
Cycle-2

Unit – III

Short Questions:

1.​ Explain language acceptance of a PDA.
2.​ What is decidability?
3.​ Differentiate between acceptance by final state and empty stack in a PDA.
4.​ Differentiate between Deterministic and Non-Deterministic Turing Machines
5.​ Explain the concept of instantaneous description (ID) of a PDA.
6.​ Explain the role of the tape and head in a Turing Machine.
7.​ Explain “language acceptance” by a Turing Machine
8.​ Explain the concept of undecidability with example.
9.​ What types of languages are accepted by a PDA

10.​Differentiate Tape and Head of a FA/PDA vs Tape and Head of Turing Machine

Long:

1.​ Construct a PDA that accepts the language . 𝐿 = { 𝑎, 𝑏{ } * ∣𝑛𝑎 = 𝑛𝑏 }
2.​ Design a PDA to accept the following language L={0n1n | n>0}
3.​ Construct a PDA that accepts the language 𝐿 = {𝑎𝑛𝑏𝑛∣𝑛≥1}
4.​ Construct a PDA from the grammar S�aAA , A�aS|bS|a
5.​ Construct a PDA, M equivalent to the following CFG S� 0BB, B�0S|1S|0 test the string w=01000

in L(M)
6.​ Construct that L={anbncn | n>=1} is not a Context free language using pumping lemma
7.​ Explain the formal definition and working of a Turing Machine and Design Turing machine

Instantaneous Description with example
8.​ Show with an example that there exists a language, which is recursively enumerable, but not

recursive.
9.​ Describe the Halting Problem
10.​Give examples of decidable and undecidable problems.
11.​Give an example of an undecidable problem that is Recursively Enumerable (RE). Explain

carefully how it is RE but not decidable, with reference to the Halting Problem

UNIT-IV

1.​ What is input buffering and why is it needed.
2.​ Explain Lexical errors
3.​ Describe the primary role of a lexical analyzer in a compiler?

4.​ Explain Left recursion how to eliminate it
5.​ Differentiate between Interpreter and Compiler
6.​ Define Bootstrapping
7.​ Discuss about Ambiguous grammars
8.​ Differentiate between lexical analysis and syntax analysis.
9.​ Define token, lexeme, and pattern with examples

Long:

1.​ Construct LL1 parser and table for the following grammar

 S�aAB|bA| ε, A�aAb| ε, B�bB| ε
2.​ Differentiate LL1 model and LR model with neat diagram
3.​ Show that the following grammar S� Aa|bAc|Bc|bBa, A�d, B�d is LR(1) but not LALR(1)
4.​ Discuss the problems in Top-Down Parsing with examples
5.​ Write the rules to compute First and Follow for the given grammar
6.​ Construct the collection of LR item sets and parsing table for the given grammar E�E+T|T,

T�TF|F, F�F*|a|b parse the input string w= a*b+a
7.​ Illustrate the following statement on all phases of the compiler

 position: =initial + rate * 60
8.​ Calculate First and Follow and parsing table for the given grammar and check the given string is

parse successfully (w=id+id*id). E�TE’ , E’�+TE’|ε, T�FT’ , T’�*FT’| ε, F�(E)|id
9.​ Explain the role of lexical analyzer and issues of lexical analyzer in compiler design
10.​Construct the collection of LR item sets and parsing table for the given grammar E�E+T|T,

T�TF|F, F�F*|a|b parse the input string w= a*b+a

UNIT –V

1.​ What are the different variants of syntax trees used in intermediate-code generation?
2.​ Define three-address code (TAC).
3.​ Differentiate between synthesized and inherited attributes
4.​ What is a run-time environment?
5.​ What is a Syntax-Directed Translation Scheme?
6.​ What is stack allocation in runtime environments?
7.​ How does heap allocation differ from stack allocation?
8.​ How can a function access nonlocal variable?
9.​ Define Activation record briefly
10.​Design the dependency graph with example

Long:

1.​ Explain what a Syntax-Directed Definition is. Describe how synthesized and inherited attributes
are used in SDDs with example

2.​ Describe the organization of a typical run-time environment
3.​ Explain why heap management is required in programming languages that support dynamic

memory allocation.
4.​ Explain the challenges and techniques for accessing Nonlocal Data on the Stack
5.​ Explain the concept of Three-Address Code. Describe its general format and different forms

(quadruples, triples, indirect triples for the expression x:= -(a*b)+(c+d)-(a+b+c+d)
6.​ Define different storage organizations briefly
7.​ Define variants of syntax tree and its construction for the expression x*y-5+z
8.​ Generate the three-address code for the expression: a = b * (c + d) and draw the

corresponding syntax tree.
9.​ Analyze the differences between stack allocation and heap allocation and give scenarios where

each is preferable.
10.​Discuss how evaluation order is determined for an SDD and why it is important in compiler

design
11.​Given a simple expression grammar, construct an L-attributed SDD for computing the value of

expressions.

