التفاعلات الحمضية القاعدية - Les réactions acido – basiques

امثلة لتفاعلات حمضية قاعدية:

1. تفاعل غاز الأمونياك مع غاز كلورور الهيدروجين:

 ${}_{(}NH_{3(g)} + HCl_{(g)} \rightarrow (NH_{4}^{+} + Cl^{-})_{(s)}$

- نلاحظ أن غاز كلورور الهيدروجين HCl₀ فقد بروتونا H⁺ في حين اكتسب غاز الأمنياك NH_{3(g} هذا البروتون.

2. تفاعل حمض النتريك السائل منع الماء:

ينتج عن تفاعل حمض النتريك السائل HNO₃₀ مع الماء، أيونات النترات _{Qa (ag)} وأيون الأوكسونيوم H₃O⁺ وفق المعادلة التالية:

 $_{(}HNO_{3(l)} + H_{2}O_{(l)} \rightarrow NO_{3}^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$

- نلاحظ أن حمض النتريك $_{100}^{+}$ العد بروتونا $_{100}^{+}$ في حين اكتسب الماء $_{100}^{+}$ هذا البروتون.

3. تعريف تفاعل حمض - قاعدة:

نسمى تفاعل حمض-قاعدة كل تفاعل يتم خلاله تبادل بروتون H+ بين المتفاعلات.

4 تعريف الحمض والقاعدة حسب برونشتد:

l	لقاعدة	الحمـض
	ئل نوع كيميائي قادر على كسب بروتون H ⁺ .	کل نوع کیمیائے قادر علی فقدان بروتون H ⁺ .
	، قاعدة جزيئيـة : B + H ⁺ → BH	• حمض جزیئي : $AH \rightarrow A^- + H$
	مثلة قواعد : H ₂ O; NH ₃ .	امثلة احماض : HNO ₃ ; HCl .
ı	ا قاعدة أيونية : A ⁻ + H ⁺ → AH	 BH⁺ → B + H Loginal ** +BH → B + H
l	مثلة قواعد : CH ₃ COO.	امثلة احماض : NH ₄ .

ملحوظة: لا يمكن لحمض أن يفقد بروتونا إلا بوجود قاعدة لاكتسابه.

II- مزدوجة قاعدة - حمض:

1. تعریف :

--يمكن خلال تفاعل كيميائي حسب الظروف التجريبية :

 $^{+}BH^{+} \rightarrow B + H$ أو $^{+}BH^{+}$ أن يفقد بروتونا $^{+}BH \rightarrow A^{-} + H$ أو $^{+}BH^{+}$ أو $^{+}BH^{+}$

 $^+$ B + H $^+$ $_-$ BH أو $^+$ أو $^+$ أو $^+$ أو $^+$ المنت بروتونات $^+$ B + $^+$ أو $^+$

تترجم هذه الإمكانية بنصف المعادلة التالية:

 $^{+}BH^{+} \square B + H$ $^{-}$ $^{+}AH \square A^{-} + H$

النوعان الكيميائيان AH و A- (أو BH و B) مترافقان، نقول أنهما يكونان مزدوجة قاعدة/حمض، ويرمز لها بالكتابة

AH/A (أو BH+/B).

2. مزدوجة الماء:

ينتمى الماء إلى مزدوجتين قاعدة/حمض:

المرافقة. $(H_3O^+_{(aq)}/H_2O_{(1)})$ يلعب الماء دور القاعدة المرافقة.

■ H₂O_(I)/HO_{(aq}: يلعب الماء دور الحمض المرافق.

الماء الذي يكون القاعدة في المزدوجة $H_3O^+_{(aq)}/H_2O_{(1)}$ والحمض في المزدوجة و $H_2O_{(1)}/HO^-_{(1q)}$ يسمى أمفوليتا. نقول إن الماء نوع أمفوليت.

ااا- الكواشف الملونة:

الكاشف الملون إما حمض أو قاعدة ويكون مزدوجة قاعدة/حمض يرمز لهاب: HIn/In- حيث يكون للحمض وللقاعدة المرافقة لونان مختلفان.

■ بحضور حمض AH ، تتفاعل قاعدة مزدوجة الكاشف In مع الحمض AH فتتحول إلى الحمض المرافق HIn، وفق المعادلة:

نيأخد المحلول لون الشكل الحمضى للكاشف. $-In^- + HA \rightarrow HIn + A$

■ بحضور قاعدة A، يتفاعل حمض مز دوجة الكاشف HIn مع القاعدة A فيتحول إلى القاعدة المرافقة In، وفق المعادلة :

 $HIn^- + A^- \rightarrow In^- + HA$ فيأخد المحلول لون الشكل القاعدي للكاشف

انتهي