
Tests and Functionality
In this document we’ll be listing the merging rules, keeping track of which test cases are
implemented, and explaining the rationale behind the rules. If you need a playground to
understand the status quo merging behavior, you can use the examples in the GraphQL
schema docs. Valid tests do not throw errors and invalid tests do throw errors.

Overlapping Fields Tests
These rules and tests are largely derived from Young Kim’s list.

Schema
Here is the schema being used for the following tests

 interface SomeBox {
 deepBox: SomeBox
 unrelatedField: String
 }

 type StringBox implements SomeBox {
 scalar: String
 deepBox: StringBox
 unrelatedField: String
 listStringBox: [StringBox]
 stringBox: StringBox
 intBox: IntBox
 }

 type IntBox implements SomeBox {
 scalar: Int
 deepBox: IntBox
 unrelatedField: String
 listStringBox: [StringBox]
 stringBox: StringBox
 intBox: IntBox
 }

 interface NonNullStringBox1 {
 scalar: String!
 }

 type NonNullStringBox1Impl implements SomeBox & NonNullStringBox1 {

https://graphql.org/learn/schema/
https://graphql.org/learn/schema/
https://github.com/aprilrd/graphql-js/issues/6

 scalar: String!
 unrelatedField: String
 deepBox: SomeBox
 }

 interface NonNullStringBox2 {
 scalar: String!
 }

 type NonNullStringBox2Impl implements SomeBox & NonNullStringBox2 {
 scalar: String!
 unrelatedField: String
 deepBox: SomeBox
 }

 type Connection {
 edges: [Edge]
 }

 type Edge {
 node: Node
 }

 type Node {
 id: ID
 name: String
 }

 type Query {
 someBox: SomeBox
 connection: Connection
 }

1) Nullable field on an interface with aliases
In this case, SomeBox is an interface which IntBox implements. unrelatedField is a nullable
String. If the someBox field returns an IntBox, then both inline fragments would be used. Giving
each a different alias results in both fields in the response. If they were not aliased, GraphQL.js
would attempt to merge them and they would clash on account of their different nullability. Since
they are both aliased, both nullableField and nonNullableField can safely be included in the
response.​
​

However, if unrelatedField comes back null, then someBox would be null in the response. This
is effectively the same result as if both fields were marked non-nullable.
``` 
{ 
  someBox { 
    ...on SomeBox { 
      nullableField: unrelatedField 
    } 
    ...on IntBox { 
      nonNullableField: unrelatedField! 
    } 
  } 
} 
``` 

​ ? and ! is valid
​ ? and ? is valid
​ ! and ! is valid
​Unmarked and ! is valid
​ unmarked and ? is valid
​Unmarked and unmarked is valid

2) Nullable field on an interface without aliases
Similar to the above, but no aliases in the query. Fields that would be merged with different
nullabilities are rejected as invalid queries in this test set.
{
 someBox {
 ...on SomeBox {
 unrelatedField!
 }
 ...on IntBox {
 unrelatedField!
 }
 }
}

​ ? and ! is not valid
​ ? and ? is valid
​ ! and ! is valid

​Unmarked and ! is not valid
​ unmarked and ? is valid
​Unmarked and unmarked is valid

3) Non-nullable field on an interface with aliases
In this case, NonNullStringBox1 is an interface and NonNullStringBox1Impl implements
NonNullStringBox1. scalar is a non-nullable String. The rules we’re following are otherwise
identical to test set 1.
{
 someBox {
 ...on NonNullStringBox1 {
 nonNullable: scalar!
 }
 ...on NonNullStringBox1Impl {
 nullable: scalar
 }
 }
}

​ ? and ! is valid
​ ? and ? is valid
​ ! and ! is valid
​Unmarked and ! is valid
​Unmarked and ? is valid
​Unmarked and unmarked is valid

4) Non-nullable field without aliases
Similar to the above, but no aliases in the query. Fields that would be merged with different
nullabilities are rejected as invalid queries in this test set.
{
 someBox {
 ...on NonNullStringBox1 {
 scalar!
 }

 ...on NonNullStringBox1Impl {
 scalar!
 }
 }
}

​ ? and ! is not valid
​ ? and ? is valid
​ ! and ! is valid
​Unmarked and ! is valid
​ unmarked and ? is not valid
​Unmarked and unmarked

5) Exclusive nullable types without aliases
In this test set, we’re working with fields with differing types. IntBox.scalar is a nullable Int, and
StringBox.scalar is a nullable String. None of these test cases are expected to be valid because
Int and String are different types. This behavior is already partially covered by other tests.
Here’s an existing test for differing types and here’s an existing test for differing schema
nullability.
{
 someBox {
 ... on IntBox {
 scalar!
 }
 ... on StringBox {
 scalar!
 }
 }
}

​ ? and ! is not valid
​ ? and ? is not valid
​ ! and ! is not valid
​Unmarked and ! is not valid
​Unmarked and ? is not valid
​Unmarked and unmarked is not valid

6) Exclusive non-nullable types without aliases
This would be the same test set as 5, but if scalar was non-nullable. I’m going to skip this test
set for now since I think it covers essentially the same cases as test set 5. However, if someone
disagrees, I’ll happily implement it.

https://github.com/graphql/graphql-js/blob/c589c3d285cb1ec44b09bf0b50ec041ec083760c/src/validation/__tests__/OverlappingFieldsCanBeMergedRule-test.ts#L641
https://github.com/graphql/graphql-js/blob/c589c3d285cb1ec44b09bf0b50ec041ec083760c/src/validation/__tests__/OverlappingFieldsCanBeMergedRule-test.ts#L729
https://github.com/graphql/graphql-js/blob/c589c3d285cb1ec44b09bf0b50ec041ec083760c/src/validation/__tests__/OverlappingFieldsCanBeMergedRule-test.ts#L729

Executor Tests
As it stands, when a field is marked required, it’s treated exactly as if it was marked required in
the schema. Essentially clients have the option to override the nullability of a field from the client
side. The behavior is otherwise identical to the status quo. If null is found for a required field,
then it “bubbles up” to the first nullable parent. I’ve included a few tests illustrating this below,
but this should largely be the behavior we’re all used to.

Schema and Response
This test and response are used for all of the following test cases

Schema
type Query {
 food: Food
 }

type Food {
 name: String
 calories: Int
}

Response
food {
 name: null
 calories: 10
}

1) Null bubbles up when field that returns null is required
 query {
 food {
 name!
 calories
 }
 }

Response
 data: { food: null },
 errors: [
 {
 locations: [{ column: 13, line: 4 }],
 message: 'Cannot return null for non-nullable field Food.name.',
 path: ['food', 'name'],
 },
]

2) Null bubbles up when field that returns null and field that does
not are both required
 query {
 food {
 name!
 calories!
 }
 }

Response
 data: { food: null },
 errors: [
 {
 locations: [{ column: 13, line: 4 }],
 message: 'Cannot return null for non-nullable field Food.name.',
 path: ['food', 'name'],
 },
]

3) Null bubbles up when field that returns null is required, but
other aliased value is unaffected
Some reviewers of the initial RFC were concerned that if a field on a fragment was marked
required, then you risk wiping out all fields of any query that uses that fragment in the case that
null is returned for the required field. I’m including this test to illustrate one possible workaround

where all fragments that include a required field alias their nearest parent to protect other parts
of the query.
One example of how this could be used is in the case of Relay where components have
associated fragments. Normally those fragments would merge their fields in with a larger query,
but if they wanted to protect the parent fragment from being blown out by a required field, they
could adopt this strategy. This way, a null would be quarantined to the single subcomponent that
used that fragment.

 query {
 nonNullable: food {
 name!
 calories!
 }
 nullable: food {
 name
 calories!
 }
 }

Response
 data: { nonNullable: null, nullable: { calories: 10, name: null } },
 errors: [
 {
 locations: [{ column: 13, line: 4 }],
 message: 'Cannot return null for non-nullable field Food.name.',
 path: ['nonNullable', 'name'],
 },
]

There’s no way to do this in lists though because you can’t alias a fragment.

	Tests and Functionality
	Overlapping Fields Tests
	Schema
	1) Nullable field on an interface with aliases
	2) Nullable field on an interface without aliases
	3) Non-nullable field on an interface with aliases
	4) Non-nullable field without aliases
	5) Exclusive nullable types without aliases
	6) Exclusive non-nullable types without aliases

	Executor Tests
	Schema and Response
	Schema
	Response

	1) Null bubbles up when field that returns null is required
	Response

	2) Null bubbles up when field that returns null and field that does not are both required
	Response

	3) Null bubbles up when field that returns null is required, but other aliased value is unaffected
	Response

