

Name: _______________________________ Perm no. :____________________________

CMPSC16 Midterm-II Exam Notes

 Arrays ​ ​ Pointers

Declaration int a[5]; // ‘a’ is an array
of integers with 5 elements

Declaration int *mydata1, *mydata2;
Node *mynode;
int **px;

Declaration
and
initialization

int a[5]={1,2,4,8,16}; Declaration
and
initialization

int y, *p =&y;//p points to y
int *q =0; // p is initialized to
NULL
Node *mynode = new Node;

Representat
ion

Representation

Size 5 integer elements or 20
bytes

Size of p or q
or mynode

4 bytes

Printing all
elements

for(int i =0;i<5;i++)
 cout<<a[i];

Printing cout<<p;//prints the address of y
cout<<q; //prints 0

Declaration
of functions
that take
arrays as
arguments

int sum(int arr[], int len)
int sum (int *arr , int len)

Dereferencing cout<<*p; //Prints 3
cout<<*q; //Segfaults q is NULL
cout<<mynode->data;
//Prints the data element of Node
pointed to by mynode

Passing an
array to a
function

int mysum;
mysum = sum(a, 5);
When you pass an array as a
parameter to a function, it
decays to a pointer to the first
element of the array.

Ways to change
value of
variable: (1)
Directly using
the name of the
variable
(2) Indirectly via
the pointer

(1) Directly

(2) Indirectly: via pointer

References

Definition A reference variable is an “alias for another variable.”

Uses of the
Ampersand (&)

(1) “address of”: the pointer obtains the ADDRESS of the int x, not the value of x (5)
int x = 5;
int *p = &x;
(2) “declaring a reference”: y is another name for the variable x
int x = 5;
int& y = x;
When dealing with reference variables, the & is used in the second way.
It does not mean “get the address of”

1

Name: _______________________________ Perm no. :____________________________

CMPSC16 Midterm-II Exam Notes

Call by
Reference vs.
Call by Value

Call by
Reference vs.
Call by Value

In a call by value the parameter that is
passed into a function is a COPY of the
actual parameter that is passed in. E.g.
void func(int a) {

a += a;
}
int main() {
 int x = 5;
 cout <<”x =” << x << endl;
 func(x);
 cout << “x =” << x < endl;
}
will output:
x =5;
x =5;

The value of x does not change, since
when x is passed to func in the third
line of main, a COPY of x is passed,
not the actual variable x.

On the other hand, you can call by
reference by changing the parameter of
the functions:
void func(int &a) {

a += a;
}
int main() {
 int x = 5;
 cout <<”x =” << x << endl;
 func(x);
 cout << “x =” << x < endl;
}
will output:
x =5;
x =10;

Call by reference is useful when using large
objects, since you can directly modify the
object by passing it as a reference instead of
a COPY of the object. Any changes you make
to the object in the function will change the
actual values in the object itself.

Structs

Definition of
struct

A struct is a data structure that contains simpler data types like ints, strings, etc.
They are usually used as a way to define your own type.

Declaring a
struct data type

struct Node{
 int data;
 Node *next;
};

struct LinkedList{
 Node *head;
 Node *tail;
};

Declaring an
object of type
struct
stack vs. heap

Node n; // n is 8 bytes created on the stack
Node *p; // p is 4 bytes created on the stack
Node *p = new Node; // p points to a Node on the heap

Accessing
member
variables

n.data =5;
n.next = NULL:

p->data = 10;
p->next =NULL;

If n is a struct object or a reference to a struct
object use the dot operator.

If you have a pointer to a struct like (p), use
the arrow operator to access the member
variables

2

Name: _______________________________ Perm no. :____________________________

CMPSC16 Midterm-II Exam Notes

Linked-lists -> Will not be on the exam

Definition of
linked-list

Stores a list of elements in Nodes that are not next to each other in memory
A Linked List object consists of two Node pointers: one that points to the head (beginning) of the
linked list, and one that points to the tail (last node). If the object is empty, both fields are null. If
the object has only one Node, both fields point to that same Node.
A Node is an object that can have any type of data fields, and a Node pointer field (that points to
the next Node in that list).

Initialization LinkedList *list = new LinkedList;
list->head=list->tail = null;

Iterating
through a
Linked List

Node *p = list->head;
while(p != NULL){
 p = p->next;
 //you can use p to manipulate the data in every node
 //by accessing p->data
}

Deleting a
Linked List

1. Delete every node
 Node *p, *q;
 p= list->head;
 while(p){
 q = p;
 p = p->next;
 delete q;
 }
2. If it exists, delete the pointer that points to that list.
 delete list;

Stack vs.
Heap

LinkedList *list = new
LinkedList;
list->head = list->tail = NULL;

Node *p1 = new Node;
p1->data = 1;
Node *p2 = new Node;
p2->data = 2;
p1->next = p2;
p2->next = NULL;
list->head = p1;
list->tail = p2;

3

