Tests and Functionality

In this document we’ll be listing the merging rules, keeping track of which test cases are
implemented, and explaining the rationale behind the rules. If you need a playground to
understand the status quo merging behavior, you can use the examples in_ the GraphQL
schema docs. Valid tests do not throw errors and invalid tests do throw errors.

Overlapping Fields Tests

These rules and tests are largely derived from Young Kim’s list.

Schema

Here is the schema being used for the following tests

interface SomeBox {
deepBox: SomeBox
unrelatedField: String

}

type StringBox implements SomeBox {
scalar: String
deepBox: StringBox
unrelatedField: String
listStringBox: [StringBox]
stringBox: StringBox
intBox: IntBox

}

type IntBox implements SomeBox {
scalar: Int
deepBox: IntBox
unrelatedField: String
listStringBox: [StringBox]
stringBox: StringBox
intBox: IntBox

}

interface NonNullStringBox1 {
scalar: String!

}

type NonNullStringBox1Impl implements SomeBox & NonNullStringBox1 {

https://graphql.org/learn/schema/
https://graphql.org/learn/schema/
https://github.com/aprilrd/graphql-js/issues/6

scalar: String!
unrelatedField: String
deepBox: SomeBox

}

interface NonNullStringBox2 {
scalar: String!

}

type NonNullStringBox2Impl implements SomeBox & NonNullStringBox2 {
scalar: String!
unrelatedField: String
deepBox: SomeBox

}

type Connection {
edges: [Edge]
}

type Edge {
node: Node

}

type Node {
id: ID
name: String

}

type Query {
someBox: SomeBox

connection: Connection

}

1) Nullable field on an interface with aliases

In this case, SomeBox is an interface which IntBox implements. unrelatedField is a nullable
String. If the someBox field returns an IntBox, then both inline fragments would be used. Giving
each a different alias results in both fields in the response. If they were not aliased, GraphQL.js
would attempt to merge them and they would clash on account of their different nullability. Since
they are both aliased, both nullableField and nonNullableField can safely be included in the
response.

However, if unrelatedField comes back null, then someBox would be null in the response. This
is effectively the same result as if both fields were marked non-nullable.

{

someBox {
...on SomeBox {
nullableField: unrelatedField

}

...on IntBox {
nonNullableField: unrelatedField!

)
)
'

[YUnmarked-and-unmarked-is-valid

2) Nullable field on an interface without aliases

Similar to the above, but no aliases in the query. Fields that would be merged with different
nullabilities are rejected as invalid queries in this test set.
{
someBox {
...on SomeBox {
unrelatedField!
}
...on IntBox {
unrelatedField!
}
}
}

V] Yrmaarkedandormarkedisvatic

3) Non-nullable field on an interface with aliases

In this case, NonNullStringBox1 is an interface and NonNullStringBox1Impl implements
NonNullStringBox1. scalar is a non-nullable String. The rules we’re following are otherwise
identical to test set 1.
{
someBox {
...on NonNullStringBox1 {
nonNullable: scalar!

}
...on NonNullStringBox1Impl {

nullable: scalar

}
}
}

y Y "
V] Gererketamatmrme e aa—vatic

KRR

4) Non-nullable field without aliases

Similar to the above, but no aliases in the query. Fields that would be merged with different
nullabilities are rejected as invalid queries in this test set.
{
someBox {
...on NonNullStringBox1 {
scalar!

}

...on NonNullStringBox1Impl {
scalar!

}
}
}

V] Grarmreded-and-srmaried

RNENEJYRA

5) Exclusive nullable types without aliases

In this test set, we're working with fields with differing types. IntBox.scalar is a nullable Int, and
StringBox.scalar is a nullable String. None of these test cases are expected to be valid because
Int and String are different types. This behavior is already partially covered by other tests.
Here’s an existing test for differing types and here’s an existing test for differing schema

nullability.
{

someBox {
... on IntBox {
scalar!
}
... on StringBox {
scalar!
}
}
}

NN JYR

6) Exclusive non-nullable types without aliases

This would be the same test set as 5, but if scalar was non-nullable. I'm going to skip this test
set for now since | think it covers essentially the same cases as test set 5. However, if someone

disagrees, I'll happily implement it.

https://github.com/graphql/graphql-js/blob/c589c3d285cb1ec44b09bf0b50ec041ec083760c/src/validation/__tests__/OverlappingFieldsCanBeMergedRule-test.ts#L641
https://github.com/graphql/graphql-js/blob/c589c3d285cb1ec44b09bf0b50ec041ec083760c/src/validation/__tests__/OverlappingFieldsCanBeMergedRule-test.ts#L729
https://github.com/graphql/graphql-js/blob/c589c3d285cb1ec44b09bf0b50ec041ec083760c/src/validation/__tests__/OverlappingFieldsCanBeMergedRule-test.ts#L729

Executor Tests

As it stands, when a field is marked required, it's treated exactly as if it was marked required in
the schema. Essentially clients have the option to override the nullability of a field from the client
side. The behavior is otherwise identical to the status quo. If null is found for a required field,
then it “bubbles up” to the first nullable parent. I've included a few tests illustrating this below,
but this should largely be the behavior we're all used to.

Schema and Response

This test and response are used for all of the following test cases

Schema

type Query {
food: Food

}

type Food {
name: String
calories: Int

}

Response

food {
name: null
calories: 10

}

1) Null bubbles up when field that returns null is required

query {
food {
name!
calories

}
}

Response

data: { food: null },
errors: [
{
locations: [{ column: 13, line: 4 }],
message: 'Cannot return null for non-nullable field Food.name.',
path: ['food', 'name],
2
]

2) Null bubbles up when field that returns null and field that does
not are both required

query {
food {
name!
calories!
}
}

Response

data: { food: null },
errors: [
{
locations: [{ column: 13, line: 4 }],
message: 'Cannot return null for non-nullable field Food.name.',
path: ['food', 'name],
2
]

3) Null bubbles up when field that returns null is required, but
other aliased value is unaffected

Some reviewers of the initial RFC were concerned that if a field on a fragment was marked
required, then you risk wiping out all fields of any query that uses that fragment in the case that
null is returned for the required field. I’'m including this test to illustrate one possible workaround

where all fragments that include a required field alias their nearest parent to protect other parts
of the query.

One example of how this could be used is in the case of Relay where components have
associated fragments. Normally those fragments would merge their fields in with a larger query,
but if they wanted to protect the parent fragment from being blown out by a required field, they

could adopt this strategy. This way, a null would be quarantined to the single subcomponent that
used that fragment.

query {
nonNullable: food {
name!
calories!
}
nullable: food {
name
calories!
}
}

Response

data: { nonNullable: null, nullable: { calories: 10, name: null } },
errors: [
{
locations: [{ column: 13, line: 4 }],
message: 'Cannot return null for non-nullable field Food.name.',
path: ['nonNullable’, 'name’'],
2
]

There’s no way to do this in lists though because you can'’t alias a fragment.

	Tests and Functionality
	Overlapping Fields Tests
	Schema
	1) Nullable field on an interface with aliases
	2) Nullable field on an interface without aliases
	3) Non-nullable field on an interface with aliases
	4) Non-nullable field without aliases
	5) Exclusive nullable types without aliases
	6) Exclusive non-nullable types without aliases

	Executor Tests
	Schema and Response
	Schema
	Response

	1) Null bubbles up when field that returns null is required
	Response

	2) Null bubbles up when field that returns null and field that does not are both required
	Response

	3) Null bubbles up when field that returns null is required, but other aliased value is unaffected
	Response

