МУНИЦИПАЛЬНЫЙ ЭТАП ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ИНФОРМАТИКЕ В 2024-2025 УЧЕБНОМ ГОДУ ДЛЯ УЧАЩИХСЯ 9-11 КЛАССОВ

Время проведения - 240 минут (4 часа)

Максимальное количество баллов за задачу – 120

Максимальное количество баллов – 600

Особенности проведения - задания практического тура выполняются на компьютерах и сохраняются в отведенные папки. Не допускается использование локальной сети. Для проверки программ используется автоматическая тестирующая система Яндекс.Контест. Интернет-фильтр должен быть настроен только на использование соответствующих адресов и портов. Для авторизации должны быть подготовлены пароли и логины.

Проверяющая система:

https://official.contest.yandex.ru/contest/69549/enter

Ограничение по времени – 1 секунда

Ограничение по памяти – 64Mb

Ввод данных – через стандартный поток ввода или из файла input.txt

Вывод данных – через стандартный поток вывода или в файл output.txt

Задача 1. Таинственный дом

На каникулах Петра, Соню, Эдуарда и их младшую сестру Люду отправили в деревню к их дальнему родственнику, профессору Колмогорову. Четверо обычных детей оказались в необыкновенном доме, полном волшебства и таинственных загадок. В каждой комнате их ждало приключение.

Комнат в том доме — просто огромное количество, так что и сам хозяин бывал не во всех. Все комнаты пронумерованы, и если тебе хотелось в комнату с нужным номером, нужно было еще определить на каком она этаже. Дополнительной сложностью является то, что количество комнат на этаже чередуется: на первом этаже a комнат, на втором — b комнат, на третьем — снова a и т.д.

Помогите ребятам определить на каком этаже комната с нужным номером.

Входные данные

На единственной строке расположено через пробел 3 целых числа: $1 \le a \le 1000$, $1 \le b \le 1000$, $1 \le k \le 10^9$ — число комнат на этажах с нечетными номерами, число комнат на этажах с четными номерами и номер нужной комнаты соответственно.

Выходные данные

Необходимо вывести одно целое число — номер этажа, на котором находится комната с номером k. И комнаты, и этажи нумеруются с единицы.

Примеры

№	Входные данные	Выходные данные
1	3 4 8	3
2	3 3 6	2

Решение:

Программа на Python

```
a, b, k = map(int, input().split())
c = k // (a+b)
p = k % (a+b)
n = 0
if p==0:
    n = c*2
elif p<=a:
    n = c*2+1
else:
    n = c*2+2
print(n)</pre>
```

Задача 2. Праздник в волшебной стране

Зайдя в одну из комнат, наши герои попали в волшебную страну, где как раз близился большой праздник. Сюда были приглашены все жители – ежи, семья кроликов, фавны, кентавры и многие другие.

Конечно же ребята включились в приготовления! Петр как самый старший взял на себя роль организатора, Соня и Эдуард разносили жителям страны печенье с пригласительными открытками, а маленькая Люда осталась помогать готовить праздничное угощение, и ей очень нужна Ваша помощь.

Люде нужно рассчитать сколько приготовить угощений. Ведь если приготовить слишком мало какого-то блюда, то кто-то из гостей может расстроиться. К счастью, известно сколько и какого блюда съедает каждый из гостей.

Входные данные

На первой строке записаны через пробел два целых числа — общее количество гостей n ($1 \le n \le 100$) и количество блюд m ($1 \le m \le 1000$). На второй строке через пробел записаны m целых чисел в диапазоне от 1 до 10^9 . Первое число обозначает сколько грамм первого блюда планируется приготовить, второе — сколько будет грамм второго блюда и так далее (для удобства Люда занумеровала все блюда начиная с номера 1).

Далее расположены n строк. На строке с номером i записано через пробел m целых чисел в диапазоне от 1 до 10^9 – сколько грамм каждого блюда съест гость с номером i (первое число соответствует первому блюду, второе – следующему и т.д.).

Выходные данные

Необходимо вывести через пробел в порядке возрастания номера тех блюд, которых не хватит для того, чтобы накормить всех гостей. Если всем всего хватает, нужно вывести единственное число 0.

Примеры

No	Входные данные	Выходные данные
1	3 4	2 4
	10 20 30 40	
	1111	
	2 2 2 2	
	3 18 27 45	
2	2 2	0
	100 100	
	1 1	
	2 2	

Решение:

Из общего количества грамм для каждого блюда последовательно вычитаем вес, который съедает очередной гость. Если в итоге получается отрицательное число, значит данного блюда не хватает.

Программа на Python

```
n, m = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
    b = list(map(int, input().split()))
    for j in range(m):
        a[j] -= b[j]
zero = True
for i in range(m):
    if a[i]<0:
        print(i+1, end=' ')
        zero = False
if zero:
    print(0)</pre>
```

Задача 3. Чердак

Конечно же, в таинственном доме профессора Колмогорова есть чердак, и к нему ведет длинная темная лестница. Наши герои очень смелые, но все равно им немного страшно. Поэтому им хочется узнать — сколько имеется способов добраться до чердака по лестнице.

Ребенок начинает с того что встает на первую ступеньку лестницы. При этом он может с текущей ступеньки прыгнуть вверх на любое количество ступенек, кратное k, но не превосходящее m.

Например, если k=2 и m=5, то ребенок с 1й ступеньки может прыгнуть на 3ю (то есть прыгнуть на 2 ступеньки вверх) или на 5ю (то есть прыгнуть на 4 ступеньки вверх). При этом прыгнуть на 7ю ступеньку (то есть на 6 ступенек вверх) ребенок не сможет, так как 6>5.

Если ребенок прыгнул на последнюю ступеньку лестницы или если своим последним прыжком он перепрыгнет эту ступеньку, значит он добрался до чердака. При

этом, если у ребенка получается перепрыгнуть последнюю ступеньку прыжками разной длины, он считает это разными способами добраться до чердака. Например, если он стоит на 17-й ступеньке, а всего лестница состоит из 18 ступеней, и он может сделать прыжки длиной 2 и 4 ступеньки, то у него есть два способа добраться с 17 ступеньки до чердака.

Входные данные

На единственной строке расположены через пробел три целых числа: количество ступенек лестницы $2 \le n \le 1000$, а также $1 \le k \le 1000$ и m $(1 \le m \le n)$. При этом можно прыгать вверх на любой количество ступенек, кратное k, но не превосходящее m.

Выходные данные

Вывести единственное целое число – количество способов добраться по лестнице до чердака.

Примеры

No	Входные данные	Выходные данные
1	5 2 5	3
2	3 2 6	3

Пояснения:

В первом случае ребенок может прыгнуть с 1-й ступеньки на 3ю. Далее он сможет совершить прыжок длиной 2 ступеньки (и попасть на 5-ю ступеньку) или длиной 4 ступеньки (и перепрыгнуть 5-ю ступеньку). Также он может прыгнуть с 1й сразу на 5ю ступеньку.

Во втором примере ребенок с первой ступеньки может сделать 3 разных прыжка: на 2 ступеньки (тогда он попадает на последнюю 3-ю ступеньку лестницы), на 4 или 6 ступенек (тогда он перепрыгивает через последнюю ступеньку лестницы 2 разными способами).

Решение:

Задача на динамику. Очередная ячейка обозначает число способов добраться до соответствующей ступеньки. Суммируем значения элементов динамики, отстоящих на расстояние k, 2k и т.д. Для того, чтобы получить ответ, нужно учесть ситуации, когда ребенок перепрыгивает через последнюю ступеньку.

Программа на Python

```
n, k, m = map(int, input().split())

f = m // k
delta = f*k

d = [0]*(n+1)
d[1] = 1
for i in range(2,n+1):
    p = i
```

Задача 4. Магическая книга

В одной из комнат дома Соня нашла страницы древней книги, разбросанные по полу. Книга написана на неизвестном языке. Прочитать эту книгу и узнать её тайны сможет только тот, кто соберёт книгу, сложив страницы по порядку. Сделать это будет непросто, ведь, номера страниц тоже указаны на неизвестном языке. Кто-то уже пробовал, поэтому книга частично собрана: страницы собраны в блоки, все с различным количеством страниц.

Книга волшебная, её страницы вместе удерживаются не с помощью клея, а с помощью магии: две части книги соединяются если их просто приложить друг к другу. За один раз можно соединять только два блока.

Проведя некоторое время с книгой, Соня заметила, что, если соединить два блока страниц в неправильном порядке, они распадаются спустя пару минут. Магия работает только если соединять два самых тонких из имеющихся на данный момент блока. При этом слева должен быть блок с меньшим количеством страниц.

Помогите Соне собрать загадочную книгу.

Входные данные

На первой строке записано одно натуральное число $2 \le n \le 10000$ – количество блоков страниц, лежащих на полу. На каждой из следующих n строк указана пара натуральных чисел m и k.

Первое число в строке $1 \le m \le 10000$ — номер блока страниц, второе число $2 \le k \le 10^{10}$ — количество страниц в блоке.

Выходные данные

Последовательность натуральных чисел, разделённых пробелом: номера блоков в том порядке, в котором они должны стоять в окончательно собранной книге. Гарантируется, что в процессе правильной сборки никакие два блока из имеющихся не совпадают по размеру.

Примеры:

N₂	Входные данные	Выходные данные
1	2	1 2
	1 3	
	2 4	
2	3	3 1 2
	1 10	
	2 15	

	3 20	
3	5	2 1 4 5 3
	1 65	
	2 200	
	3 150	
	4 31	
	5 43	

Решение:

Задача на применение структур данных. Используется очередь с приоритетом. На каждом шаге соединяем два самых меньших по размеру блока и помещаем обратно в очередь.

Программа на Python

```
from queue import PriorityQueue

n = int(input())
A = []
for i in range(n):
    A.append(tuple(map(int,input().split())))

q = PriorityQueue()
for i in range(n):
    q.put((A[i][1], str(A[i][0])))

while q.qsize() > 1:
    a = q.get()
    b = q.get()
    q.put((a[0]+b[0], a[1] + ' ' + b[1]))
```

Задача 5. Прятки

Во что играть детям в большом и загадочном доме? Конечно, в прятки! Ребятам уже надоели обычные прятки, поэтому выдумщик Эдуард предложил сыграть в «прятки с запретами». Каждый запрет представляет собой правило: нельзя из комнаты с номером i перейти непосредственно в комнату с номером j, остальные перемещения из комнаты в комнату, не попавшие в запреты, разрешаются.

Все ребята прячутся по комнатам, затем водящий выходит из своей комнаты и перемещается в любую разрешенную (в том числе уже посещенную до этого), затем из нее в следующую и так далее. Если водящий зашел в комнату, где находится кто-то из других детей, считается что водящий нашел этого ребенка.

Чтобы игра не затягивалась, нужно определить – а всех ли детей можно найти следуя таким правилам?

Входные данные

На первой строке записаны три целых числа: $1 \le n \le 100$, $n \le m \le 100$ и $1 \le k \le 1000$ – количество детей, участвующих в игре, количество комнат в доме и количество запретов соответственно.

На каждой из следующих n строк располагается, во-первых, имя ребенка — последовательность символов, состоящая из прописных и строчных букв латинского алфавита, количество символов в имени не более 10. Во-вторых, через пробел от имени ребенка записан номер комнаты (целое число в диапазоне от 1 до m), в которой этот ребенок находится. Все имена детей различны, комнаты нумеруются с 1, в каждой комнате может находиться не более одного ребенка.

На следующей строке находится имя водящего. Это – одно из имен, записанных на предыдущих n строках.

На каждой из следующих k строк записаны через пробел два различных целых числа $1 \le a \le m$ и $1 \le b \le m$ — эта запись соответствует правилу: нельзя из комнаты с номером a перемещаться непосредственно в комнату с номером b (при этом перемещение в обратном направлении из комнаты с номером b в комнату с номером a правилами разрешено, если нет соответствующего запрета). Запреты не дублируются.

Выходные данные

Необходимо вывести в лексикографическом порядке (как в словаре) имена детей, которых водящий рано или поздно сможет найти, по одному на строку. Если не получится найти ни одного ребенка нужно вывести фразу "Bad karma" без кавычек.

Примеры

No	Входные данные	Выходные данные
1	4 4 1	Eduard
	Petr 1	Luda
	Sonya 2	Sonya
	Eduard 4	•
	Luda 3	
	Petr	
	1 3	
2	3 4 3	Luda
	Petr 1	Sonya
	Sonya 2	•
	Luda 3	
	Petr	
	1 2	
	3 2	
	3 4	
3	3 3 2	Bad karma
	Petr 1	
	Sonya 2	
	Luda 3	
	Sonya	
	21	

N₂	Входные данные	Выходные данные
1	4 4 1	Eduard
	Petr 1	Luda
	Sonya 2	Sonya
	Eduard 4	
	Luda 3	
	Petr	
	1 3	
	2 3	

Пояснения:

В первом примере запрещено из первой комнаты двигаться сразу в 3ю. Но водящий Петр может перейти из 1й во вторую, из второй в четвертую, и уже из четвертой в третью. Таким образом он найдет всех трех спрятавшихся ребят.

Во втором примере запрещено перемещаться во вторую комнату из первой и третьей, а также из третьей в четвертую. Петр может, например, из первой перейти в третью, дальше вернуться в первую, перейти в четвертую (так как всего комнат четыре) и уже оттуда попасть во вторую. Таким образом, он найдет всех ребят.

В третьем примере водит Соня, которая не может из второй попасть ни в первую, ни в третью. Она никого не сможет найти.

Решение:

Задача на графы. Необходимо выделить компоненту связности, в которой находится Водящий. В ответ выводим имена всех детей, которые находятся в этой компоненте.

Программа на Python

```
n, m, k = map(int, input().split())
child = {}
rooms = {}
for i in range(n):
    s, num = input().split()
    t = int(num) - 1
    child[s] = t
    rooms[t] = s
voda = input()
start = child[voda]
g = []
for i in range(m):
    g.append([True]*m)
for i in range(k):
    a, b = map(int, input().split())
    g[a-1][b-1] = False
used = [False]*m
def dfs(v):
    used[v] = True
```