Swift Server APIs: HTTP stream meeting 1

Initial Agenda:
e Current discussion status roundup
e Value Types vs. Reference Types
e Use of NSHTTPURLRequest/Response
e Experiences of adding HTTP/2 support to Node.js

Attendees:

Chris Bailey - C vs Swift
Alex Blewitt -

Alfredo Delli Bovi -

Ben Cohen -

Michael Chiu -

Minutes:

C vs Swift Implementations:

**Current Implementations™*
| Framework | HTTP 1.x Parser | HTTP/2 Parser | Request Type | Response Type | Notes |

| \
| Kitura | c-http parser | N/A | Class | Class |
| Perfect | c-http parser(l)| Swift parser | Class | Class | (1) HTTP 1.x
parser used to be pure Swift |
| Swifter | Swift parser | N/A | Class | Enum |
| Vapor | Swift parser | N/A | Class (2) | Class (2) | (2) Switched

to classes from structs |

| Zewo | c-http parser | N/A | Struct (3) | Struct (3) | (3) Class
used for stream backed Body fields |

| spartanX | Swift parser | N/a | struct | struct |

Notes:

* (1) Perfect originally implemented their own HTTP 1.x parser in Swift, but switched to using
the c-http parse from Node.js

* (2) Vapor originally implemented HTTP request and response as structs, but switch to
using classes

* (3) Zewo uses structs for HTTP request and response, however the Body field is an enum.
Where the enum is a stream, it is backed by a class.

Assume we re-use C:
- Danger of re-writing existing code is the danger of introducing additional bugs, simply
due to the lack of available time in the field (c.f. Harmony)
- We have to make sure that the C API does not influence the Swift API.
- Memory management driving design etc
- Performance: the only scope to really exceed C is likely around inlining and
round-tripping types (ie, conversion of types crossing the C <-> Swift API boundary).



- We should be more wary of non-battle tested C APIs - does HTTP/2 fall into this
category?

- We could test out by looking at whether we could have more than one back end?
Could we test out the API by converting onto the Swift-based Vapor or Swifter
library?

Licensing issues - around MIT in Apache 2 code. Should be possible - need to follow up with
the Core team

Value types vs Reference Types:

We should probably use the terms “semantics” rather than types, because behaviours and
types are separated.
Foundation was originally reference only, and we’ve started to add value semantics
- We probably should reuse the Foundation types, so we should focus in the short
term in making sure that they are current right.

>> The only question is potentially around the mixing of reference and value types (ie, a
struct wrapping a stream as a reference type).

Built a map/flow diagram of how a request is handled and use that to model what we need to
do.

Next steps:



