVT formalism assumes universality.
 - He further noted that some of these diagrams could mimic standard Drell-Yan or VBF topologies in the experimental reconstruction.
- Andrea Malara: Responded that the current CMS combination did not include such processes explicitly.
 - Clarified that the combination followed the standard HVT parameterization assuming fermion universality, but that CMS had indeed tested non-universal couplings (different light- vs heavy-flavor couplings) in specific scans.
 - Confirmed that associated production with heavy quarks was not part of the official signal modeling but could, in principle, be reinterpreted later if corresponding simulated samples were produced.

- Mentioned that some channels involving top or bottom final states (e.g., W'→tb, Z'→tt⁻) were part of the combination, covering part of that phenomenology indirectly.
- Roberto Franceschini: Thanked Malara for the clarification and added that such interactions could be discussed in future task-force meetings, particularly if theory colleagues provide benchmarks for third-generation-specific couplings.
 - Highlighted that CMS results with non-universal couplings are already an important step forward compared to previous combinations.
 - Emphasized the value of making cross-experiment comparisons for these cases, since ATLAS had explored similar setups.
- Giuliano Gustavino: Supported the idea of exploring extended benchmarks including heavy-quark—associated production, noting that these could connect collider searches more closely to models explaining flavor anomalies.
 - Proposed following up with a joint ATLAS-CMS-theory benchmark table to align interpretations.