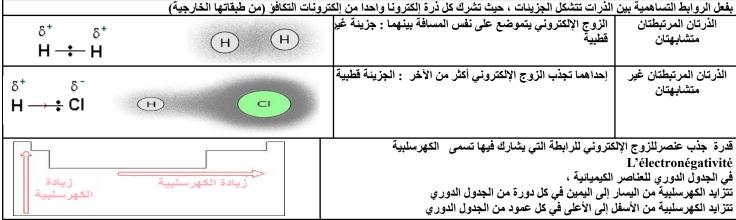
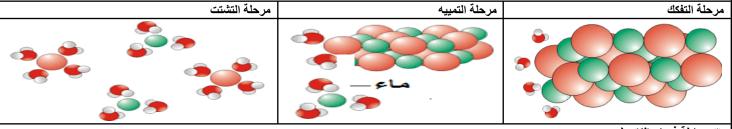

المحاليل الالكتر وليتية و التراكين

Les solutions électrolytiques et les concentrations




- * كلُّ ايون سالب (-) محاط بستة ايونات موجبة (-) و كل اليون (+) موجب مُحاط بستة أيونات سالبة (-)
 - * بفعل قوى التجاذب الكهربائي المتكافئة بين (-) و (+) يكون الجسم الصلب الأيوني متعادلا كهربائيا و مُتماسكاً.

2- الجزيئة القطبية Molécule polaire

- 3- المحاليل المائية الإلكتروليتية Solutions aqueuses électrolytiques
- * عندما نذيب جسما أيونيا في الماء ، نحصل على محلول أيوني يحتوي على أيونات (كاتيونات (+) و أنيونات ()) و يكون دائما متعادلا كهربائيا □ نسمى هذا المحلول الأيوني محلولا إلكتروليتيا لانه يسمح بمرور التيار الكهربائي
 - NaCl نسمي الجسم الأيونى المذاب إلكتروليتا مثل \Box
 - * مراحل ذوبان الكتروليت

$${f AB} \stackrel{\longleftarrow}{\longrightarrow} {f A}^+_{(aq)} + {f B}^-_{(aq)}$$
 الكتروليت صلب الكتروليت صلب او غاز

 $NaCl \xrightarrow{\sim} N_o^+ + Cl^-$: NaCl في الماء - معادلة ذوبان

 $ext{H}_2 ext{SO}_{4(aq)} \stackrel{\circ}{\longrightarrow} 2H^+_{(aq)} + SO^2_{4(aq)} \stackrel{\circ}{\longrightarrow} H_2 ext{SO}_4$ او سائل او غاز $ext{H}_2 ext{SO}_{4(aq)}$

4- التراكيز المولية – Les concentrations molaires التركيز المولي للمذاب المستعمل التركيز المولى للأيونات المتواجدة بالمحلول يساوي التركيز المولي C لمذاب X ، X المولي X أمداب X أن المحلول على التركيز المولي الفعلي X المحلول على الحجم X أن المحلول على الحجم X أن يساوي التركيز المولي الفعلي X الفعلي X أن محلول ، تسبة كمية المادة X) الهذا الأيون في المحلول على الحجم Xالجسم ٧ للمحلول. نكتب: $\left[X\right] = \frac{n(X)}{V}$ للمحلول . نكتب : $C = \frac{n(X)}{K}$ $X_{\alpha}Y_{\beta} \rightarrow \alpha X_{(aq)}^{\beta+} + \beta Y_{(aq)}^{\alpha-}$ مثال $[X]=rac{lpha x}{V}$; $[Y]=rac{eta x_{max}}{V}$ و التركيز الكتلي $(\mathbf{C}(\mathbf{X})$ حيث $\mathbf{M}(\mathbf{X})$ الكتلة المولية ($\mathbf{M}(\mathbf{X})$

$$C(X) = \frac{C_{\mathbf{m}}(X)}{M(X)}$$