Level 3 Physics Formula Sheet

• D.C. Electricity

Current

Current is the rate of flow of charge

$$I = \Delta Q/\Delta t$$

I: Current (A)

Q or q: Charge (C)

T: time (s)

Voltage

Voltage (Potential Difference) is the change in energy (work done) to each coulomb of charge between two points on a circuit, or two points across an electric field

$$V = \Delta E/Q$$

V: Voltage (V)

ΔE or W: Change in energy/Work (J)

Q or q: Charge (C)

Resistance & Ohm's Law

Resists/limits the flow of current Each ohm (Ω) of resistance measures how many volts are required for each amp of current to pass through a resistor

Level 3 Physics Formula Sheet

V = IR

V: Voltage (V)

I: Current (A)

R: Resistance (Ω)

o **Power**

The rate of work done in a circuit

$$P = IV$$

 $P = I^2R \leftarrow Ohm's Law substitutions \rightarrow P = V^2/R$

P: Power (W)

V: Voltage (V)

I: Current (A)

R: Resistance (Ω)

Internal Resistance of a Battery

Batteries can be thought of as having an ideal voltage supply E.M.F. (Electromotive Force) in series with an internal resistance

$$V = \varepsilon - Ir$$

V: Voltage across battery (V)

ε: E.M.F. of battery (V)

I: Current running through battery(A)

Level 3 Physics Formula Sheet

r: Internal Resistance of battery (Ω)

Kirchhoff's Laws

■ Kirchhoff's Current Law

"At any junction in a circuit, the total current entering the junction equals the total current leaving the junction"

■ Kirchhoff's Voltage Law

"Around any closed path of a circuit, the total of all the potential differences, V, is zero"

D.C. Circuit Construction Kit - PhET

D.C. Circuit Lab - PhET

Capacitors

Capacitors store energy in the form of an electric field

Capacitance is the amount of Charge stored per Volt on capacitor plates

$$C = Q/V$$

C: Capacitance (F: Farad)

Level 3 Physics Formula Sheet

NB: the <u>Farad</u> is a very large unit and is therefore usually given in:

$$\mu$$
F = 10⁻⁶ F
nF = 10⁻⁹ F
pF = 10⁻¹² F

Q or q: <u>Charge</u> stored on capacitor plates (C) V: <u>Voltage</u> (Potential Difference) between capacitor plates (V)

Capacitance depends on:

• The area of the capacitor plates

$$C \propto A$$

The distance between the plates

$$C \propto 1/d$$

$$\therefore$$
 C = ε_{o} A/d

C: Capacitance (F: Farad)

A: Area of capacitor plates (m²)

d: Distance between the plates (m)

 $\varepsilon_{\rm o}$: Permittivity of free space

$$\varepsilon_0$$
 = 8.854 x 10⁻¹² Fm⁻¹

Level 3 Physics Formula Sheet

- Dielectric
 - An insulating material placed in between the capacitor plates to increase the Capacitance
 - \circ Dielectric, $\varepsilon_{\rm r}$, is a ratio that determines that factor that the Capacitance will increase by This is unique to each material used

$$C = \varepsilon_r \varepsilon_o A/d$$

PhET Application on Capacitors & Dielectrics

- Networks of Capacitors
 - Capacitors in Series

$$1/C_1 = 1/C_1 + 1/C_2 + 1/C_3 + \cdots$$

1/C_t: Inverse of Total Capacitance (C⁻¹)

1/C₁ etc: Inverse of each individual capacitor (C⁻¹)

Capacitors in Parallel

$$C_1 = C_1 + C_2 + C_3 + \cdots$$

Level 3 Physics Formula Sheet

C_t: Total Capacitance (F)

C₁ etc: each individual capacitor (F)

Energy Stored in a Capacitor

$$E_p = \frac{1}{2} QV$$

$$E_p = \frac{1}{2} CV^2 \leftarrow \text{Substituting } Q = CV$$

$$E_p = Q^2/2C \leftarrow \text{Substituting } Q/C = V$$

E_o: Energy stored in a capacitor (J)

C: Capacitance (F: Farad)

Q or q: Charge stored on capacitor plates (C)

V: <u>Voltage</u> (Potential Difference) between capacitor plates (V)

- Charging & Discharging a Capacitor (PhET App on Capacitors)
 - Time Constant

The time it takes for a capacitor to charge up to 63% of the difference between the initial value and the final value.

Level 3 Physics Formula Sheet

The time it takes for a capacitor to discharge down to 37% of its initial value.

$$\tau = RC$$

τ: Time Constant (s)

R: Resistance in circuit (Ω)

C: Capacitance (F)

Charging	Discharging
$V = V_b \times (1 - 0.37^n)$ OR $V = V_b \times (1 - e^{-t/\tau})$	$V = V_c \times 0.37^n$ OR $V = V_b \times e^{-t/\tau}$
Voltage increases from zero to battery voltage	Voltage decreases from initial voltage to zero
$V_b = V_C + V_R$	$V_C = V_R$
Current ∝ V _R	Current ∝ V _R
$I = I_i \times 0.37^n$ OR $I = I_i \times e^{-t/\tau}$	$I = I_i \times 0.37^n$ OR $I = I_i \times e^{-t/\tau}$
Current decreases from initial current to zero	

Level 3 Physics Formula Sheet

These formulas are not given on the formula sheet

V: Voltage across capacitor at a given time (V)

V_b: Voltage of charging battery (V)

V_c: Initial voltage across discharging capacitor (V)

V_R: Voltage across Resistor (V)

I: Current at a given time (A)

I_i: Initial Current (A)

n: Number of Time Constants that have passed

e: Euler's number is an irrational number

 $e \approx 2.71828$

 $e^{-1} \approx 0.367879$ close to 37%

 $\mathbf{n} = \mathbf{t}/\mathbf{\tau} \leftarrow \text{(time in seconds } \stackrel{\bullet}{\leftarrow} \text{Time Constant)}$

Inductors

Inductors store energy in the form of a magnetic field

Level 3 Physics Formula Sheet

■ Magnetic Flux

The product of the magnetic field, B, penetrating an area, A, normal to the field

$$\phi = BA$$

φ: Magnetic Flux (weber: Wb = Vs)

B: Magnetic Field (Tesla: T)

A: Area normal to the field (m²)

When the magnetic field, B, and area, A, are not at right angles, then

$$\phi = BAsin(\Theta)$$

O: Angle between magnetic field, B, and area, A

NB: Weber Unit
Wb =
$$Tm^2 = Vs = J/A = (kgm^2)/(s^2A)$$

• Lenz's Law

Level 3 Physics Formula Sheet

"An induced current will always flow in the direction that will oppose the changing flux that caused it"

This is an extension of the conservation of energy law

• Faraday's Law

The induced voltage, e.m.f., is directly proportional to the rate of change of flux

$$V = -\Delta\phi/\Delta t$$

$$OR$$

$$\varepsilon = -\Delta\phi/\Delta t$$

V OR ε: Induced e.m.f. (V)

 $\Delta \phi$: Change in Magnetic Flux (Wb)

Δt: Change in time (s)

- : to remind you that the induced e.m.f. always opposes the change in flux - Lenz's Law

Faraday's Law PhET Application

• <u>Transformers</u>

The ratio of the secondary to primary voltage is equal to the ratio of the secondary to primary turns

Level 3 Physics Formula Sheet

$$V_s/V_p = N_s/N_p$$

V_s: Secondary Voltage (V)

V_D: Primary Voltage (V)

N_s: Secondary Turns

N_p: Primary Turns

In an ideal transformer:

Secondary Power = Primary Power

In reality, energy is lost through heat from eddy currents generated in the soft iron core from the changing flux.

Inductance

Mutual Inductance	Self Inductance
$V = -m\Delta I/\Delta t$	V = -LΔI/Δt
m: Mutual Inductance (H: Henrys)	L: Self Inductance (H: Henrys)
-: to remind you of Lenz's Law (inductor will react against	

Level 3 Physics Formula Sheet

any change in flux)

V or e.m.f.: Induced Voltage or back e.m.f. (V)

ΔI: Change in Current (A)

Δt: Change in Time (s)

 Charging & Discharging an Inductor (PhET App on Inductors)

Time Constant

The time it takes for an inductor to discharge down to 37% of its initial value.

$$\tau = L/R$$

τ: Time Constant (s)

R: Resistance in circuit (Ω)

L: Inductance (H)

Powering Up	Powering Down
$V = V_L \times 0.37^n$	$V = V_L \times 0.37^n$
OR	OR
$V = V_L \times e^{-t/\tau}$	$V = V_L \times e^{-t/\tau}$

Level 3 Physics Formula Sheet

Voltage decreases from initial voltage (V _L = - V _b) to zero	Voltage decreases from initial voltage (V _L = V _b) to zero
$V_b = V_L + V_R$	$V_L = V_R$
Current ∝ V _R	Current ∝ V _R
$I = I_i (1 - 0.37^n)$ OR	$I = I_i \times 0.37^n$ OR
$I = I_i (1 - e^{-t/\tau})$	$I = I_i \times e^{-t/\tau}$
Current increases from zero current to a max	Current decreases from initial current to zero
These formulas are not given on the formula sheet	

V: Voltage across inductor at a given time (V)

V_b: Voltage of charging battery (V)

V_L: Initial voltage across inductor (V)

V_R: Voltage across Resistor (V)

I: Current at a given time (A)

I_i: Initial Current (A)

n: Number of Time Constants that have passed

e: Euler's number is an irrational number

Level 3 Physics Formula Sheet

e \approx 2.71828 e⁻¹ \approx 0.367879 close to 37% **n** = **t**/ τ \leftarrow (time in seconds $\stackrel{\bullet}{\leftarrow}$ Time Constant)

- A.C. Electricity
 - A.C. Power & Root Mean Squared (r.m.s.)
 Current and Voltage

The average power in an a.c. circuits is half the maximum power

$$Power_{av} = \frac{1}{2} Power_{max}$$

I _{r.m.s.} to I _{max}	$V_{r.m.s.}$ to V_{max}
$I_{av} \times V_{av} = (I_{max} \times V_{max})/2$	$I_{av} \times V_{av} = (I_{max} \times V_{max})/2$
$I_{av}^2 \times R = (I_{max}^2 \times R)/2$	$V_{av}^2/R = (V_{max}^2/R)/2$
$\therefore I_{\text{av}}^2 = (I_{\text{max}}^2)/2$	$V_{\text{av}}^2 = (V_{\text{max}}^2)/2$
$I_{av} = I_{max}/\sqrt{2}$	$V_{av} = V_{max} / \sqrt{2}$
$\sqrt{2} \times I_{av} = I_{max}$	$\sqrt{2} \times V_{av} = V_{max}$
∴ $\sqrt{2} \times I_{\text{r.m.s.}} = I_{\text{max}}$	∴ $\sqrt{2} \times V_{\text{r.m.s.}} = V_{\text{max}}$

Level 3 Physics Formula Sheet

- The average Current is equal to the maximum Current x $1/\sqrt{2}$
- The average Voltage is equal to the maximum Voltage x $1/\sqrt{2}$

 $1/\sqrt{2} = 0.707$ (3s.f.) So $I_{r.m.s.}$ & $V_{r.m.s.}$ Are roughly 71% of their maximum values

A.C. Resistors

$$V_{\text{max}} = I_{\text{max}} \times R$$

$$V_{r.m.s.} = I_{r.m.s.} \times R$$

Work in r.m.s. Or max but **not** both together

The voltage drop across a resistor is **always in phase** with the current running through the resistor

$$V \propto I$$

A.C. Capacitors

$$V_c = I \times X_c$$

V_c: Voltage drop across the capacitor (V) I: Current (A)

Level 3 Physics Formula Sheet

 X_c : Reactance of the capacitor (Ω)

NB: Again work in either r.m.s. Or max

$$X_c = 1/(\omega C)$$
 OR $X_c = 1/(2\pi fC)$

 X_c : Reactance of the capacitor (Ω)

ω: Angular velocity of a.c. current (rads⁻¹)

 $\omega = 2\pi f$

f: frequency of a.c. current (Hz)

C: Capacitance (F)

 V_c is always 90° behind the current (V_c lags I by π rad) - This is because $V_c \propto Q$ and it takes time for the charge to run on and off the plates

o A.C. Inductors

$$V_L = I \times X_L$$

V_L: Voltage drop across the inductor (V)

I: Current (A)

 X_L : Reactance of the inductor (Ω)

NB: Again work in either r.m.s. Or max

Level 3 Physics Formula Sheet

$$X_L = \omega L$$
 OR $X_L = 2\pi f L$

 X_1 : Reactance of the inductor (Ω)

ω: Angular velocity of a.c. current (rads⁻¹)

 $\omega = 2\pi f$

f: frequency of a.c. current (Hz)

L: Inductance (H)

 V_L is always 90° ahead of the current $(V_L \text{ leads I by } \pi \text{ rad})$ - This is because $V_L \propto -\Delta I/\Delta t$, Faraday's Law, and the induced voltage reacts against any change in current. The rate of change of current is maximum when the current is zero (see a.c. current graph)

LCR Circuits and Resonance

$$V_s = I \times Z$$

V_s: Voltage of the a.c. supply (V)

I: Current (A)

Z: Impedance of the whole circuit (Ω)

Level 3 Physics Formula Sheet

$$V_s = \sqrt{((V_L - V_C)^2 + V_R^2)}$$

 $Z = \sqrt{((X_L - X_C)^2 + R^2)}$

$$V_s = IZ$$
 A phasor diagram is a way to relate the phase relationships between the supply, inductor, capacitor and $V_c = IX_c$ resistor in voltage drops or impedances, reactances and $V_R = IR$ resistances

NB: Again work in either r.m.s. Or max

Angle of the Impedance, Z, or Source Voltage, Vs, to the current

$$tan(\theta) = (X_L - X_C)/R = (V_L - V_C)/V_R$$

 $\theta = tan^{-1}((X_L - X_C)/R) = tan^{-1}((V_L - V_C)/V_R)$

MIT Applet on RCL Phase Relationships of XL, XC & R

Resonance in the LCR Circuit

Level 3 Physics Formula Sheet

Because X_L and X_C are 180° apart, they directly oppose one another. Resonance will occur when $X_L = X_C$ and resonant frequency, f_o , can be found

$$X_L = X_C$$

 $2\pi fL = 1/(2\pi fC)$
 $f_o = 1(2\pi \sqrt{(LC)})$

NB: that Z and V_s will be in phase with the current