
Conceptual Design Review Report - Spring 2024

PERCIV
(Perception Enabled Remote Control Interface for Vehicles)

Precise Teleoperation Using External Perception

Team C:

Dhruv Gupta
Sivvani Muthusamy
Khush Agrawal

Sri Sashank Undavalli
Shahram Najam Syed

Sponsor: Nissan Automotive Inc.
Liam Pederson & Viju James

2ndMay 2024

1

Abstract

Annually, Nissan manufactures approximately 9 million cars, equating to 2 cars produced every
minute. The challenge arises in efficiently transporting these vehicles to the storage unit, located
3 miles away from the manufacturing facility. Currently, Nissan employs around 100 manual
laborers tasked with parking the cars in the storage unit. This process involves drivers shuttling
between the manufacturing unit and storage area repeatedly, consuming significant time and
energy resources.

This is where we need PERCIV: Precision Enhanced Remote Controlled Interface for Vehicles.
PERCIV revolutionizes this labor-intensive process with its advanced teleoperation system. By
leveraging PERCIV's intuitive controls, a single operator can seamlessly navigate a car from the
manufacturing unit to the storage facility without the delays associated with traditional
transportation methods. This streamlined approach eliminates the downtime spent traveling back
and forth, maximizing operational efficiency and minimizing resource consumption. PERCIV's
teleoperation system offers precise control over vehicle movement, ensuring safe and accurate
navigation through the manufacturing environment and onto the storage area. Through the
integration of advanced sensors and real-time feedback mechanisms, PERCIV enhances the
operator's situational awareness, facilitating smooth and efficient parking maneuvers.

With PERCIV, Nissan can significantly reduce labor costs, enhance productivity, and optimize
the overall manufacturing workflow. By automating the transportation and parking process,
PERCIV empowers operators to focus on more value-added tasks, ultimately driving innovation
and efficiency within the automotive manufacturing industry.

2

Table of Contents

1. Project Description 4
2. Use Case 4
3. System Requirements 5

3.1 Functional Requirements 6
3.2 Performance Requirements 7
3.3 Non Functional requirements 8

4. Functional Architecture 9
4.1 Data Acquisition and Pre-Processing: 9
4.2 Perception Pipeline: 10
4.3 UI/UX Pipeline: 10
4.4 Transmission of Driving Instructions: 10

5. Cyber-physical architecture 11
5.1 Inputs 11
5.2 Communication 11
5.4 Processing 12
5.5 Output 12

6. Current System Status 12
6.1 Targeted Requirements 12
6.2 Overall System Description 13
6.3 Subsystem Description 13
6.4 Modeling, Analysis and Testing 18
6.5 SVD Performance Evaluation 18
6.6 Strengths and Weaknesses 19

7. Project Management 20
7.1 Work Plan and tasks 20
7.2 Schedule 21
7.3 Test Plan 22
7.4 System Validation Experiments 24
7.6 Budget 25
7.7 Risk management 27

8. Conclusion 28
8.1 Lessons Learnt 28
8.2 Key Fall Activities 29

9. References 30
10. Appendix 31

10.1 Risk Management 31

3

1. Project Description
Car production facilities function at a swift rate, generating vehicles in an ongoing

manner. The notable buildup of finished vehicles at the conclusion of the assembly line presents
a considerable obstacle for car manufacturers. Addressing this concern involves directing these
completed vehicles to a shipping yard, usually situated a short distance away. The traditional
method of coordinating non-autonomous vehicles, utilizing human drivers, is marked by its
repetitiveness, labor intensity, costliness, and sluggishness. While automated driving using
external perception presents a potential solution to streamline this repetitive process, it comes
with certain limitations. The main issue when using external perception is ensuring precise
parking once the vehicle reaches the shipping yard. Other scenarios, such as navigating through
challenging situations like construction sites or handling situations where autonomy fails, further
highlight the need for an alternative solution.

Supervised Autonomy or “Human-on-the-loop”[1] is a potential solution to improve the
performance and reliability of a fully autonomous solution when operated using external
perception. With PERCIV, we aim to develop a system which allows a human operator to
quickly and reliably teleoperate a car using external perception. PERCIV will help achieve this
goal by enabling the operator to realistically visualize the scene around the car through mixed
reality and seamlessly interact with the car through various modes of control. Following the
timeline of the MRSD Project Course, PERCIV shall demonstrate a proof of concept of this
solution on a scaled-down model. For this project, PERCIV will enable a human operator to
precisely teleoperate and park an RC car through external perception on a test track.

2. Use Case
Nissan, an international automotive OEM, runs several car manufacturing plants in the

United States. The expansive vehicle assembly facility in Smyrna, Tennessee, spans 884 acres
and manufactures over 820 vehicles each day. In order to streamline the distribution process to
dealerships throughout America, the completed vehicles need to be guided to a loading station
positioned 5 miles from the assembly facility. Addressing the ongoing expenses and supply chain
constraints, a solution involves the installation of infrastructure sensors along the route[2]. These
sensors enable the vehicles to be autonomously and safely driven, ensuring precise lane-keeping
and obstacle avoidance. This initiative aims to reduce costs and enhance the efficiency of the
distribution process[3]. This solves the problem of reaching the shipping yard, but the inability to
precisely park the cars at desired locations autonomously leads to congestion and inefficient use
of space, which indirectly affects the throughput of the plant shown in Figure 1. At the time if the
system is unable to park the car at a fast pace, it will then again bottleneck the supply chain,
leading to reduced throughput shown in Figure 2. With the car now at the storage unit, the next
challenge was to park it precisely between two parked cars. An operator logged into the PERCIV
control interface, fusing data from multiple external sensors, was used to render a 3D replica of
the car's surroundings. The operator is now able to intuitively perceive and effortlessly imagine
the real scenario through multiple views, which won’t be possible with raw camera feeds. Now,
the operator remotely initiated the car's engine and provided steering commands to drive it from
the storage unit to the desired parking area.

4

Figure 1: Imprecise parking Figure 2: Time inefficient parking

The PERCIV system enhances operator control over the vehicle by displaying the car's
predicted trajectory. During the motion a person walks in front of the car, the PERCIV system
alerts the operator through visual cues; moreover, if the operator ignores those cues, the system
overrides the commands and brings the vehicle to a halt. In addition to teleoperation, the system
offers waypoint-based control, allowing the operator to select a set of points for the car to travel.
Once reaching the desired parking station, the operator can take control for precise parking.
During operation, an onboard proximity sensor detects obstacles and alerts the operator, who can
then reassess the surroundings through various system views. This comprehensive approach
ensures safe navigation and precise parking, reducing congestion and optimizing parking time.
Refer to Figure 3 for visualizing the proposed workflow. Finally, the car is parked within the
desired tolerance limit, reducing congestion and optimizing the time required for parking, hence
increasing the overall throughput and saving cost for the automaker refer to Figure 4.

Figure 3: Proposed Workflow Figure 4: Final Output

3. System Requirements

System requirements are specifications that describe the functional and technical needs of
a system. They serve as a guide for the development and evaluation of the system, ensuring that

5

the final product meets the needs of the user. System requirements are typically divided into two
main categories: Functional and Non-Functional requirements.

3.1 Functional Requirements

Table 1: Functional Requirements

Serial no. Functional Requirements FR ID

1 Create a virtual environment FR1

2 Localize the vehicle in the virtual environment FR2

3 Drive the car using external commands FR3

4 Identify safety issues and alert/override driver commands FR4

5 Park the car within the given tolerances FR5

The Table 1 above lists down the functional requirements of our proposed solution, which are further
explained below:

FR1: Create a virtual environment
This involves developing a detailed, dynamic 3D map and bird’s eye view (BEV) of the

vehicle's surroundings. The system utilizes a variety of off-board perception sensors like
cameras, and LiDAR along with on-board odometry data to generate comprehensive
visualizations. This detailed virtual representation is crucial for the teleoperator to understand
and navigate the environment safely and efficiently.

FR2: Localize the vehicle in the virtual environment
This function involves accurately determining the vehicle's position within the virtual

map. The accuracy of this localization is vital, as even small errors can lead to significant
navigational mistakes.

FR3: Drive the car using external commands
This aspect refers to the vehicle's ability to effectively interpret and execute driving

commands issued by a teleoperator. These commands could be specific driving instructions such
as steering input and velocity in manual mode of operation or simple waypoints in case of the
semi-assisted mode.

FR4: Identify safety issues and alert/override driver commands
The system continuously monitors for potential safety hazards, such as obstacles on the

road, unexpected actions from nearby vehicles and pedestrians etc. If it detects a potential risk,
the system can alert the teleoperator, or take corrective action automatically if the issue still
persists.

6

FR5: Park the car within the given tolerances
This function involves the system’s ability to enable the teleoperator to park the vehicle

within a specified area, adhering to predefined tolerances. The teleoperator should be
comfortably able to park the vehicle within the tolerances using the visual environment provided
by the system.

3.2 Performance Requirements

Performance requirements stem from functional requirements and provide measurable
criteria for the results of a functional requirement. Performance requirements quantify the
system’s capability to meet the functional requirements.

The Table 2 above lists down the mandatory performance requirements of our proposed solution,
which are further explained below:

PR1: Update frequency of 10 hz
This means the system updates the information displayed to a user 10 times per second. A

10 Hz update rate ensures that the teleoperator has real-time visualizations and data for decision
making which is essential for safe and effective teleoperation.

PR2: Successful Parking Detection Rate of 80%

This requirement signifies that the system must accurately detect successful parking
instances with a rate of at least 80%. Achieving this level of accuracy ensures reliable feedback
to the operator, fostering confidence in the system's performance and minimizing the risk of
errors during parking maneuvers. Associated Functional Requirements: FR5

PR3: Stationary Tolerance: Y: ±5 cm; X: ±10 cm; Rotational: ±20 Degrees
This specification defines the acceptable tolerance limits for the vehicle's position and orientation
while stationary. The system must maintain the vehicle's position within a range of ±5 cm
vertically, ±10 cm horizontally, and ±20 degrees rotationally. Adhering to these tolerances

7

Table 2: Mandatory Performance Requirements

Serial no. Mandatory Performance Requirements PR ID

1 Update Frequency of 10 hz PR1

2 Successful parking is detected: 80% PR2

3 Stationary tolerance: Y:士5 cm; X:士10 cm; Rotational士20; Degrees PR3

4 Vehicle speed should be around 10 cm/s PR4

5 Safety Tolerance: 10 cm PR5

ensures precise and consistent parking outcomes, minimizing the likelihood of collisions or
misalignments. Associated Functional Requirements: FR2,FR3, FR5

PR4: Vehicle Speed Around 10 cm/s
This requirement mandates that the vehicle's speed during teleoperation should be maintained at
approximately 10 cm/s. Controlling the vehicle within this speed range ensures smooth and
steady movement, facilitating precise maneuvering and parking in confined spaces while
minimizing the risk of accidents or overshooting.
Associated Functional Requirements: FR3

PR5: Safety Tolerance: 10 cm
This refers to the minimum distance the vehicle should maintain from obstacles or other

objects at all times. Associated Functional Requirements: FR3, FR4, FR5

The performance requirements outlined are essential and non-negotiable for our system's
functionality. Nonetheless, our aim is to surpass these baseline requirements, striving to achieve
additional desired outcomes, as detailed below in Table 3.

Table 3: Desired Performance Requirements

Serial no. Desired Performance Requirements PR ID

1 Update Frequency of 30 hz PR6

2 Successful parking is detected: 90% PR7

3 Stationary tolerance: Y:士5 cm; X:士10 cm; Rotational士20; Degrees PR8

4 Vehicle speed should be around 15 cm/s PR9

5 Safety Tolerance: 5 cm PR10

3.3 Non Functional requirements

Non-functional requirements refer to the criteria that define how a system should operate,
rather than specific behaviors or functions the system performs as listed below in Table 4.

Table 4: Non Functional Requirements

Serial no. Non Functional Requirements NFR ID

1 Infrastructure cameras placed at oblique angles NFR1

2 Infrastructure Lidar/Depth Sensor NFR2

8

3 Onboard odometry NFR3

4 Onboard proximity sensors NFR4

5 Car Scale: 1/10th of real world NFR5

6 Forward Parking NFR6

7 Backward Parking NFR7

8 Parallel Parking NFR8

4. Functional Architecture

The functional architecture of our system provides a detailed overview of its operations,
beginning with data acquisition and culminating in vehicle control. The architecture is divided
into several key components, each playing a crucial role in ensuring the system's efficiency and
safety as can be seen in Figure 5 below.

Figure 5: Functional Architecture

4.1 Data Acquisition and Pre-Processing:

The process starts with gathering data from a range of sensors. Off-board sensors, such as
cameras and depth sensors, provide external environmental information. Simultaneously,
on-board sensors, including odometry offer vital data about the vehicle's internal state. This data
is then pre-processed as necessary. Pre-processing involves filtering and refining the data to
ensure accuracy and usability, which is essential for the subsequent stages of the system.

9

4.2 Perception Pipeline:

Following data acquisition, our system boasts a sophisticated perception pipeline. This
advanced framework leverages pre-processed data to generate detailed environmental
representations, enhancing the system's understanding of its surroundings. It produces both a 2D
Bird's Eye View (BEV) spatial context, facilitating navigation and obstacle avoidance for the
vehicle. Additionally, as part of our ongoing development efforts, we will also provide 3D
environmental representations, further enriching the system's perception capabilities and
enhancing its ability to navigate complex environments with depth information.

4.3 UI/UX Pipeline:

The generated maps are then integrated into our UI/UX pipeline. Here, visual cues are
overlaid on the maps, taking into account the data from on-board sensors and inputs from the
teleoperator. This step is critical in visualizing the vehicle's environment in a way that is intuitive
and informative for the teleoperator. It helps in making informed decisions regarding vehicle
control and navigation.

4.4 Safety Pipeline:

The teleoperator's inputs are subsequently fed into the safety pipeline. This system is
designed to rigorously check for any violations of predetermined safety tolerances. It acts as a
failsafe, ensuring that the operator’s commands do not lead the vehicle into unsafe conditions.
By continuously monitoring for potential risks and ensuring compliance with safety standards,
the safety pipeline plays a pivotal role in maintaining the overall safety of the system.

4.4 Transmission of Driving Instructions:

Finally, the driving instructions, vetted for safety, are transmitted to the vehicle. This
transmission is the culmination of the process. The vehicle then operates in accordance with the
desired routes and maneuvers while strictly adhering to safety protocols. In summary, our
system's functional architecture is a meticulously designed framework that encompasses
everything from data gathering to the execution of safe driving instructions. Each component is
tailored to work seamlessly with others, ensuring the system operates efficiently, safely, and
effectively

10

5. Cyber-physical architecture

Figure 6: Cyber-physical Architecture

The cyber-physical architecture of PERCIV is presented above in Figure 6, and is
delineated into various core-building blocks, with each core building block playing a pivotal role
in achieving precise control and navigation of the RC vehicle without onboard sensing
capabilities. Following is the detailed explanation of key features and aspects of the
core-building blocks of the aforementioned cyber-physical architecture:

5.1 Inputs
The inputs sub-block of the system is divided into three components:

a. Infrastructure Sensors, using LiDAR/Depth and RGB cameras to perceive the
environment and localize obstacles and the ego car, designed with scalability in mind;

b. Onboard (passive) sensors, such as encoders and proximity sensors from the ego-car,
used for sensor fusion and as fallbacks in case of communication failure;

c. User-input, split into two modes - 'teleoperated' or 'fully-dependent', where the
teleoperator directly controls the ego vehicle's heading and velocity, and
'semi-autonomous', where the vehicle's movement is influenced by waypoints and
interactions with environmental participants/obstacles, rather than direct teleoperator
control.

5.2 Communication
Once the data from the sensing sub-block and the user-input sub-block from the input

core block is received, the communication interface is responsible for transferring data to an
off-board compute. This communication interface consists of a LAN switch (in simplex
configuration) for handling wired infrastructure sensor data stream as well as user-input through
hardware haptic interfaces, in addition to a WiFi module to establish a duplex communication

11

with the ego vehicle for transferring real time odometry data from the vehicle to the off-board
compute, and then driving instructions (velocity profile and heading) from the off-board compute
to the ego vehicle.

5.3 Pre Processing
The data pre-processing stage involves four critical steps: Filtering for noise reduction,

dense cloud thinning, and surface smoothing; Alignment using voxel structuring, the Iterative
Closest Point algorithm, and feature-based alignment for map coherence; Rectification for global
coordinate alignment and consistent merging of point clouds; and Differential Analysis for
change detection and differentiation between static and dynamic objects. Additionally, it
validates teleoperator-provided waypoints to prevent collision risks or inaccurate trajectories,
ensuring precise navigation in dynamic environments.

5.4 Processing
The processing core-block of the cyber-physical architecture handles key functions of the

offboard compute:

a. 3D Map Update, involving updating the pre-generated 3D static map with dynamic
obstacles isolated using differential analysis and rendered as smoothed reconstructed
mesh grids;

b. Generating a 2D BEV of the environment by stitching and transforming RGB camera
streams from different viewpoints, corrected for distortions using ARUco markers;

c. Localization, using the 2D BEV, 3D updated map, and encoder odometry, tracking the
car's position and orientation using Extended Kalman Filters for sensor fusion;

d. Planning, determining vehicle control based on operating mode—direct control in
teleoperated mode or trajectory generation using waypoints in semi-autonomous mode;

e. Visualizations, creating the Human Machine Interface with visual cues overlaid on 3D
maps and 2D BEVs to guide the teleoperator;

f. Safety, managing collision avoidance and monitoring for sensor failures or
communication latency, ensuring safe vehicle operation.

5.5 Output
Finally the velocity and steering commands from the safety sub-block (of the processing

core block) are transferred to the ego vehicle where the ECU is interfaced with the motors using
the motor driver, which translate the steering of the Ackermann drive as well as the velocity
based on the received command.

6. Current System Status

6.1 Targeted Requirements
This semester, our team aimed to achieve all system-level requirements, allowing for

some flexibility. Our goal was to achieve all of the desired requirements with a lenient view on
some of the parameters. For example our desired FPS was 30hz but we were able to achieve
around 20-22 FPS. A detailed list of our targeted requirements is given in table 5.

12

6.2 Overall System Description
The comprehensive system encompasses our sensor suite, consisting of off-board

infrastructure cameras and on-board proximity sensors, alongside the G29 controller. Our
software stack comprises several subsystems operating collaboratively. The data processing and
Bird's Eye View (BEV) generation pipeline is tasked with delivering a precise and responsive
BEV. Simultaneously, the controls pipeline captures user inputs and channels them through a
safety mechanism before implementation. The UI/UX module serves as the integration hub,
providing users with an accurate visualization enriched with advanced visual overlays for
teleoperation. Figure 7 depicts the overall flow of the system.

Figure 7: System Overview SVD

6.3 Subsystem Description

6.3.1 Sensing Modalities
PERCIV mostly relies on external sensing for teleoperation of RC cars in the

miniaturized parking lot scenario. Currently, the external sensing involves using RGB cameras
which will be expanded to incorporate depth sensing to output point clouds of the environment.
Some data from onboard sensors are also used. This involves reading odometry data for
estimating the position of the car and proximity sensors for estimating nearby obstacles. The
onboard data is transmitted wirelessly to a computer through a ROS2 DDS node communication.

13

Table 5: Targeted Performance Requirements

PR ID Requirement Subsystem Status

PR1 Update Frequency of 10 hz Perception Passed

PR2 Successful parking is detected: 80% Perception Passed

PR3 Stationary tolerance: Y:士5 cm; X:士10 cm;
Rotational士20; Degrees Controls Passed

PR4 Vehicle speed should be around 10 cm/s Controls Passed

PR5 Safety Tolerance: 10 cm Controls Passed

External sensors are connected to the local network over a wired connection and transmitted to a
control module (computer).

6.3.2 Perception
Currently the perception pipeline consists of the following flow:

a. Receive time-synchronized image frames from the intel Realsense using software
implementation of GenLock, in which a trigger is sent programmatically to the realsense
sensors to control the shutters and exposures.

b. Once the time-synchronized images are received, they are stitched using a Graph-Neural
Network based stitcher optimized to run in realtime and to operate in feature sparse
environments.

c. Once the scene is stitched, points are selected manually to perform perspective transform
into a BEV. Inverse Perspective Mapping was also experimented, but due to better
fidelity of a simple homography using perspective transformation in our case we decided
to stick with perspective transforms. The final stitched BEV can be seen in Figure 8.

Figure 8: Stitched BEV output

d. With the BEV generated a learning-based algorithm is used for keypoint detection for
explicitly pose estimation of the ego-vehicle. The mAP (mean average precision) we
were getting against the ground-truth (measure using an ArUCO marker) was 97.5%. The
estimated pose can be seen in Figure 9:

14

Figure 9: Estimated pose estimation for the ego-vehicle

e. With the pose of the ego-vehicle determined the kinodynamic model is used
complemented by the user input to generate trajectories as a t+nth timestep based on the
ackermann steering. The predicted trajectories in green can be seen in Figure 10 below:

Figure 10: Predicted trajectories using estimated pose and controller input

f. Finally an independent greedy-heuristic for box-to-box center alignment and pose
alignment to detect successful parking. Figure 11 depicts the translucent green overlay
achieved as a result of successful parking:

15

Figure 11: Green overlay depicting successful parking and within the designated tolerance

6.3.3 UI/UX
Inherently, the complete system is a human-machine interface with UI/UX as a core

submodule of the complete system. Various off-the-shelf solutions which included ROS
web-bridge integration with bootstrap, Glovo, and simple HTML CSS based designs, but due to
limited flexibility to change the UI/UX and high latency/low throughput from the web-bridge we
opted to design our custom UI/UX design using StreamLit and ReactJS. The communication
between the frontend and backend was achieved using ROS topics with high compression rates
for image frames for high throughput. The elements included a side navigation bar for selecting
between raw CCTV footage, pre-defined parameters for stitched BEV, and user-defined
parameters for stitched BEV. In addition, the user was provided with a real time feed of the
environment bolstered by other graphical interfaces which included a speedometer, gear status,
and safety override status. Figure 12 shows the current status of our UI/UX:

Figure 12: UI/UX depicting stitched BEV, speedometer, gear status, and safety override status

6.3.4 Planning and Control

16

● Steering and Throttle Input
For our setup, we used the Logitech G29
steering and pedal setup. We fine-tuned the
force feedback steering option to replicate the
sensation of maneuvering a real vehicle,
ensuring an immersive driving experience.
The pedal shifters integrated into the steering
wheel offer gear changes, allowing drivers to
transition through three forward gears and
one reverse gear, which is also displayed on
the UI/UX. The plus-minus button on the
wheel can be used to change the length of the
trajectory prediction. The red button can be
used to disable the safety checking vehicle
driving the car. All the key mapping are
depicted in Figure 13.

Figure 13: User Controller

● Trajectory prediction
Trajectory prediction stands as a pivotal feature, offering drivers a proactive understanding of the
vehicle's forthcoming position based on present throttle and steering inputs. This tool enhances
situational awareness, allowing drivers with foresight to navigate with precision and confidence.
Because we are using an Ackerman type of car, we used the peppy model to predict car position
and orientation given the steering commands. The lookahead distance was based on the length
that the driver selected using the plus-minus button on the steering.

● Collision Avoidance
In order to mimic the actual car, we had 3 sensors in the front and 1 sensor in the back, as

shown in figure 14. These were low-cost proximity sensors and a very narrow FOV of 5 degrees.
The logic involved reading these ultrasound sensor data topics, as well as the teleoperation setup
input data topic (raw_cmd_vel) to filter out unsafe command velocity components and only
publish velocities that are safe to execute (do not move the car in the direction of possible
collisions). Therefore, these safe velocities are published in a ROS topic (cmd_vel). These safe
velocities are then subscribed directly to the car and executed.

Figure 14: Sensor placement on the car

17

6.4 Modeling, Analysis and Testing
This subsection defines the key experiments allowing re-iteration over the design and

implementation decisions taken in individual subsystem units and for integration during the
spring 2024 semester.

Table 6: Targeted Performance Requirements for Spring Semester

Test Success Criteria Result

BEV Generation Using Classical
Perspective Transform Test

The BEV accurately represents the
test environment from a top-down
perspective.
2. Distortions are minimized, and
70% of key features are correctly
aligned with their real-world
positions

The BEV is able to capture almost
all details of the tested environment
within the camera's field of view.

Test car with Steering and pedals. The car responds to user input
verified visually.

The car was smooth responding to
user inputs.

Predict trajectories from car’s
odometry data

Predicted trajectories look
reasonable in terms of direction.

The predicted trajectories
reasonably represent the car's actual
motion.

BEV Stitching Using Super Point
and Super Glue Test

1. The final stitched BEV presents a
seamless panoramic view with high
accuracy in feature alignment.
2. No significant stitching artifacts
are present, indicating successful
integration of the images.

The stitched BEV is able to capture
almost all details of the entire test
environment capture by two
cameras’ field of view.

Add basic collision / safety
checking

Safety warnings are displayed when
the RC car is closer than a specified
threshold.

Safety warnings are displayed when
obstacles are closer than 15 cm.

Advanced Overlay Visualizations
Test

1. Visualizations accurately overlay
on the BEVs and provide
meaningful assistance to the user.
2. Users report improved situational
awareness and operational
efficiency due to the visualizations.

Safety and trajectory predictions
overlays work consistently on the
GUI and multiple users report their
effectiveness.

6.5 SVD Performance Evaluation
The set of system capabilities that were demonstrated in the SVD and SVD Encore are

shown in Table 7.

18

Table 7: Demonstrated Performance Requirements for Spring Semester

Procedure Success Criteria Requirements Satisfied

Demo 0: Operator tele operates the
car using the standard camera feed.

The car moves smoothly and
responsively in accordance with
operator commands.

PR1, PR4

Demo 1: The car is teleoperated
using the PERCIV system.

The car demonstrates precise and
expert maneuvering, showcasing
optimal teleoperation.

PR2, PR3, PR4

Demo 2: The car is parked using
visual overlays on the base
environment for parking assistance.

The car successfully parks within
the specified tolerance limits using
the visual overlays.

PR2, PR3, PR4

Demo 3: Implementation of
collision avoidance algorithm is
demonstrated.

The car effectively detects and
avoids collisions with static
obstacles, ensuring safe navigation.

PR5

Demo 4: Safe implementation
during camera movement and when
car not within visual range

The system detects and responds to
camera movement, ensuring
continued safe operation and
minimal disruption to teleoperation.

PR5

In the spring validation demo, we successfully demonstrated all seven scenarios outlined
above, showcasing the versatility and robustness of our system. Each demo was executed
according to the specified procedure, with the success criteria met in each case. These
demonstrations encompassed various aspects of our project, including teleoperation, parking
assistance with visual overlays, collision avoidance, camera movement detection, and safety
measures when the car is not within visual range. By meeting all performance requirements in
these demonstrations, we validated the effectiveness and reliability of our system, marking a
significant milestone in its development and deployment.

6.6 Strengths and Weaknesses
Our progress through the semester led to a successful demonstration during SVD and

SVD Encore. While there are several strong areas of our system, there are also areas that need
improvement. The strong and weak points of our system are highlighted below.
Strengths:

● Precise Teleoperation throughout: Our system excels in providing precise control over the
vehicle, ensuring accurate navigation and parking maneuvers.

● Consistent car detection and tracking: The system reliably detects and tracks the vehicle's
movements, facilitating seamless teleoperation and navigation.

● Car teleoperated with minimal latency: Operators experience minimal delay between
input commands and vehicle response, enhancing real-time control and maneuverability.

● Meaningful visualizations for the operator: The system provides operators with clear and
informative visualizations, aiding decision-making and enhancing situational awareness.

19

● All systems time-synchronized: The synchronization of all system components ensures
seamless coordination and operation, minimizing discrepancies and enhancing overall
system performance.

● Fail-safe collision detection: The system incorporates fail-safe mechanisms for collision
detection, enhancing safety and mitigating risks during operation.

Weaknesses:
● Inclusion of autonomy: The system's reliance on teleoperation may limit its autonomy in

certain scenarios, necessitating further development in autonomous capabilities.
● Induced latency to closely mimic real-world: In order to closely mimic real-world

conditions, the system may introduce latency, potentially impacting operator experience
and responsiveness.

● User experience: While the system offers robust functionality, there may be areas for
improvement in user experience, such as interface design and ease of use, to optimize
operator satisfaction and efficiency.

7. Project Management

7.1 Work Plan and tasks

Figure 15: Work breakdown structure
The project's primary objective is to demonstrate a teleoperated parking system using

external perception, blending product and process-oriented elements within a meticulously
structured Work Breakdown Structure (WBS). Central to this endeavor are key product elements
such as Hardware Setup, Sensing Modalities, UI/UX Interface, and the Perception Subsystem, all
developed in accordance with the V-model of systems engineering. Hardware development is
divided into Environment Setup and RC Car Setup, encompassing various phases including
procurement, integration, and testing of mechanical and embedded hardware upgrades.

20

Additionally, onboard software development for control systems and communication modules is
a crucial aspect, ensuring the creation of a stable mechatronic system for thorough subsystem
testing and documentation.

Moving forward into the Fall term, the project will pivot towards customizing and
replicating more Jetacker cars, a critical step in scaling the system. This phase will involve
implementing advanced technologies such as localization and tracking of multiple cars,
integrating waypoint-based control mechanisms, and constructing a multi-agent system to
enhance the system's efficiency and robustness. Simultaneously, a key focus will be on providing
comprehensive 3D visualization of the environment, enabling operators to monitor and interact
with the system seamlessly. These advancements are pivotal in advancing the project's objectives
and showcasing its capabilities effectively.

Furthermore, agile management principles will continue to underpin project operations,
ensuring continuous tracking of lower-level work products, effective budget management, and
proactive risk mitigation strategies. Regular meetings dedicated to assessing project progress and
addressing emerging challenges will be instrumental in maintaining project momentum and
ensuring timely completion. Documentation efforts will proceed alongside development
activities, capturing the evolution of the system and providing valuable insights for future
iterations. Overall, this structured approach, coupled with the integration of cutting-edge
technologies, positions the project for success in achieving its objectives and delivering a
compelling demonstration of the teleoperated parking system.

7.2 Schedule
The work schedule is represented using a Gantt chart in Figure 16. This is derived from

the work plan defined in the previous subsection and associated dependencies of the tasks
considering team member responsibilities in various phases of the project.

Figure 16. Tentative Schedule for Fall 24

21

Our objective is to finish the Full-System Development at least four weeks before the Fall
Validation Demonstration to allow sufficient time for testing and debugging. As of now, we are
on track with our schedule and will proceed with our tasks as planned.

7.3 Test Plan
During the forthcoming Fall Semester, we aim to augment our existing system

significantly by implementing additional functionalities. Specifically, we plan to introduce
enhancements such as 3D visualization, and to refine our capabilities in localization, control,
tracking, and obstacle avoidance throughout navigation.

Table 9: Fall Test Plan

Setup
Test bed (parking lot), 2x Intel RealSense D435i, 2x ZED Stereo Cameras, 2x tripods, 2x
infrastructure stands, 2 RC car, Raspberry Pi, External Compute Unit, LogiTech Steering and
Pedals, Wi-Fi Router, Monitor, Stopwatch

Objectives

FVD.1: Detect, track, and estimate the pose of 1 car using BEV/Depth
FVD.2: Setup autonomy stack for the car
FVD.3: Localisation based on BEV/Depth + Odometry for 1 car
FVD.4: Demonstrate mode 2: Waypoint based control on 1 car
FVD.5: Scale BEV/Depth based localisation to 2 cars
FVD.6: Demonstrate mode 2: Waypoint based control on 2 cars
FVD.7: Demonstrate 3D view in UI/UX
FVD.8: Park RC car successfully 80% of the time using pedals and steering
FVD.9: Drive the RC car at an average speed of 10 cm/s

Success
Criteria

SC.1: Successful parking is detected 80% of the times
SC.2: Safety tolerance of 10 cm is maintained at all times from obstacles

Verification
Method Comparison of PERCIV against ground truth

In the upcoming semester, our focus for the Fall Validation Demo (FVD) revolves around
a sequence of actions aimed at advancing our system's capabilities. Firstly, we will prioritize
detecting, tracking, and estimating the pose of one car using BEV and Depth sensing
technologies. Following this, we'll set up an autonomy stack for the car, laying the foundation for
subsequent autonomous functionalities. Localisation becomes paramount next, as we combine
BEV/Depth data with Odometry to precisely determine the car's position. We'll then introduce
Mode 2: Waypoint-based control for one car, enhancing navigation accuracy. Scaling up, we'll
extend BEV/Depth-based localisation to two cars, further refining our system's robustness.
Accompanying this, we'll demonstrate Mode 2 control for two cars simultaneously and
introduce a 3D view in our user interface, enhancing user experience and comprehension.

22

Throughout these milestones, we will implement advanced sensor fusion techniques, refine
control algorithms, and optimize system performance to achieve our objectives efficiently.

7.3.1 Fall System Capabilities

23

Table 10: Fall Capability Milestone

PR System Capabilities Date

PR 7

The team is tasked with fully customizing two RC cars, making comprehensive modifications to
both hardware and software components. Furthermore, the team should implement detection,
tracking and pose estimation of one car.

FVD.1: Detect, track, and estimate the pose of 1 car using BEV/Depth
FVD.2: Setup autonomy stack for the car

Early-Sep

PR 8

Program the RC cars to understand and respond to motion and parking signals. Further, localize
one car in the PERCIV environment using BEV/depth and the odometry data.

FVD.3: Localisation based on BEV/Depth + Odometry for 1 car

Mid-Sep

PR 9

Implement waypoint based control in one car and integrate with UI/UX to obtain user input.
Utilize the localization and pose estimation of the car.

FVD.4: Demonstrate mode 2: Waypoint based control on 1 car

Early-Oct

PR 10
Expand the localization and control system to operate multiple cars simultaneously.

FVD.5: Scale BEV/Depth based localisation to 2 cars
Mid-Oct

PR 11

The system must showcase the ability to control two cars independently using separate commands.
Additionally, it should demonstrate point cloud visualization and the capability to detect multiple
cars within the environment.

FVD.6: Demonstrate mode 2: Waypoint based control on 2 cars
FVD.7: Demonstrate 3D view in UI/UX

Mid-Nov

PR 12

The system should be capable of operating multiple cars within an environment containing
obstacles. Additionally, it needs to undergo repeatability tests to ensure consistent performance,
ensuring that the entire system functions seamlessly as one cohesive unit

FVD.8: Park RC car successfully 80% of the time
FVD.9: Drive the RC car at an average speed of 10 cm/s

Late-Nov

7.3.2 Testing Activities
Here are the testing activities outlined:

1. Successful Parking: Out of the total trials conducted, the aim is to ensure that the car
successfully parks precisely 80% of the time. The success of parking is determined by the system
itself, utilizing the predefined boundaries within the environment.

2. Environment Visualization Test: This test ensures that at least 80% of the features within the
environment are clearly visible and perfectly aligned. Additionally, it assesses the efficiency of
the teleoperator in visualizing the environment and maneuvering the car within the parking
scene.

3. Collision Detection: In the Spring Validation Demo, we successfully demonstrated the
system's ability to ensure safe stops when collisions were encountered with static obstacles. For
the Fall Validation Demo, where multiple cars will be introduced and operated within the
environment, the system's capabilities will be extended to seamlessly detect collisions with other
moving cars and obstacles in the environment.

7.4 System Validation Experiments

7.4.1 Fall Validation Demo
● Location: Newell-Simon Hall B level using the Modular Test Track
● Equipments: Disassembled Test track, 4 x RGB cameras, 2 x Depth cameras, RC car,

adjustment blocks, Tool box, external computer, Monitor showing outputs
● Test Bed Description: 5X5 meters miniature parking lot setup

7.4.2 Procedure

Table 11: FVD Procedure

S.No Procedure Success Criteria

1 Position the tripods with the RealSense D435i cameras at oblique
angles to ensure overlapping coverage for both cameras and setup
Lidars.

Overlapping visual feed from
both cameras

2 Power on the intranet WiFi router, off-board sensors, and RC units for
all cars.

Update frequency 10 Hz (PR1)

3 Configure each RC car and establish connections to the off-board
compute.

Connection with RC car
established

4 Launch the software stack for all subsystems, including the RC cars,
off-board compute, data aggregation unit, and external compute.

Successful launch of UI/UX
visual and control interface

5 Conduct hierarchical predefined tests for each subsystem, assessing
both hardware and software functionalities.

All subsystems functioning

6 Provide the operator with instructions for selecting a specific car from Operator is able to select and

24

the multiple cars available. control the desired car

7 Instruct the operator to teleoperate the chosen car, using either BEV
visualization and 3D map visualization from the UI/UX, as per their
preference.

Car operated at speed 10 cm/s
(PR4) and maintains 10 cm safe
distance from obstacles (PR5)

8 The system indicates the parking status as completed once the task is
accomplished

Successful parking detected 80%
(PR2)

9 Allow the operator to explore waypoint-based manipulation of the
car, where they can define waypoints for the car to navigate to
autonomously.

Car operated at speed 10 cm/s
(PR4) and maintains 10 cm safe
distance from obstacles (PR5)

10 Repeat steps 6-9 for each additional RC car in the environment,
allowing the operator to choose and control different cars.

Repeatability test

11 Document the performance of each RC car against defined
requirements and validate the system's overall functionality with
multiple cars in the environment.

Complete documentation

7.4.3 Success Criteria
One RC car is driven in a parking lot using the 3D map at a maximum speed of 10 cm/s

[PR4] and parking is demonstrated for forward [NFR6], backward [NFR7], and (stretch)
parallel [NFR8] parking scenarios. The car maintains [PR2] tolerance values while in motion
and [PR3] tolerance values while stationary. The UI/UX will be deemed successful if it has a
minimum update frequency of 10 Hz [PR1] and showcases BEV and 3D maps of the
environment.

● Metrics for Success Criteria:
○ SC.1: Successful parking is detected 80% of the time.
○ SC.2: A safety tolerance of 10 cm is maintained at all times from obstacles.

Figure 17: System Overview FVD

7.6 Budget
As of the current stage of the project, significant purchases have been made in line with

the allocated budget. A total expenditure of $3108 has been utilized out of the total budget of
$5000, representing 62% of the allocated funds. These expenditures encompass crucial
components necessary for the development and implementation of the teleoperated parking
system, including the procurement of Jetacker cars, infrastructure, and HMI equipment. Detailed
breakdown of component purchases are outlined in Table 12.

25

Table 12: Budget

S.No Item Description Price
1 Yahboom Jeston Nano Smart Robot Car Kit(R2 Standard) $643
2 NEEWER Tripod Fluid Head $38.15
3 8 Pieces Camera Screw Adapter $10.49
4 Frgyee 12 Pcs 1/4" 3/8" Light Stand Adapter $11.65
5 Lockport White Gaffer Tape 2 Inch - 2 Pack – 30 Yards $21.19
6 Lockport Black Gaffers Tape 3 Pack $26.34
7 NEEWER Tripod Fluid Head $107.97
8 waveshare Power Supply for Jetson Nano $38.97
9 SanDisk Ultra 128GB $95.94
10 8 Pieces Camera Screw Adapter $10.49
11 Frgyee 12 Pcs 1/4" 3/8" Light Stand Adapter $11.65
12 Logitech G29 Driving Force Racing Wheel and Floor Pedals $379.99
13 Beikell Memory Card Reader $17.98
14 Memory Card Case $6.99
15 12 Inch Traffic Training Cones $53.98
16 12 Inch Traffic Training Cones $26.99
17 Dell Multi-Device Wireless keyboard and mouse $76.99
18 Dell Wireless Keyboard and Mouse - KM3322W $24.99
19 Acer Monitor 27 inch $109.99
20 Cat 6 Cables 100ft $30.38
21 Anker usb C hub(6 in one) $70.00
22 hc sr04 ultrasound sensors 10 pc $14

23
ITD ITANDA 10FT USB Extension Cable USB 3.0 Extension

Cord Type A Male to Female 15 feet $48

24
Yahboom AI Robotic Car Chassis kit Autopilot Training

Ackerman $360
25 NVIDIA Jetson Nano Developer Kit (945-13450-0000-100) $298
26 Arduino Mega 2560 REV3 [A000067] $97.80

27
TP-Link Archer T2U Plus AC600 High Gain Dualband USB

WLAN Adapter $72

28
120pcs 10cm Dupont Wire Male to Female Breadboard
Jumper Wires 3.9 inch 1pin-1pin 2.54mm Connector $7

26

29
120pcs 20cm Dupont Wire Male to Female Breadboard

Jumper Wires 7.9 inch 1pin-1pin 2.54mm $7

30
500PCS 1 Pin Header Connector Housing for Dupont Wire

Jumper Compact $7.89
31 Lockport Black Gaffers Tape 3 Pack $27.89

32
Lockport White Gaffers Tape 2 Inch - 2 Pack White Tape –

30 Yards $19.88

33

10PCS/LOT Ultrasonic Sensor Mounting Bracket for
HC-SR04 Smart Car AL HC-SR04 HC SR04 HCSR04
Distance Sensor (10PC hc-sr04 Mounting Bracket) $16.98

34

Explux High-Intensity Yellow LED PAR38 Flood Light Bulb,
250W Equivalent Ultra Bright Yellow Light, Full-Glass

Outdoor Waterproof & Anti-Ageing, Dimmable, Yellow Color
Spotlight, 2-Pack $45

35
Monoprice 1.5-Feet USB 2.0 A Male to B Male 28/24AWG

Cable (Gold Plated) (105436),Black $25

36
USB to USB Cable [13cm 5 inch],USB 3.0 Male to Male

Type A to Type A $40

7.7 Risk management
Risk Management is essential to identify and prepare for uncertainties that might hinder

the completion of the project within the set schedule, budget or scope. It is important to
continually assess possible risks and determine the likelihood and consequences of them
occurring. For our project, we have identified five major risks and outlined their mitigation
strategies in Table 13. These risks and their risk reduction strategies are further detailed in the
Appendix.

Table 13: Risk Management Table

Risk
ID Description Risk type L C Mitigation Severity

R1
Components
not arriving on

time
Schedule 3 3 Ordered from reliable vendors

/ ahead of time Medium

R2
Unable to meet
the budget
requirements

Cost 2 4 Use existing setup Medium

R3 Communication
failure Technical 2 5 Setup local network and use

suitable protocol High

27

R4 Depth scaling Technical 5 5 Use sensor fusion techniques
(LiDAR) High

R5 Fisheye effect
in BEV Technical 3 5 Use DL based

techniques High

Table 14 indicates whether the identified risks have materialized and evaluates the
effectiveness of our strategies in mitigating them. Additionally, it outlines the team members
responsible for monitoring these risks.

Table 14: Risk Tracking

Risk
ID Description Occurred? Mitigation effective? Tracked By

R1
Components
not arriving on

time
No

Yes. Ordering ahead of time has
been extremely effective to

mitigate this risk
Sashank

R2
Unable to meet
the budget
requirements

No
Usage of existing

components/setup has been
pivotal to stay within the budget.

Sashank

R3 Communication
failure Yes Setting up our dedicated network

helped in solving network issues. Dhruv

R4 Depth scaling No We have not yet faced this risk
this semester. Shahram

R5 Fisheye effect
in BEV No

Usage of superglue and super
point has been pivotal to handle
such artifacts

Shahram

8. Conclusion

8.1 Lessons Learnt
During the spring semester, our team encountered and embraced valuable lessons that

significantly contributed to our project's progression. Firstly, we reaffirmed the importance of
effective communication among team members. Through regular meetings and open channels of

28

communication, we ensured that everyone remained aligned with project goals and tasks,
facilitating smoother collaboration and problem-solving.

Additionally, the implementation of weekly stand-up meetings emerged as a critical
practice in keeping everyone informed about individual progress, challenges, and potential
roadblocks. These meetings provided an opportunity to address any issues promptly and adjust
project strategies accordingly, fostering a proactive and agile approach to project management.

Another critical lesson learned was the importance of minimizing experimentation with
multiple methods for the same task. For example, in our project, we initially explored various
techniques for generating Bird's Eye View (BEV), including Inverse Perspective Mapping (IPM),
ArUco tags, and deep learning approaches. While each method offered its advantages, we found
ourselves continuously iterating and experimenting to optimize results. However, after careful
evaluation, we ultimately reverted to utilizing the basic classical pipeline for generating BEV.
This experience highlighted the need to balance innovation with practicality and efficiency,
emphasizing the importance of committing resources judiciously and focusing on solutions that
align closely with project requirements and constraints.

Moreover, the utilization of project management tools, such as Jira, proved indispensable
in organizing tasks and workflows. For instance, Jira enabled us to streamline task assignment,
track progress, and manage dependencies effectively. By leveraging Jira's features, we were able
to allocate resources efficiently, identify bottlenecks, and prioritize tasks, ultimately enhancing
overall project coordination and productivity. This scenario highlights how investing in the right
tools can significantly alleviate project management complexities and streamline workflows,
contributing to the project's success.

8.2 Key Fall Activities

Looking ahead to the next semester, our project is poised to advance significantly, with
several strategic plans in place to enhance functionality and performance. Firstly, we aim to
advance towards multi-agent systems, introducing capabilities for coordinated operation among
multiple vehicles. This progression will not only amplify the scope and versatility of our
teleoperated parking system but also pave the way for more sophisticated applications in
real-world scenarios.

In addition to advancing multi-agent systems, we plan to integrate a parallel parking
setup into our system. By incorporating this feature, we will expand the repertoire of parking
scenarios our system can handle, thereby increasing its practical utility and relevance. Moreover,
we prioritize enhancing safety and responsiveness, focusing on optimizing system algorithms
and controls to ensure seamless and reliable operation in diverse environments and scenarios.

Furthermore, our plans entail increasing the frequency and rigor of testing iterations. By
intensifying testing protocols, we aim to identify and address potential issues more efficiently,
accelerating the refinement process and bolstering overall system robustness. Lastly, we aspire to
elevate the complexity of the environment in which our system operates. This entails introducing
more intricate and challenging parking scenarios, thereby pushing the boundaries of our system's

29

capabilities and fostering continuous innovation and improvement. Collectively, these strategic
initiatives underscore our commitment to advancing the capabilities and performance of our
teleoperated parking system, positioning it as a cutting-edge solution in the field of autonomous
vehicle technology.

9. References
[1] Verbruggen, Maaike, and Vincent Boulanin. "Mapping the development of autonomy in
weapon systems." (2017).
[2] Vignarca, Daniele, et al. "Infrastructure-Based Vehicle Localization through Camera
Calibration for I2V Communication Warning." Sensors 23.16 (2023): 7136.
[3] Atharv, Dhanesh, Jash, Ronit, and Shreyas. "Conceptual Design Review."
https://mrsdprojects.ri.cmu.edu/2023teame/78-2/conceptual-design-review. 2022.

30

https://mrsdprojects.ri.cmu.edu/2023teame/78-2/conceptual-design-review

10. Appendix

10.1 Risk Management

10.1.1 Depth sensing won’t scale in the similar trend as infrastructure
Mitigation:

- Adjust the placement of LiDAR cameras
- Use higher density depth cameras (ZED)

Figure 18: Likelihood-consequences graph for Risk 1.1

10.1.2 Classical methods for combining camera feeds might have fisheye effect in bird’s
eye view (BEV)
Mitigation:

- Use deep learning techniques

Figure 19: Likelihood-consequences graph for Risk 1.2

31

10.1.3 Components not arriving on time
Mitigation:

- Use more reliable vendors for sourcing components

Figure 20: Likelihood-consequences graph for Risk 1.3

10.1.4 Communication failure
Mitigation:

- Setup local network and use suitable protocol

Figure 21: Likelihood-consequences graph for Risk 1.4

10.1.5 Unable to meet the budget requirements
Mitigation:

- Reuse hardware from previous teams

32

Figure 22: Likelihood-consequences graph for Risk 1.5

33

