Physics 3204

Unit 1: Motion

A cyclist follows a parabolic path through the air after riding off a ramp.

TOPICS:

- 1. Vectors in Two Dimensions
- 2. Review of Relative Motion
- 3. Relative Motion in Two Dimensions
- 4. Review of Kinematics
- 5. Projectile Motion
- 6. Review of Momentum and Collisions
- 7. Momentum and Collisions in Two Dimensions

1.1: Vectors in Two Dimensions

At the end of this section, you should be able to: □ Draw diagrams to represent the sum of two vectors in two dimensions.			
Last year, we added vec we will be adding vector		ams, but only in one dimension. Th	is year,
Recall that in order to a	dd two or more vectors	using arrow diagrams , you must	add
the vectors "tip-to-tail."	That is, you draw the fi	rst arrow, then draw the second a	rrow
starting from the arrow	head of the first arrow,	etc. The resulting "total" vector ru	ıns
from the	of the first vector to t	he of the last vector.	
Sketch an arrow diagrai	n for these vector addi	tions. Then sketch the resulting to	tal
vector.			
a) 35 m [E] + 26 m [i	<i>[]</i>	b) 20 km [N] + 16 km[N]	
c) 75 km [S] + 53 kn	n [N]	d) 63 m [E] + 24 m [W]	
When adding vectors in	two perpendicular dire	ctions, a	_ is
formed. We can use the	properties of right tria	ngles to calculate the length of the	9
resulting vector () and the direction/angl	e of
the vector ().	

Add each set of vectors with a diagram, then calculate the length and direction of the overall vector.

1.2: Review of Relative Motion

	e end of this section, you should be able to:] Solve 1D relative motion problems with a single object moving within a moving medium.
We loo	oked at two kinds of relative motion last year: 1) two objects moving relative to
each d	other, and 2) an object moving within a moving medium. We will only deal with the
secon	d kind this year.
A boa	t has a speed of 15 m/s relative to the water. The river's current flows at 5 m/s
East.	
-	The boat travels on the river to the East. Sketch a diagram to show how the boat
	would appear to move relative to the river bank.
-	How does going with the river's current affect the velocity of the boat relative to the ground?
-	The boat now travels on the river to the West. Sketch a diagram to show how the boat would appear to move relative to the river bank.
-	How does going against the river's current affect the velocity of the boat relative to the ground?

An aircraft can fly at 100 km/h [S] in still air. The wind is blowing at 25 km/hr. Find the
relocity of the plane relative to the ground if the wind is blowing to the:
a) South (tailwind)
b) North (headwind)
A train is moving at 15.0 m/s [E]. A passenger on the train can walk at 2.0 m/s.
Calculate the velocity of the passenger relative to the ground if they walk towards: a) the front of the train
b) the back of the train

4 plar	ne is flying at an airspeed of 50.0 m/s [E] while there is a headwind of 15.0 m/s.
a)	What is the velocity of the plane relative to the ground?
b)	How much time will it take the plane to fly 1200 m [E]?
Julia d	can swim at 2.30 m/s in still water. She is swimming in a river which has a current
of 0.95	5 m/s [S].
a)	What is her velocity relative to the ground if she swims upstream? What if she
	swims downstream?
b)	How much time will it take her to travel 450 m upstream? What if she goes
2)	downstream?

A boat travels 450 m [N] up a river that flows at 3.0 m/s [S], and then returns. The boat has a speed of 7.0 m/s relative to the water. How much time will each leg of the trip take (up and back down the river)?
An aircraft has an airspeed (speed relative to the air) of 230 km/hr [N].
a) What is the plane's velocity relative to the ground if it:
i) Flies with a tailwind of 50 km/h?
ii) Flies into a headwind of 50 km/h?
b) What will be the displacement of the plane if it flies into the headwind for 2.5 h?

1.3: Relative Motion in Two Dimensions

At the end of this section, you should be able to: Given a situation, sketch the path of motion for a specified reference frame. Calculate relative velocity of an object using vector addition. Calculate required heading to reach an intended destination. Calculate time to travel a given distance.
The main type of relative motion scenario we will look at this year is where an object i
moving through some medium that is moving perpendicular to the object's motion. The
two easiest and most common examples are:
1
2
A boat is trying to cross a river, which is 50 m wide. The boat can move at 10 m/s relative to the water. Sketch a vector diagram to show how the boat will move across the river if the water is still.
Now the river has a current of 5 m/s East. Sketch a vector diagram to show how the
boat will move as it crosses the river.
What happened to the boat as it crossed the river, due to the river's current?

How could the boat prevent this from happening?
Sketch another diagram to represent what the boat needs to do in order to actually go straight across the river.
How are these two diagrams different?
Is the angle at which the boat was pushed off course by the current (diagram 2) the same as the angle at which the boat needed to turn to counteract the current (diagram 3)?
In each scenario, calculate the velocity of the boat relative to the ground.

An airplane	e can fly at 118 km/h [S]] in still air. The wind	d blows at 28 km/h [E]	! •
a) Fina	d the velocity of the plan	ne relative to the gr	ound (including directi	on!). Draw c
diag	gram to help keep things	s straight.		

b) What must be the plane's heading in order to land due South of its original position? Draw a diagram to help solve this.

A small plane flies with a speed of 225 km/h relative to the air. The plane experiences a
crosswind blowing at 55 km/h [E].
a) What heading must the pilot use to fly due North?
b) What is the resulting speed of the plane relative to the ground?
c) How much time would it take for the plane to reach an airport 575 km [N] of its
starting point?

A boa	t can move at 8.0 m/s in still water. It is travelling in a river where the current
flows	at 3.0 m/s [S].
a)	What will be the velocity of the boat relative to the ground if it is pointed due West?
b)	How much time will it take to cross the river if the river is 650 m wide?
c)	How far downstream will the boat land?
d)	What heading must the boat use to sail due West?
۵)	What is the speed of the boat relative to the around?

Bobby can swim in still water	at 2.4 m/s. If he	is swimming acro	ss a river with	a current
of 1.1 m/s [S].				

a) What will be his overall velocity if he points himself straight across the river?

b) What direction will he have to point himself in order to actually go straight across the river?

1.4: Review of Kinematics

At the end of this section, you should be able to:

Use the proper kinematics formulae to calculate an unknown displacement, velocity, acceleration, or time for a given scenario.

Last year we derived five kinematics formulae that describe non-uniform motion - any motion that has a constant acceleration. Here they are all in one place:

$$v_2 = v_1 + at$$
 $d = \frac{1}{2}(v_1 + v_2)t$ $d = v_1t + \frac{1}{2}at^2$ $d = v_2t - \frac{1}{2}at^2$ $v_2^2 = v_1^2 + 2ad$

Solve each of these problems using the kinematics formulae.

Perry the platypus reaches a final velocity of 128 m/s after accelerating for 13.5 s and traveling 425 m. What was his acceleration?

Quinn's drag race car slows down at a rate of 11.8 m/ s^2 and it takes 5.32 s to come to a complete stop. What was the initial velocity of the car?

Rob travels 48 m as he comes to a stop in 6.3 s. What was his initial velocity?
At what minimum velocity must Steph throw a tennis ball straight up in order for it to rise to a height of at least 2.8 m?
Starting from rest, Tony accelerates at 11.7 m/s^2 for 8.4 s. How far does he travel during this time?

Victoria is driving at 35 m/s when she sees a herd of moose crossing the road 95 m ahead of her car. If her brakes can slow the car down at 6.8 m/s 2 , what must her
reaction time be before she applies the brakes in order to avoid hitting the moose?
Caleb is accelerating from rest at 2.54 m/s² for 21.5 s. After he reaches this maximum
speed, he continues at that speed for 34.7 s. How far does he travel in total?

1.5: Projectile Motion

At the end of this section, you should be able to:
 Recognize that projectiles follow a parabolic path where the horizontal component of motion is uniform and the vertical component is free fall.
Resolve velocity vectors into components and solve problems where a
projectile is launched.
\square Solve for range, time of flight, velocity at any point (including initial and final
velocity), and maximum height.
A projectile is
Imagine a projectile is launched at an angle over a flat surface. Given the above
definition, draw vectors to represent the horizontal and vertical components of the
projectile's velocity, as well as the acceleration.
<i></i>
When dealing with projectile motion, we have several key assumptions:
1
2
3
4

4 <i>p</i>	oroj	ectile rolls horizontally off a 12.0 m high ledge with an initial velocity of $v_{\scriptscriptstyle \chi}$ = 2.5
n/	s.	
	a)	Sketch a diagram including the path of the projectile.
	b)	Calculate the range, or horizontal displacement, of this projectile. List your
		givens, keeping x and y separate!
	c)	Find the overall velocity at $t = 0.83$ s (magnitude and direction).

A ball rolls horizontally off a ledge, 9.0 m high, with a velocity of 2.0 m/s. a) For how much time is the projectile in the air?			
b) What is the horizontal rang	ue of the projectile?		
c) What is the overall velocity	of the ball at 0.56 s after it leaves the ledge?		

A football is kicked with an initial velocity of 21.0 m/s at an angle of 53° above the
horizontal. It lands at the same height from which it was kicked.

a) Find the range of the football.

b) Find the maximum height reached by the football.

A rock is thrown from the top of a 23.0 m tall cliff with an initial velocity of 18.0 m/s at
63° above the horizontal.
a) If the ball hits the ground at the bottom of the cliff, how much time will it spend

a) If the ball hits the ground at the bottom of the cliff, how much time will it spend in the air?

b) What will be the range of the projectile?

c) What will be its maximum height?

A soccer ball is kicked at 16.6 m/s at 57° above horizontal. Will the ball go over the fence, which is 3.0 m tall and 20.0 m away?

A cannon on a 125 m high cliff fires a projectile with an initial velocity of 42 m/s at an angle of 27° below the horizontal.
a) What is the range of this projectile?

b) What is the final velocity of the projectile as it hits the ground (it's not 0!)?

Ryan fires his paintball gun at 92 m/s at 17° below the horizontal from the top of the school, which is 6.4 m tall. Will he hit Caleb, who is standing 17.4 m away from the school and is 1.75 m tall?

1.6: Review of Momentum and Collisions

At the end of this section, you should be able to: \[\text{\text{Write}} \text{ an equation using the law of conservation of momentum describing an interaction between two objects} \[\text{\text{Use}} \text{ Use the law of conservation of momentum to solve for some missing quantity}} \]				
Remember from last year, the basic formula for momentum :				
We also used the Law of Conservation of Momentum, which states that:				
Or in math terms:				

A train car with a mass of 1500 kg and an initial velocity of 6.0 m/s [East] collides with a train car which is at rest and has a mass of 1200 kg. What is the final velocity of the cars after the collision if they stick together?

A 1.0 kg ball moving with a velocity of 3.0 m/s [right] collides with a stationary 2.0 kg ball. After the collision the 2.0 kg ball moves at 2.0 m/s [right]. What is the velocity of the 1.0 kg ball after the collision?
A 50.0 kg figure skater is standing at rest on the ice. A 95.0 kg hockey player, also at rest, pushes the skater. What is the velocity of the figure skater if the hockey player moves backwards at 2.00 m/s after the push?

With what speed must a 12.0 kg Super-Monkey be running in order to completely stop a
12000.0 kg freight train moving at 140.0 km/hr?
A grande of mass 200 g at root blove up into two fragments. If one fragment has a
A grenade of mass 290 g at rest blows up into two fragments. If one fragment has a
mass of 120 g and is moving at 220 m/s, what is the mass and velocity of the other
fragment?

1.7: Momentum and Collisions in Two Dimensions

At the end of this section, you should be able to: Solve problems involving 2D collisions and explosions where momentum is conserved.			
Even though last year	we only dealt with interactions in one di	mension, the Law of	
Conservation of Momentum still applies in two or more dimensions. This year we will			
see collisions and explosions in two dimensions. The main difference this year is that we			
will look at the two <u>components</u> of momentum (x and y) separately.			

This makes the problems much more complicated, but the basic ideas are the same - you just need to keep the x-components and y-components of velocity and momentum separate when doing most of the calculations.

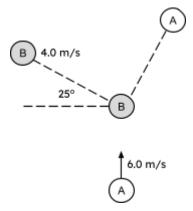
A 2.0 x 10^3 kg car travelling at 20.0 m/s [N] is struck at an intersection by a 2500 kg pickup truck travelling at 14.0 m/s [W]. If the vehicles stick together upon impact, what will be the velocity of the car-truck combination immediately after the collision?

A 0.400 kg grenade is stationary when it explodes into three fragments:

- One fragment (A), of mass 0.237 kg, goes off at 19.7 m/s [35° S of E].
- A second fragment (B), of mass 0.066 kg, travels due North.
- A third fragment (C), of mass 0.097 kg travels due West.

Determine the velocity of the second and third fragments after the explosion.

A 0.170 kg cue ball is moving to the east at 1.30 m/s when it encounters a stationary 8-ball which has a mass of 0.160 kg. After the collision the 8-ball moves off at 1.14 m/s [15°S of E]. What is the final velocity of the cue ball?


An 86.4 kg defenseman skating at 2.46 m/s [S] collides with an 84 kg centreman skating directly West. The players get stuck together and slide at 1.57 m/s [52° S of W]. What was the initial velocity of the centreman?

A 3.2-kg hawk soaring at 23 m/s [N] collides with a 0.50-kg sparrow flying at 5.0 m/s [W]. If both the hawk and sparrow are on the same horizontal plane, find their velocity if the hawk hangs on to the sparrow after collision.

Radioactivity is the result of atoms that decay or break apart spontaneously. A stationary parent nucleus of mass 1.2×10^{-24} kg decays into three particles.

- One particle of mass 3.0 x 10^{-25} kg moves away with a velocity of 2.0 x 10^7 m/s [E].
- Another particle of mass 2.3 x 10^{-25} kg moves at a speed of 4.2 x 10^7 m/s [N]. Calculate the mass and velocity of the third particle.

From the diagram below, determine the final velocity of the ball A after the collision if both A and B have the exact same mass.

A stationary 1.00 kg grenade explodes into four pieces, all moving parallel to the ground:

- The first piece (A) of mass 0.20 kg moves East at 24 m/s.
- The second piece (B) of mass 0.30 kg flies North at 18 m/s.
- A third piece (C) of mass 0.25 kg is directed West at 32 m/s.

What is the velocity of the fourth piece (D) which has a mass of 0.25 kg?