# Hybrid Quantum Folding & Cyclization System (HQFCS) - v2

#

# This script saliently combines three physics-based chemical
synthesis simulations:

# 1. (NEW) Stage 0: Hydrocarbon Sequencing:

# Analyzes the precursor's formula to determine chain length and
unsaturation.

# 2. Stage 1: Quantum-Informed Matter Folding (from dist steroid.py):
# Uses gamma backscatter and skyrmion spin dynamics to "fold" a
molecule.

# 3. Stage 2: Skyrmion-Optics Metamaterial Cyclization (from
Skyrmion-Optics...):

# Uses circular dichroism and skyrmion-optics to "cyclize" a
precursor.

#

# Salient Combination (Full Pipeline SO -> S1 -> S2):

# - STAGE 0: Sequences the precursor to find unsaturation/cyclization
sites.

# - (S0->81 LINK): This sequence data *primes* the initial folding

parameters (curvature, entropy) for Stage 1.

# - STAGE 1: Folds the precursor based on the primed parameters.

# - (S1->82 LINK): The final folded parameters *prime* the chemical
reaction state (catalyst, stability) for Stage 2.

# - (S1->82 LINK): The final spin density from Stage 1 provides a
*spin boost* to Stage 2's tunneling efficiency.

import math

import random

import re # <-- Added for sequencing
import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D
from typing import List, Tuple

class Molecule:
"n"r"Represents the hybrid target molecule for the entire
process. """

def init (self, name, formula, target ring structure):
self.name = name
self.formula = formula
self.target ring structure = target ring structure # From

Skyrmion-Optics target



# --- STAGE 0: SEQUENCING CLASSES (NEW) ---

class SequenceData:
"""Holds the results of the initial hydrocarbon sequence
analysis."""
def init (self, carbon chain length: int, unsaturation sites:
int, potential cyclization points: int):
self.carbon chain length = carbon chain length
self.unsaturation sites = unsaturation sites
self.potential cyclization points =
potential cyclization points # Key new parameter

# --- STAGE 1: FOLDING CLASSES (from dist steroid.py) ---

class GammaSignature:
"nr"Represents the gamma backscatter signature for folding.""™"
def init (self, energy, angle):
self.energy = energy
self.angle = angle

class FoldingParams:
"""Internal parameters derived from the gamma scan."""
def init (self, phase shift, curvature, entropy bias):
self.phase shift = phase_ shift
self.curvature = curvature
self.entropy bias = entropy bias

class LaserConfig:
"""Configuration for the matter-folding laser."""
def init (self, wavelength, pulse width, coherence):
self .wavelength = wavelength
self.pulse width = pulse width
self.coherence = coherence

# --- STAGE 2: CYCLIZATION CLASSES (from Skyrmion-Optics) ---

class SpectrumSignature:
"nr"Represents the Circular Dichroism signature of the current
conformation."""
def init (self, ellipticity: float, absorption peak: float):
gself.ellipticity = ellipticity # Handedness/chirality



signal (mdeg)
self.absorption peak = absorption peak # Wavelength (nm)

class MetamaterialParams:
"n"r"pParameters defining the graphene-based stabilization
scaffold."""
def init (self, tensile stress: float, pore density: float,
confinement rigidity: float):
self.tensile stress = tensile stress
self.pore density = pore density
self.confinement rigidity = confinement rigidity # How much
the scaffold resists structural change

class ReactionState:
""r"pParameters defining the chemical environment and molecular
preparation."""
def init (self, catalyst activity: float,
intermediate stability: float):
self.catalyst activity = catalyst activity # E.g., Lewis acid
strength (units)
self.intermediate stability = intermediate stability # E.g.,
Solvent-mediated stabilization (units)

class SkyrmionGateConfig:
"nnpParameters for the Tunable Skyrmion Field and the Chiral
Optical Gate."""

def init (self, magnetic field: float, skyrmion density: float,
optical polarization: float):
self .magnetic field = magnetic field # Controls
Skyrmion size/stability (Tesla)
self.skyrmion density = skyrmion density # Density of the

magnetic 'quanta' (nm”-2)
self.optical polarization = optical polarization # Chiral
light input (-1.0 to 1.0)

def initialize system() :
print ("[INIT] Hybrid Quantum Folding & Cyclization System (HQFCS)
v2 initialized.\n")

def sequence hydrocarbon precursor (molecule: Molecule) ->



SequenceData:

Simulates a basic analysis of the precursor's hydrocarbon
skeleton.

This is the new 'Stage 0' analysis.

print (£E"\n[STAGE 0] Sequencing precursor: {molecule.name}
({molecule.formula})")

try:
# This is a simplified simulation. A real one would be vastly
complex.
c search = re.search(r'C(\d+)', molecule.formula)
h search = re.search(r'H(\d+)', molecule.formula)
c¢_count = int(c_search.group(l)) if c_search else 0
h count = int (h search.group(1l)) if h search else 0
if ¢ _count == 0 or h count == 0:

raise ValueError ("Incomplete formula for sequencing.")

# Calculate Degree of Unsaturation (DoU)

# DoU =C + 1 - (H/2) - (X/2) + (N/2)

# Assuming only C and H for hydrocarbons:
max h = 2 * ¢ count + 2

unsaturation sites = (max h - h count) // 2

# Simulate potential cyclization points based on chain length
and unsaturation

# More sites = more places for the folding to target.

potential cyclization points = max(l, unsaturation sites // 2)
+ (c_count // 10)

print (£" [SEQ-S0] Carbon Chain: {c_count}")

print (£" [SEQ-S0] Unsaturation Sites (DoU) :
{unsaturation sites}")

print (£" [SEQ-S0] Potential Cyclization Points:
{potential cyclization points}™")

return SequenceData(c_count, unsaturation sites,
potential cyclization points)

except Exception as e:
print (£" [SEQ-SO0-ERROR] Could not parse formula
{molecule.formula}: {e}")
print (" [SEQ-S0-ERROR] Using default sequence values.")
# Return default values
return SequenceData (20, 4, 2)



def capture gamma backscatter (molecule: Molecule) -> GammaSignature:
""rSimulates gamma scan for initial folding."""
print (£" [SCAN-S1] Scanning molecule: {molecule.name}
({molecule.formula}) for folding.")
energy = round(random.uniform(1.0, 1.5), 2)
angle = round(random.uniform(30.0, 60.0), 2)
return GammaSignature (energy, angle)

def interpret folding params (sig: GammaSignature, seq_data:
SequenceData) -> FoldingParams:

nnn

Interprets gamma signature to get folding parameters.

*** SAT,TENT COMBINATION (SO -> S1) ***

Uses SequenceData from Stage 0 to "prime" the initial folding
entropy and curvature.

nonn

base phase shift = sig.energy * 0.85

base curvature = math.tan(math.radians(sig.angle)) * 0.1

base entropy bias = 1.0 / (1.0 + sig.energy)

# --- SALIENT COMBINATION (S0->S1) ---

# More unsaturation sites (from Stage 0) = more flexibility =
higher initial entropy to control.

entropy boost = seq data.unsaturation sites * 0.05

# More cyclization points (from Stage 0) = needs a more complex
fold = higher target curvature.

curvature boost = seq data.potential cyclization points * 0.02

final entropy bias = base entropy bias + entropy boost
final curvature = base curvature + curvature boost

print (£" [PRIME-S1] Stage 0 Params (Unsaturation:
{seq data.unsaturation sites}, Cycl. Points:
{seq data.potential cyclization points})")

print (£" [PRIME-S1] Primed Folding State (Curvature:
{round (final curvature, 3)}, Entropy: {round(final entropy bias,
3P

# --- END COMBINATION ---

return FoldingParams (base phase shift, final curvature,
final entropy bias)

def derive laser geometry(params: FoldingParams) -> LaserConfig:
"n"r"Configures laser based on folding parameters."""



wavelength = 400.0 + params.phase shift * 10.0

pulse width = 50.0 - params.curvature * 5.0

coherence = 1.0 - params.entropy bias

return LaserConfig(wavelength, pulse width, coherence)

def recalculate band states(params: FoldingParams, config:
LaserConfig) -> Tuplel[float, float]:
"""Recalculates electron band states during folding.""™"
print (" [BAND-S1] Recalculating electron band states...")

band gap = max(1.5 - (params.curvature * 2.0 + params.entropy bias
* 1.2), 0.5)
orbital shift = config.coherence * 0.3

print (£" [BAND-S1] Band Gap: {round(band gap, 3)} eV | Orbital
Shift: {round(orbital shift, 3)} units")
return band gap, orbital shift

def simulate skyrmion dynamics(iteration: int) -> float:

"trSimulates skyrmion tunneling dynamics for folding stability.m"m™"

print (£" [SKYRMION-S1] Simulating tunneling dynamics at iteration
{iteration}...")

position = np.sin(iteration * 0.5) * 5

tunneling current = 0.8 + np.cos(iteration * 0.3) * 0.2

spin density = np.exp(-abs(position)) * tunneling current

print (£" [SKYRMION-S1] Position: {round(position,2)} | Current:
{round (tunneling current,2)} | Spin Density: {round(spin density,3)}")

return spin density

def fold matter(config: LaserConfig) -> bool:
"n"rExecutes the laser-based matter folding."""
if config.coherence < 0.5:
print (" [ERROR-S1] Laser coherence too low. Folding
aborted.\n")
return False
print (" [SUCCESS-S1] Folding completed. Molecular bonds
realigned.\n")
return True

def run folding stage(molecule: Molecule, seq data: SequenceData) ->
Tuple [LaserConfig, FoldingParams, List[float], List[float],
List[float], bool]:

The adaptive loop for Stage 1: Folding.

Now requires seq data to prime the parameters.

nmnn

sig = capture gamma backscatter (molecule)

# Pass seqg data to the interpreter

params = interpret folding params(sig, seq data) # (modified)

config = derive laser geometry (params)



band gap history = []
orbital shift history = []
spin density history = []
success flag = False

for 1 in range(3):
print (£" [LOOP-S1] Iteration {i+1l}: Evaluating system
stability...")

spin density = simulate skyrmion dynamics (i)
spin density history.append(spin density)

band gap, orbital shift = recalculate band states(params,
config)

band gap history.append (band gap)

orbital shift history.append(orbital shift)

if spin density < 0.7:
print (" [ADAPT-S1] Spin density low. Enhancing curvature.")
params.curvature *= 1.1
config = derive laser geometry (params)

if config.coherence < 0.6 or band gap < 0.7:
print (" [ADAPT-S1] Coherence or band gap unstable.
Adjusting entropy bias.")
params.entropy bias *= 0.9
config = derive laser geometry (params)

if fold matter(config):
print (£" [RESULT-S1] {molecule.name} successfully folded
with skyrmion-guided control.\n")
success flag = True
return config, params, band gap history,
orbital shift history, spin density history, success flag

print (" [RETRY-S1] Folding failed. Retrying...\n")
print (£" [RESULT-S1] {molecule.name} folding stage complete
(unstable) .\n")

return config, params, band gap history, orbital shift history,
spin density history, success flag

def capture cd spectrum(target: Molecule) -> SpectrumSignature:



""r"Simulates capturing the CD spectrum to determine chiral state
of folded precursor."""

print (£" [CD-SCAN-S2] Scanning folded precursor: {target.name} for
{target.target ring structure} cyclization.")

ellipticity = round(random.uniform(-15.0, 15.0), 1)

peak = round(random.uniform(280.0, 320.0), 1)

return SpectrumSignature(ellipticity, peak)

def interpret cyclization params(sig: SpectrumSignature, fold params:
FoldingParams) -> Tuple[MetamaterialParams, ReactionState]:

nnn

Interprets the signature to derive metamaterial and reaction
parameters.

*%% SAT,ITENT COMBINATION (S1 -> S2) **xx*

Uses FoldingParams from Stage 1 to "prime" the initial
ReactionState.

# Metamaterial Derivation (Physical confinement)

rigidity = 1.0 + abs(sig.ellipticity) / 10.0

tensile stress = sig.absorption peak / 300.0 * 1.2

pore density = 0.5 + sig.absorption peak * sig.ellipticity *
0.0001

meta params = MetamaterialParams (tensile stress, pore density,
rigidity)

# Initial Reaction State Derivation (Chemically primed)

# Base catalyst activity from CD scan

base catalyst = max (1.5 - abs(sig.ellipticity) * 0.05, 0.5)
# Base stability from CD scan

base stability = sig.absorption peak / 300.0 * 1.5

# --- SALIENT COMBINATION (S1->S2) ---

# Folding (high curvature, low entropy) enhances chemical state

# High curvature from S1 implies a well-folded, stable
intermediate

curvature boost = fold params.curvature * 0.5

# Low entropy bias from S1 implies better alignment for catalysis

entropy dampen = fold params.entropy bias * 0.2

catalyst activity = max(base catalyst - entropy dampen, 0.3)
intermediate stability = base stability + curvature boost
print (£" [PRIME-S2] Stage 1 Params (Curvature:

{round (fold params.curvature,2)}, Entropy:

{round (fold params.entropy bias,2)})")
print (£" [PRIME-S2] Primed Chemical State (Activity:

{round (catalyst activity,2)}, Stability:

{round (intermediate stability,2)})")



# --- END COMBINATION ---

reaction state = ReactionState(catalyst activity,
intermediate stability)

return meta params, reaction_state

def derive skyrmion gate geometry(params: MetamaterialParams, sig:
SpectrumSignature) -> SkyrmionGateConfig:
"""Derives magnetic field and optical gate parameters."""
magnetic field = 0.8 + params.confinement rigidity * 0.3
skyrmion density = math.log(params.tensile stress + 1.0) * 5.0
optical polarization = -sig.ellipticity / 15.0

return SkyrmionGateConfig(magnetic field, skyrmion density,
optical polarization)

def recalculate tunneling states(meta params: MetamaterialParams,
skyrmion config: SkyrmionGateConfig, reaction state: ReactionState) -»>
Tuple[float, float, float]:

nmmn

Determines optical mode coupling efficiency and transport loss,

introducing CHEMICAL INFLUENCE on coupling.

nmnn

print (" [RECAL-S2] Recalculating Skyrmion-Photonic and Chemical
states...")

# Base Coupling Efficiency (Magnetic/Optical)
base coupling = min(skyrmion config.skyrmion density / 8.0, 0.98)
* (1.0 - abs(skyrmion config.optical polarization) * 0.1)

# Chemical Influence Factor
chemical influence = 1.0 + (reaction state.catalyst activity *
reaction state.intermediate stability) * 0.1

# Combined Coupling Efficiency
combined coupling = min(base coupling * chemical influence, 0.99)

# Transport loss (Physical)
transport loss = max(0.01 + 1.0 /
(meta params.confinement rigidity * 10.0), 0.05)

print (f£" [RECAL-S2] Chemical Influence Factor:
{round (chemical influence, 3)}")
print (£" [RECAL-S2] Combined Coupling Efficiency:
{round (combined coupling, 3)}")
return combined coupling, transport loss, chemical influence



def simulate tunneling dynamics(iteration: int, chemical influence:
float, final fold spin density: float) -> float:

nnn

Simulates the final efficiency of the light transport.

*** SAT,TENT COMBINATION (S1 -> S2) ***

Uses final fold spin density from Stage 1 to provide a "spin
boost™".

nonn

print (£" [SKYOP-S2] Simulating Skyrmion-Optics tunneling efficiency
at iteration {iteration}...")

skyrmion stability = 0.8 + np.sin(iteration * 0.4) * 0.15

# --- SALIENT COMBINATION (S1->S2) ---
# Spin density from Stage 1 provides a base-level boost to
tunneling

spin boost = final fold spin density * 0.1

# Total effective efficiency (boosted by chemistry AND prior spin
state)

tunneling efficiency = max (0.9 * skyrmion stability *
chemical influence + spin _boost - iteration * 0.05, 0.5) # (modified)

print (£" [SKYOP-S2] (Fold Spin Boost: {round(spin boost, 3)}) |
Tunneling Efficiency: {round(tunneling efficiency, 3)}") # (modified)
return tunneling efficiency

def execute cyclization(config: SkyrmionGateConfig, efficiency: float)
-> Tuple[bool, float, float]:

"nrAttempts the final cyclization, incorporating tunneling
efficiency."""

cyclization yield = efficiency * random.uniform(0.85, 0.95)
enantiomeric excess = abs(config.optical polarization) *
random.uniform(0.90, 0.99) * 100.0

if efficiency < 0.75:
print (" [ERROR-S2] Optical Tunneling Efficiency too low.
Cyclization aborted.\n")
return False, 0.0, 0.0

print (£" [SUCCESS-S2] Photochemical cyclization completed via
Skyrmion-guided light.")
return True, cyclization yield, enantiomeric_ excess

def run cyclization stage(target: Molecule, fold params:
FoldingParams, final fold spin density: float) -»>
Tuple [SkyrmionGateConfig, MetamaterialParams, ReactionState,



List[float], List[float], List[float], float, float, List[float]]:
"""The iterative loop for Stage 2: Cyclization."""

sig = capture cd spectrum(target)

# Pass fold params from S1 into the S2 interpreter

meta params, reaction state = interpret cyclization params(sig,
fold params) # (modified)

skyrmion config = derive skyrmion gate geometry(meta params, sig)

#
coupling history = []
loss history = []
efficiency history = []
chemical influence history = [] #

final yield, final ee = 0.0, 0.0

for 1 in range(5): #
print (£" [LOOP-S2] Iteration {i+1}: Evaluating Skyrmion-Optics
Transport...")

combined coupling, transport loss, chemical influence =
recalculate tunneling states(meta params, skyrmion config,
reaction state) #

coupling history.append (combined coupling)

loss _history.append(transport loss)

chemical influence history.append(chemical influence)

# Pass final fold spin density from S1 into S2 simulation

tunneling efficiency = simulate tunneling dynamics (i,
chemical influence, final fold spin density) # (modified)

efficiency history.append(tunneling efficiency)

# --- Adaptive Tuning based on Efficiency Feedback ---

if tunneling efficiency < 0.85:

print (" [ADAPT-S2] Tunneling efficiency low. Prioritizing
chemical optimization.™")

# TUNE 1: Chemical

reaction state.intermediate stability *= 1.08

reaction state.intermediate stability =
np.clip(reaction state.intermediate stability, 0.1, 2.5)

# TUNE 2: Magnetic

skyrmion config.skyrmion density *= 1.05

elif combined coupling < 0.8:
print (" [ADAPT-S2] Low coupling efficiency. Adjusting
catalyst for alignment.")



# TUNE 3: Chemical

reaction state.catalyst activity += random.uniform(-0.05,
0.05)

reaction state.catalyst activity =
np.clip(reaction state.catalyst activity, 0.5, 2.0)

# TUNE 4: Physical

meta params.confinement rigidity *= 1.01

skyrmion config =
derive skyrmion gate geometry (meta params, sig) #

success, current yield, current ee =
execute cyclization (skyrmion config, tunneling efficiency) #

if success and current ee > 95.0 and current yield > 0.90: #

final yield = current yield

final ee = current ee

print (£" [RESULT-S2] {target.name} successfully cyclized to
optimal parameters. Yield: {round(final yield*100, 1)}%, EE:
{round (final ee, 1)}%.\n")

return (skyrmion config, meta params, reaction state,
coupling history,

loss _history, efficiency history, final yield,

final ee, chemical influence history)

print (" [RETRY-S2] Cyclization not optimal. Retrying...\n")

# Return final best attempt
return (skyrmion config, meta params, reaction state,
coupling history,
loss_history, efficiency history, final yield, final ee,
chemical influence history)

def visualize folding skyrmions(molecule: Molecule,
spin density history: List [float]):

""ryisualizes the 3D evolution of Skyrmion dynamics from Stage
l.llllll

fig = plt.figure()

ax = fig.add subplot (111, projection='3d")

iterations = list(range(l, len(spin density history) + 1))

# Note: Using Sl's simulation params for position/current
positions = [np.sin(i * 0.5) * 5 for i in iterations]
currents = [0.8 + np.cos(i * 0.3) * 0.2 for i1 in iterations]

ax.plot (positions, currents, spin density history, marker='o',



color='teal')
ax.set title(f"Stage 1 Skyrmion Evolution: {molecule.name}")
ax.set xlabel ("Position")
ax.set ylabel ("Tunneling Current")
ax.set zlabel ("Spin Density")

plt.tight layout ()
plt.show ()

def visualize folding stages (molecule: Molecule) :
"PPASCII visualization of the Stage 1: Folding pipeline.""™"
print (E"\n[ASCII] Stage 1: Folding Stages for {molecule.name}")

print ( nnn
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e Rttt +
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e +
| [Gamma Backscatter Scan] |
e +
v
e Rttt +
| [Laser Geometry Tuning]
oo +
v
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e +
v
o mm oo +
| [Matter Folding Execution] |
oo +
v
e +
| [Folded Precursor Output] |
e +

nn n)

def visualize cyclization tunneling(target: Molecule,
efficiency history: List[float], chemical influence history:
List[float]) :

""ryisualizes the Skyrmion-Optics Tunneling Efficiency from Stage
2.ll||ll



fig = plt.figure()

ax = fig.add subplot (111, projection='3d")

iterations = list(

range (1,

len(efficiency history) + 1))

# Approximate skyrmion density growth over iterations
[4.0 + np.sin(i*0.6) * 1.5 + 1*0.5 for 1 in

skyrmion density =

iterations]

def

ax.plot (skyrmion density[:len(chemical influence history)],
chemical influence history, efficiency history, marker='o',

color='lightgreen')
ax.set title(f"Stage 2 Transport Rate vs. Chem/Mag Control:
{target .name}")
ax.set xlabel ("Skyrmion Density (nm”*-2)")
ax.set ylabel ("Chemical Influence Factor")
ax.set zlabel ("Tunneling Efficiency")

plt.tight layout ()
plt.show ()

visualize cyclization stages(target: Molecule) :
"PPASCII visualization of the Stage 2: Cyclization pipeline."""

print (E"\n[ASCII] Stage 2: Chemically-Enhanced Cyclization Stages
for {target.name}")
print ("""
o e +
| [Folded Precursor Input] |
[source: 23] +----------------m oo +
|
[source: 24] v
e +
| [CD Spectrum (Conformation)] |
[source: 25] +-------------mm oo +
|
[source: 26] v
e +
| [Metamaterial & Chemical Setup] |
[source: 27] +4----------------—~———— - +
|
[source: 28] v
e il +
| [Skyrmion Field & Gate Setup] |
[source: 29] +----------"-"--"-"-"-"-"—"—-————~-~-"-—-~-- +
|
[source: 30] v
o e +

| [TUNING: Chemical & Photonic] |



[source: 31] +-----------------—--m - +
[source: 32] v

| [Photochemical Cyclization] |
[source: 33] +--------------m oo +

[source: 34] v

| [Cyclized Chiral Product] |

[source: 35] +4-----------------m oo +
nn ll)

def master commentary(molecule: Molecule, seq data: SequenceData,
fold results, cycle results):

nmnn

Provides a unified summary of the full hybrid synthesis run.

Now includes Stage 0 data.
nnn

# Unpack results

(fold config, fold params, band gap hist, orbital hist, spin hist,
fold success) = fold results

(cycle config, meta params, react state, coupling hist, loss hist,
eff hist, final yield, final ee, ) = cycle results

final fold spin = spin hist[-1] if spin hist else 0.0
final fold gap = band gap hist[-1] if band gap hist else 0.0

final cycle eff = eff hist[-1] if eff hist else 0.0

print (f“ \n\n:======================================================")
print (E"HYBRID SYNTHESIS REPORT: {molecule.name}")

print (f"=======================================================\n")
print ("--- STAGE 0: PRECURSOR SEQUENCING ---")
print (£" [STATUS] ANALYSIS COMPLETE.")
print (£" Carbon Chain Length: {seqg data.carbon chain length}")
print (£" Unsaturation Sites (DoU) :

{seq data.unsaturation sites}")
print (£" Potential Cyclization Points:

{seq data.potential cyclization points}")



print ("\n--- STAGE 1: MATTER FOLDING (Steroid Pre-alignment) ---")
if not fold success:
print (" [STATUS] FOLDING FAILED. Laser coherence was
unstable.")
print (" Cyclization (Stage 2) proceeded with a
sub-optimal precursor conformation.")
else:
print (" [STATUS] FOLDING SUCCESSFUL.")

print (£" Final Laser Coherence: {round(fold config.coherence,
3)}“)

print (£" Final Band Gap: {round(final fold gap, 3)} ev")

print (£" Final S1 Spin Density: {round(final fold spin, 3)}")

print ("\n--- STAGE 2: SKYRMION-OPTICS CYCLIZATION ---")

if final yield > 0:
print (£" [STATUS] CYCLIZATION SUCCESSFUL.")

print (£" Final Yield: {round(final yield * 100, 1)}%") #
(adapted)
print (£" Final EE: {round(final ee, 1)}%") # (adapted)
else:

print (" [STATUS] CYCLIZATION FAILED. Tunneling efficiency
remained too low.")

print (£" Final Catalyst Activity:
{round (react state.catalyst activity, 3)} units") #
print (£" Final Intermediate Stability:
{round (react state.intermediate stability, 3)} units") #
print (£" Final S2 Tunneling Efficiency: {round(final cycle eff,
3) 1) #
print ("\n--- SALIENT ANALYSIS (Full Chain SO -> S1 -> S2) ---")
print (E"""

The synthesis began with Stage 0 (Sequencing), which identified
{seq data.unsaturation sites} unsaturation sites and
{seq data.potential cyclization points} potential cyclization points.

This sequence data was used to 'prime' Stage 1 (Folding),
influencing its initial Curvature and Entropy Bias.

The final folded parameters from Stage 1 (Curvature:
{round (fold params.curvature, 2)},

Entropy Bias: {round(fold params.entropy bias, 2)}) were then used
to 'prime'

the chemical environment for Stage 2 (Cyclization), enhancing
Intermediate Stability.



Finally, the Stage 1 spin density ({round(final fold spin, 3)})
provided a quantum
'spin boost' to Stage 2's optical tunneling.

This demonstrates a full-chain, multi-stage salient combination,
where the output of each stage directly informs the initial

conditions of the next.
nn ll)

def main():
initialize system()

molecules = [
Molecule ("Sterol Precursor-A", "C27H44", "Diels-Alder Ring"),
# (adapted) DoU = (2*27+2 - 44)/2 = 6
Molecule ("Ergosterol Precursor", "C28H42", "Macro-Lactam
Ring"), # (adapted) DoU = (2*%*28+2 - 42)/2 = 8
Molecule ("Prosta-Precursor-X", "C20H3002", "Five-Membered
Ring") # (adapted) DoU = (2%*20+2 - 30)/2 = 6 (Ignoring O)

]

for mol in molecules:
print (£"\n--- Processing Hybrid Target: {mol.name}
({mol.formula}) ---")

# --- STAGE 0 (NEW) ---
seq data = sequence hydrocarbon precursor (mol)

# --- STAGE 1 ---

print ("\n[STAGE 1] Initiating Quantum-Informed Matter
Folding...")

# Pass seqg data into Stage 1

fold results = run folding stage(mol, seq data) # (modified)

(fold config, fold params, _, , spin history, fold success) =
fold results

# Visualize Stage 1
visualize folding stages (mol)
if spin history:
visualize folding skyrmions (mol, spin history)

# --- STAGE 2 ---
print (£"\n[STAGE 2] Initiating Skyrmion-Optics Cyclization
(Target: {mol.target ring structure})...")



# Get the *last* spin density from stage 1 to feed into stage
final spin density = spin history[-1] if spin history else 0.0

# Pass folding params and spin density into stage 2
cycle results = run cyclization stage(mol, fold params,
final spin density) # (adapted)

# Unpack results needed for visualization and commentary
(cycle config, meta params, react state, coupling hist,
loss _hist,
efficiency history, final yield, final ee,
chem influence history) = cycle results

# Visualize Stage 2
visualize cyclization stages(mol) #
if efficiency history and chem influence history:
visualize cyclization tunneling(mol, efficiency history,
chem influence history) #

# --- REPORT ---
master commentary (mol, seq data, fold results, cycle results)
# (adapted)

print ("\n[END] Hybrid synthesis pipeline complete.")

if name == " main ":
main ()



