
Kafka Controller Redesign
Purpose

Protocols
cluster metadata updates
topic creation
topic deletion
partition reassignment
preferred replica leader election
topic partition expansion
broker join
broker failure
controlled shutdown
controller leader election

Current Design

Components
ZkClient
ControllerContext
ControllerChannelManager
ControllerBrokerRequestBatch
RequestSendThread
PartitionStateMachine
ReplicaStateMachine
ZookeeperLeaderElector
TopicDeletionManager
OfflinePartitionLeaderSelector
ReassignedPartitionLeaderSelector
PreferredReplicaPartitionLeaderSelector
ControlledShutdownLeaderSelector
PartitionsReassignedListener
PreferredReplicaElectionListener
IsrChangeNotificationListener

Redesign Goal

Problems with the Controller
synchronous per-partition zookeeper writes
sequential per-partition controller-to-broker requests

complicated concurrency semantics
poor controller code organization
no separation of control plane from data plane
controller-to-broker requests are not broker-generation-aware
ZkClient obstructs client state management

Proposed Controller Improvements
use async zookeeper apis everywhere
improve controller-to-broker request batching
single-threaded event queue model
refactor cluster state management
prioritize controller requests
make controller-to-brokers requests broker-generation-aware
use vanilla ZooKeeper client for better client state management

Appendix A: Zookeeper Performance
Environment
Experiment results applied to 500,000 znodes
Experiment results applied to 1,000,000 znodes

References

Purpose
A kafka cluster has one active controller. All brokers are capable of picking up the responsibility.
The controller's purpose is to manage and coordinate the kafka cluster.

Protocols
●​ cluster metadata updates
●​ topic creation
●​ topic deletion
●​ partition reassignment
●​ preferred replica leader election
●​ topic partition expansion
●​ broker join
●​ broker failure
●​ controlled shutdown
●​ controller leader election

cluster metadata updates
A client can query any broker in the cluster about partition topology (the replica set and leader of
the partition) through a MetadataRequest. This partition topology can change for many
reasons. Producers and consumers always produce to and consume from the leader of the
partition. The controller broadcasts the partition topology to every broker in the cluster through
UpdateMetadataRequests so that brokers can accurately respond to clients.

topic creation
Topic creations can happen in one of three ways:

1.​ (deprecated) through direct client interaction with zookeeper by adding a
/brokers/topics/<topic> znode.

2.​ through kafka with CreateTopicsRequest.
3.​ through kafka with MetadataRequest when "auto.create.topics.enable" is

set to true.

In any case, the controller just watches for topic creations in zookeeper by watching for child
changes to the /brokers/topics znode. The topic znode made from all of the 3 means of
topic creation has already specified the number of partitions and the replica set for each replica.
The controller reacts to topic creations by picking a leader from the given replica set, notifying
the replicas of the topic creation, and updating the cluster's metadata. It also begins listening on
partition changes to the topic by watching for data changes to the topic znode at
/brokers/topics/<topic>.

topic deletion
Topic deletions can happen in one of two ways:

1.​ (deprecated) through direct client interaction with zookeeper by adding a
/admin/delete_topics/<topic> znode.

2.​ through kafka with DeleteTopicsRequest.

In any case, the controller just watches for topic deletions in zookeeper by watching for child
changes to the /admin/delete_topics znode. The znode itself has no data and the topic is
extracted from the znode path. The controller reacts to topic deletions by driving two phases:
make all replicas stop accepting requests, and make all replicas delete persisted data. Once the
controller is notified that all replicas have successfully been deleted, the controller finishes the
topic deletion protocol by removing the topic from zookeeper.

partition reassignment
Partition reassignments are made by an administrator. The administrator specifies the desired
partition reassignment movements by writing to the /admin/reassign_partitions znode.

The controller just watches for partition reassignments in zookeeper by watching for data
changes to the /admin/reassign_partitions znode. The znode can contain
reassignments for multiple partitions. The controller actually initiates the partition reassignment
movement for a given partition specified by the administrator if all of the criteria are met:

1.​ the reassigned partition’s corresponding topic is not in the process of being deleted
2.​ the reassigned partition is not already in the process of being reassigned.
3.​ the replica set for each of the reassigned partitions differ from what's already there.

The actual partition reassignment process has the replica set of the partition go through an
expansion and contraction phase and is well-documented in the code. The expansion phase
expands the replica set to the (old replica set + new replica set), waits for them all to be in-sync
with the leader, and transitions the leader to a replica in the new replica set if needed. The
contraction phase removes the old replicas no longer in the new replica set. The controller
detects that the (old replica set + new replica set) have become in-sync with the leader by
temporarily watching for data changes to the
/brokers/topics/<topic>/partitions/<partition>/state path for every partition
being reassigned.

preferred replica leader election
Partition leadership can change when reassigning partitions or when the partition's leader fails.
Over time, this can cause partition leadership imbalance in the cluster.

Preferred replica leader elections can happen in one of two ways:

1.​ automatically from the controller when "auto.leader.rebalance.enable" is set to
true.

2.​ manually from direct administrator interaction with zookeeper by writing to the
/admin/preferred_replica_election znode.

In either case, the controller watches for manually triggered preferred replica elections in
zookeeper by watching for data changes to the /admin/preferred_replica_election
znode. The /admin/preferred_replica_election znode contains a list of partitions to
undergo preferred replica leader election. The controller does the partition leadership change
based on the replica order defined in zookeeper. The controller transitions partition leadership to
the first replica in the ordered replica set and updates the cluster’s metadata if that replica is
alive and is in-sync. The controller skips preferred replica leader elections for partitions whose
topics are in the process of being deleted.

topic partition expansion
An administrator can expand a topic's partition count through direct interaction with zookeeper
by writing the replica set for each partition to the /brokers/topics/<topic> znode just as
with topic creation.

On topic creation, the controller watches for topic partition expansions in zookeeper by watching
for data changes to the /brokers/topics/<topic> znode. The topic znode has already
specified the number of partitions and the replica set for each replica. The controller reacts to
the topic partition expansion by picking a leader from the given replica set, notifying the replicas
of the partition creation, and updating the cluster's metadata.

broker join
The controller watches for broker joins in zookeeper by watching for child changes to the
/brokers/ids znode. When a broker joins the cluster, the controller updates the cluster's
metadata, informs the broker of the partitions to serve, resumes any partition reassignments
that were suspended from the down broker, and tries to elect the joined broker as leader for
partitions that have previously been offline.

broker failure
The controller watches for broker failures in zookeeper by watching for child changes to the
/brokers/ids znode. When a broker fails, the controller informs the impacted replicas of the
failure, picks new leaders for the impacted partitions, and updates the cluster's metadata.

controlled shutdown
A broker may gracefully shutdown through a process called controlled shutdown. This is to
reduce the unavailability window on partitions owned by the shutting down broker compared to
broker failures being detected from zookeeper session expirations. The shutting down broker
informs the controller its intent to shutdown with a ControlledShutdownRequest. The
broker's shutdown is blocked until it either:

1.​ receives a ControlledShutdownResponse from the controller indicating success
2.​ exhausts all of its retries.

The controller sends a ControlledShutdownResponse after any needed leadership
movements have occurred and brokers on relevant replica sets have been notified of potential
in-sync-replica shrinks. Note that this protocol is different from all the others in that an
administrative operation is done through rpc from broker to controller instead of by triggering the
controller through zookeeper. Background regarding this exception to the pattern is in
KAFKA-340, KAFKA-817, and KAFKA-927.

https://issues.apache.org/jira/browse/KAFKA-340
https://issues.apache.org/jira/browse/KAFKA-817
https://issues.apache.org/jira/browse/KAFKA-927

controller leader election
Controller leader election is kafka's way of ensuring the kafka cluster has one active controller
even when a controller fails or experiences a controlled shutdown. A kafka cluster can undergo
controller leader election in one of four ways:

1.​ through direct administrative interaction with zookeeper by deleting the /controller
znode.

2.​ through direct administrative interaction with zookeeper by writing a broker id to the
/controller znode.

3.​ through controller broker failure.
4.​ through controlled shutdown of the controller.

In any case, the controller just watches for the need to undergo controller leader election in
zookeeper by watching for data changes to the /controller znode. This ephemeral
/controller znode just specifies the broker id of the current active controller. A leader is
decided based on successful ownership of the ephemeral /controller znode in zookeeper.
Upon becoming controller, the new controller increments the controller epoch in the
/controller_epoch znode, registers zookeeper listeners, loads zookeeper metadata into its
local state, proceeds with any in-progress partition reassignments and preferred replica leader
elections, and updates the cluster's metadata. Upon controller resignation, the former controller
deregisters its zookeeper listeners and clears its local controller state.

Current Design
KafkaController maintains a connection to every broker in the cluster. Each of these
connections are supported by a NetworkClient running on a separate request send thread.

With one exception, all communication between the controller and a broker is from controller to
broker. This includes UpdateMetadataRequest, LeaderAndIsrRequest, and
StopReplicaRequest. The exception is the ControlledShutdownRequest sent from the
shutting down broker to the controller.

With one exception, all administrative operation requests are communicated to the controller
through zookeeper. Again the exception is the ControlledShutdownRequest sent from the
shutting down broker to the controller.

Components
KafkaController today is made up of the following components:

●​ ZkClient
●​ ControllerContext

●​ ControllerChannelManager
●​ ControllerBrokerRequestBatch
●​ RequestSendThread
●​ PartitionStateMachine
●​ ReplicaStateMachine
●​ ZookeeperLeaderElector
●​ TopicDeletionManager
●​ OfflinePartitionLeaderSelector
●​ ReassignedPartitionLeaderSelector
●​ PreferredReplicaPartitionLeaderSelector
●​ ControlledShutdownLeaderSelector
●​ PartitionsReassignedListener
●​ PreferredReplicaElectionListener
●​ IsrChangeNotificationListener

ZkClient
Kafka brokers depend on org.I0Itec.zkclient.ZkClient. This client is an abstraction over the
vanilla org.apache.zookeeper.ZooKeeper client in that it:

●​ offers permanent watches on nodes in zookeeper
●​ allows users to subscribe and unsubscribe listeners to data changes, child changes, and

state changes with IZkDataListener, IZkChildListener, and IZkStateListener, respectively.
●​ automatically tears down and reinitializes the underlying ZooKeeper client and

additionally re-establishes new sessions to zookeeper upon session expiration.

ZkClient has a single org.I0Itec.zkclient.ZkEventThread from which it triggers all notifications
sequentially.

ControllerContext
This stores the controller's cluster state. It contains state like the topics in the cluster, which
brokers are in the cluster, partition topology, partitions undergoing reassignment, and partitions
undergoing preferred replica leader elections. This state is shared across threads and is
protected by a controllerLock. The context also contains the
ControllerChannelManager.

ControllerChannelManager
This component maintains a connection to every broker in the cluster. It holds a
NetworkClient and message queue per broker connection. Each of these connections has a
dedicated RequestSendThread operating the NetworkClient and message queue.

ControllerBrokerRequestBatch
This component batches up partially-built controller-to-broker LeaderAndIsrRequests,
StopReplicaRequests, and UpdateMetadataRequests. Users update these batches at
a per-request level stating additional partitions to add for certain brokers. Once ready, the batch
gets turned into actual requests and get queued up using the ControllerChannelManager.
KafkaController, PartitionStateMachine, and ReplicaStateMachine each
maintain their own ControllerBrokerRequestBatch.

RequestSendThread
This component sends queued up messages to a broker in the cluster by operating its own
NetworkClient. There are one of these for each controller-to-broker connection.

PartitionStateMachine
This component stores the state for every partition in the kafka cluster. Partition states include
NonExistentPartition, NewPartition, OnlinePartition, and
OfflinePartition. Most state transitions simply update the partition state in the
PartitionStateMachine's local state. The exceptions are state transitions to the
OnlinePartition state. This transition figures out the leader and in-sync-replica set for the
partition, updates zookeeper, and updates the cluster's metadata.

valid states:

●​ NonExistentPartition - the partition either never existed before or was created and
deleted.

●​ NewPartition - the partition has been created. It has a replica set, but the leader and
isr have not yet been decided.

●​ OnlinePartition - the partition has a leader.
●​ OfflinePartition - the leader for a partition has died.

valid state transitions:
●​ NonExistentPartition -> NewPartition
●​ NewPartition -> OnlinePartition, OfflinePartition
●​ OnlinePartition -> OnlinePartition, OfflinePartition
●​ OfflinePartition -> OnlinePartition, OfflinePartition,

NonExistentPartition

ReplicaStateMachine
This component stores the state for every replica in the kafka cluster. Replica states include
NonExistentReplica, NewReplica, OnlineReplica, OfflineReplica,
ReplicaDeletionStarted, ReplicaDeletionSuccessful, and

ReplicaDeletionIneligible. Most state transitions simply update the replica state in the
ReplicaStateMachine's local state. The exceptions are NewReplica and
OfflineReplica which interact with zookeeper to read or update the in-sync-replica set in
zookeeper.
valid states:

●​ NonExistentReplica - the replica either never existed before or was deleted
successfully.

●​ NewReplica - the replica is brand new either as a result of partition reassignment or
topic creation. The replica can be a follower in this state.

●​ OnlineReplica - the replica has started and is eligible for becoming either a leader or
follower for a partition.

●​ OfflineReplica - the replica has either gracefully been shutdown from controlled
shutdown, failed, or has been kicked out of the replica set due to partition reassignment.

●​ ReplicaDeletionStarted - the replica has been instructed to begin deletion either
from having been kicked out of the replica set due to partition reassignment.

●​ ReplicaDeletionSuccessful - the replica has been successfully deleted either
from having been kicked out of the replica set due to partition reassignment.

●​ ReplicaDeletionIneligible - the replica to be deleted is either down or the
StopReplicaRequest instructing deletion returned with an error.

valid state transitions:
●​ NonExistentReplica -> NewReplica
●​ NewReplica -> OnlineReplica, OfflineReplica
●​ OnlineReplica -> OnlineReplica, OfflineReplica
●​ OfflineReplica -> OnlineReplica, OfflineReplica,

ReplicaDeletionStarted
●​ ReplicaDeletionStarted -> ReplicaDeletionSuccessful,

ReplicaDeletionIneligible
●​ ReplicaDeletionSuccessful -> NonExistentReplica
●​ ReplicaDeletionIneligible -> OnlineReplica, OfflineReplica

ZookeeperLeaderElector
This component makes sure a kafka cluster has one active controller. It watches for data
changes in the /controller znode and runs the controller election algorithm upon data
change.

TopicDeletionManager
This component has a single kafka.controller.DeleteTopicsThread which in a loop
tracks the progress of topic deletion through its two phases of stopping all replicas and deleting
all replicas.

OfflinePartitionLeaderSelector
This component purely decides the leader for a newly created partition. It doesn't change any
state.

ReassignedPartitionLeaderSelector
This component purely decides the leader for a reassigned partition. It doesn't change any
state.

PreferredReplicaPartitionLeaderSelector
This component purely decides the leader for a partition undergoing preferred replica leader
election. It doesn't change any state.

ControlledShutdownLeaderSelector
This component purely decides the leader for a partition such that it doesn't pick the broker
undergoing controlled shutdown. It doesn't change any state.

PartitionsReassignedListener
This component contains the logic triggered by ZkClient when an administrator writes to the
/admin/reassign_partitions znode.

PreferredReplicaElectionListener
This component contains the logic triggered by ZkClient when an administrator writes to the
/admin/preferred_replica_election znode.

IsrChangeNotificationListener
Brokers keep track of all in-sync-replica set changes for partitions of which it is the leader.
Brokers periodically write any changes observed as a sequential znode child to the
/isr_change_notification znode. This component contains the logic triggered by
ZkClient upon child change when a broker writes a child to /isr_change_notification.
The controller simply updates its local cache of this change and updates the cluster's metadata.

Redesign Goal
The goal of this redesign is to improve controller performance, controller maintainability, and
cluster reliability.

Problems with the Controller
1.​ synchronous per-partition zookeeper writes
2.​ sequential per-partition controller-to-broker requests
3.​ complicated concurrency semantics
4.​ poor controller code organization
5.​ no separation of control plane from data plane
6.​ controller-to-broker requests are not broker-generation-aware
7.​ ZkClient obstructs client state management

synchronous per-partition zookeeper writes
Synchronous zookeeper writes means that we wait an entire round trip before doing the next
write. These synchronous writes are happening at a per-partition granularity in several places,
so partition-heavy clusters suffer from the controller doing many sequential round trips to
zookeeper.

●​ PartitionStateMachine.electLeaderForPartition updates leaderAndIsr
in zookeeper on transition to OnlinePartition. This gets triggered per-partition
sequentially with synchronous writes during controlled shutdown of the shutting down
broker's replicas for which it is the leader.

●​ ReplicaStateMachine updates leaderAndIsr in zookeeper on transition to
OfflineReplica when calling KafkaController.removeReplicaFromIsr. This
gets triggered per-partition sequentially with synchronous writes for failed or controlled
shutdown brokers.

sequential per-partition controller-to-broker requests
TODO: The impact of sequential requests needs to be further examined, as they are sent out by
a separate RequestSenderThread and not in the way of a controlled shutdown.

It appears that the controller performs sequential per-partition requests for all three forms of
controller-to-broker requests:
StopReplicaRequest gets sent per-partition sequentially to a shutting down broker even
though StopReplicaRequest already accepts multiple partitions. On top of this, if you
observe the request logs, you’ll find that a broker undergoing controlled shutdown receives two

StopReplicaRequests for every partition that should be stopped. This magnifies the
per-partition sequential request issue.

LeaderAndIsrRequest gets sent per-partition sequentially to all replicas of partitions that a
controlled shutdown broker formerly led to notify the replica set of the newly elected leader.
Requests also get sent per-partition sequentially to all replicas of partitions that a controlled
shutdown broker formerly followed to notify the replica set of a potential change in the partition’s
in-sync replicas.

Any time a LeaderAndIsrRequest gets sent, a corresponding UpdateMetadataRequest
is sent to the entire cluster. When considering the controlled shutdowns described above, we
see that UpdateMetadataRequest is also sent out on a per-partition basis but this time to
the entire cluster.

These sequential per-partition controller-to-broker requests magnify per-request overheads. For
instance, on every per-partition UpdateMetadataRequest, the MetadataCache acquires a
read-write lock and updates its aliveBrokers and aliveNodes even though they’ll most likely be
the exact same value throughout the controlled shutdown.

complicated concurrency semantics
Today KafkaController shares state across many threads. Threads that the controller
needs to worry about are:

●​ IO threads handling controlled shutdown requests
●​ The ZkClient org.I0Itec.zkclient.ZkEventThread processing zookeeper

callbacks sequentially
●​ The TopicDeletionManager kafka.controller.DeleteTopicsThread
●​ Per-broker RequestSendThread within ControllerChannelManager.

All of these threads with the exception of the per-broker RequestSendThread are accessing
and modifying the ControllerContext state within the
ControllerContext.controllerLock, so little parallelism is taking place anyway.

poor controller code organization
Logic and state is split poorly across KafkaController, PartitionStateMachine, and
ReplicaStateMachine. Why this matters:

●​ It’s difficult to answer questions like:
○​ “where and when does zookeeper get updated?”
○​ “where and when does a controller-to-broker request get formed?”
○​ “what impact does a failing zookeeper update or controller-to-broker request

have on the cluster state?”
●​ stunts development. open source is reluctant to make changes to the controller out of

fear of breaking something.

●​ fallacies emerge like "it must not be broken since nobody is making changes to it".
Example pain points:

●​ scala setter overrides are very misleading and should be avoided. This is only used once
in ControllerContext in a simple way but should still be removed.

●​ KafkaController, PartitionStateMachine, and ReplicaStateMachine each
have their own ControllerBrokerRequestBatch. This prevents you from being
able to batch up requests across these classes.

●​ There are a number of needless back-and-forth code flows between classes. The
biggest offender is between KafkaController and ControllerChannelManager
where KafkaController calls ControllerChannelManager’s
sendRequestsToBrokers which calls KafkaController’s sendRequest which
calls ControllerChannelManager’s sendRequest. Similar back-and-forth code
flows happen upon broker failure between KafkaController and
ReplicaStateMachine.

no separation of control plane from data plane
Today all requests (client requests, broker requests, controller requests) to a broker are put into
the same queue. They all have the same priority. So a backlog in client requests will postpone
the processing of requests from the controller.

This can have undesirable consequences. Imagine for instance the controller broadcasts to a
replica set that leadership of the replica set has changed. The new leader starts accepting client
requests. Meanwhile, the former replica set leader is busy processing a backlog of client
requests before processing the controller’s LeaderAndIsrRequest informing it of the leadership
transfer. Some of the requests in the backlog may pertain to the partition undergoing leadership
transfer. Specifically, messages from produce requests without stronger acknowledgment
settings can get erased from log truncation (technically not categorized as data loss since these
messages are beyond the “high watermark”, but it’s a bad, unexpected result nonetheless for
the producer).

controller-to-broker requests are not broker-generation-aware
Broker generation here means an identifier of the broker that changes every time it joins the
cluster. Controller-to-broker requests are not broker-generation-aware, meaning it's possible for
a restarted broker to accidentally receive and act on requests intended for the broker’s earlier
generation, leaving the broker in a bad state.

For instance, if a broker restarts in the middle of its own controlled shutdown, the restarted
broker may accidentally process its earlier generation’s StopReplicaRequest sent from the
controller for one of its follower replicas, leaving the replica offline while its remaining replicas
may stay online.

ZkClient obstructs client state management
Client state management here means the ability to intervene when a state change on the client
occurs such as connection loss or session expiration from zookeeper.

ZkClient re-establishes new sessions under the hood and processes all notifications (including
state change notifications) sequentially from the ZkEventThread. This means that even if you
subscribe an IZkStateListener to the ZkClient, they will get processed only after processing
pending notifications in front of the state change notification in the ZkEventThread’s queue. So,
by the time the ZkEventThread starts processing the state change notification, a new session
may have been established and writes intended to be on the old session have already
happened on the new session. Without a means of intervention as the state changes occur, we
are susceptible to cluster inconsistencies such as the one mentioned in KAFKA-3083.

Proposed Controller Improvements
1.​ use async zookeeper apis everywhere
2.​ improve controller-to-broker request batching
3.​ single-threaded event queue model
4.​ refactor cluster state management
5.​ prioritize controller requests
6.​ make controller-to-brokers requests broker-generation-aware
7.​ use vanilla ZooKeeper client for better client state management

use async zookeeper apis everywhere
The zookeeper client offers various means of performing a request: synchronous,
asynchronous, and multi:

●​ synchronous calls mean we wait for one request to complete before starting another
request.

●​ asynchronous calls means we don’t have to wait for one request to complete before
starting another request, and we get notified of the result through a callback.

●​ multi batches multiple requests into a single request over-the-wire, and the whole batch
of requests get lumped under the same transaction. Something to keep in mind with
multi is the maximum allowed request size limitation in zookeeper represented by
jute.maxbuffer. Extra care needs to be taken to choose the right amount of batching
in the multi request to make sure it doesn’t exceed the maximum request size limit. This
can be mitigated by batching up the multi operations.

https://issues.apache.org/jira/browse/KAFKA-3083

[4] indicates that multi and batched multi provides the best performance, followed by async, and
sync being the worst. So moving forward, the question is whether we should go down the async
path or batched multi path. For this, we need to weigh pros and cons.

 sync async multi batched multi

sync or async sync async sync sync

granularity Per-request Per-request Per-batch. Batch
has many
sub-requests
handled under
one transaction.

Per-batch. Batch
has many
sub-requests
handled under
one transaction.

error mechanism Exception Callback error
code

Exception
specifying the
specific
sub-request
causing the
problem.

Exception
specifying the
specific
sub-request
causing the
problem.

limitations Possible to hit
the
jute.maxbuff
er 1MB limit

Possible to hit
the
jute.maxbuff
er 1MB limit

Easy to hit the
jute.maxbuff
er 1MB limit

Possible to hit
the
jute.maxbuff
er 1MB limit

performance Bad for many
writes.

Good for
pipelining many
writes.

Optimal for
many writes.
Avoids request
overhead in
async.

Good
compromise
between async
and multi while
avoiding the
multi’s 1MB
limitation.

zkclient ready Yes No: Async apis
are offered in
the raw
zookeeper
client. Some
options are to
switch to just
using the raw
zookeeper client
or to extend
ZkClient to
reuse its existing
raw zookeeper
client.

Yes Yes

Reaction to
errors

Error is
per-request, so
you can
independently
handle the
individual failure.

Error is
per-request, so
you can
independently
handle the
individual failure.

Either the whole
transaction
succeeds or
fails, so one
failure causes all
requests in the
transaction to
fail. Retries are
costly.

Either the whole
transaction
succeeds or
fails, so one
failure causes all
requests in the
transaction to
fail. Retries are
costly.

Flavio’s opinion: “You don't really need to batch with multi, you just need to make the calls
asynchronous. In fact, unless you really need to make multiple updates transactional, the
preferred way is to push updates asynchronously to keep the pipeline full.” [5] It seems that he
wants ZkUtils to completely migrate to using async calls with the raw zookeeper client.

The async apis look like the winner primarily due to the simplicity in handling per-request
granularity successes and failures while still having substantially better write performance than
sync.

We can safely run the async apis by waiting for the set of async calls to finish before moving on.
The end result of pipelining async calls is that latency for N writes ends up being much less than
N round trips. A more detailed analysis can be found in Appendix A.

improve controller-to-broker request batching
TODO: The impact of these sequential requests needs to be further examined, as they are sent
out by a separate RequestSenderThread and not in the way of a controlled shutdown.

single-threaded event queue model
Switching to a single-threaded event queue model vastly simplifies the concurrency semantics.
This single thread is the only thread accessing and modifying the controller local state, so we no
longer have to pass a lock around different threads and classes.

Note that this is less drastic of a change than it sounds. The bulk of the existing controller work
today already happens sequentially in the ZkClient’s single
org.I0Itec.zkclient.ZkEventThread. The per-broker RequestSendThread already
just blindly sends requests that were prepared by the
org.I0Itec.zkclient.ZkEventThread . So really all that’s needed is to shift the work
done by org.I0Itec.zkclient.ZkEventThread, the work done by the IO threads upon
controlled shutdown, and the work done by the kafka.controller.DeleteTopicsThread
into the same thread.

Since we can’t elegantly push arbitrary work onto the
org.I0Itec.zkclient.ZkEventThread, we can add a layer of indirection. We add a new
ControllerThread which processes events held in an event queue. All work now gets delegated
to this single thread.

Notifications processed by the org.I0Itec.zkclient.ZkEventThread can be processed
by this single-threaded event queue model by transforming every notification into an event. The
processing of the event will now perform all work previously done within the
org.I0Itec.zkclient.ZkEventThread.

Controlled shutdowns can work their way into the single-threaded event queue model by just
adding a controlled shutdown event to the event queue. Existing behavior has the IO thread wait
indefinitely for completion. Some options for mimicking this behavior is to share a
synchronization mechanism between the IO thread and the ControllerThread such as a
single-element blocking queue or alternatively just put the request into a purgatory, but these
possibilities are orthogonal to the single-threaded event queue model discussion.

Callbacks from the RequestSendThread can fit into this single-threaded event queue model
by delegating the actual callback logic into an event which the ControllerThread can later
process.

Topic deletion can get folded into the single-threaded event queue model in several ways. Topic
deletion progress can pause due to down brokers or arbitrary exceptions in its two phases. If
broker membership was the only concern, then the existing dedicated DeleteTopicsThread
would be unnecessary - simply pause and resume based on broker joins, failures, or
shutdowns. However, topic deletion can pause for other reasons such as error codes coming
from responses during its two phases. So we need some mechanism to eventually retry deletion
of the offending replicas until success. While technically possible to piggyback this retry logic
into the event processing of other events, progress on retrying topic deletion would depend on
frequency of events making it into the event queue. A simpler approach would be to schedule a
repeated task that appends an event into the event queue telling the ControllerThread to retry
pending topic deletions. This proposal prefers the latter approach.

This single-threaded event queue approach has the added benefit of having short ZkClient
callbacks and should reduce the impact of a longstanding issue described in KAFKA-1155.

refactor cluster state management
One option to reduce the complexity of figuring out which cluster resides where and when they
get modified is to get rid of the state machines altogether and to just define the actions to be
taken when handling a controller event.
Pros:

https://issues.apache.org/jira/browse/KAFKA-1155

●​ local state and state manipulations are easier to follow: just read the function handling
the controller event.

●​ it’s a lower-level organization than the state machines, so you get better control over
what happens when.

Cons:
●​ state transitions are now implicit
●​ It’s easier now to miss edge case logic

Another option is to do a hybrid approach of the existing state machines and the option
described above. This would end up looking like the GroupCoordinator, where states and state
transitions are made explicit, but there is no explicit state machine class internally performing
the state manipulation logic. An external class (in this case, the controller) would hold all of the
cluster state, decide when a transition should occur, and define the state manipulation logic.
Pros:

●​ state transitions are explicit
●​ local state and state manipulations are easier to follow: just read the function handling

the controller event.
●​ it’s a lower-level organization than the state machines, so you get better control over

what happens when.
●​ explicit state transitions should make it easier to notice edge cases

prioritize controller requests
We want to separate the control plane from the data plane. To do this, we want to prioritize
controller requests. This allows brokers to react more proactively to controller requests when
faced with a backlog of requests. Clients will also appreciate controller request prioritization
because their requests will behave as they expect even when the broker is under stress.

Request prioritization can happen at the network layer with the RequestChannel. The
RequestChannel can categorize the request as regular or prioritized based on the request id.
If the incoming request id matches that of UpdateMetadataRequest,
LeaderAndIsrRequest, and StopReplicaRequest, the request can get prioritized.

There are several ways to implement request prioritization:

1.​ Add a prioritized request queue to supplement the existing request queue in the
RequestChannel and add request prioritization-aware logic to both the sendRequest
and receiveRequest operations of RequestChannel. sendRequest puts the
request into the respective queue based on whether the request is prioritized or not.
receiveRequest can optimistically check the prioritized request queue and otherwise
fallback to the regular request queue. One subtlety here is whether to do a timed poll on
just the regular request queue or on both the prioritized request queue and regular
request queue sequentially. Only applying the timed poll to the regular request queue
punishes a prioritized request that arrives before a regular request but moments after the

prioritized request check. Applying the timed poll to both queues sequentially results in a
guaranteed latency increase on a regular request.

2.​ Replace RequestChannel’s existing request queue with a prioritization-aware blocking
queue. This approach avoids the earlier stated subtlety by allowing the timed poll to
apply to either prioritized or regular requests in low-throughput scenarios while still
allowing queued prioritized requests to go ahead of queued regular requests.

This document prefers the second implementation as it avoids the earlier stated subtle issue of
punishing late arriving prioritized requests.

This has been broken out into KAFKA-4453 and already has a pending patch.

make controller-to-brokers requests broker-generation-aware
Broker generation here means an identifier of the broker that changes every time it joins the
cluster. All controller-to-broker requests should include the broker generation. If the recipient
broker notices the request’s generation doesn’t match its own generation, it rejects the request.

Some options for the generation are:

●​ a guid generated by the broker that gets propagated to the controller
●​ the czxid from the broker’s zookeeper ephemeral node

Using the czxid is a natural fit since it’s a unique, monotonically increasing identifier of the
broker that changes every time it joins the cluster and the controller anyways reads the relevant
/brokers/ids/<id> znode upon broker join to discover the broker’s rack and endpoint information.

use vanilla ZooKeeper client for better client state management
Client state management here means the ability to intervene when a state change on the client
occurs such as connection loss or session expiration from zookeeper.

Unlike ZkClient, synchronous calls will actually bubble up ConnectionLossException and
SessionExpiredException to the user upon a read or write attempt to zookeeper, allowing us to
intervene if the client either hits connection loss or session expiration.

But as stated earlier, we want to use the vanilla ZooKeeper client for its async apis. We can still
get notified of request errors from state changes such as connection loss or session expiration
from the return codes passed to callbacks, and similarly we can react to state changes upon
processing an event by looking at the event’s reported state.

Using the vanilla ZooKeeper clients lets us act on these state changes when the state
notification is received instead of when ZkClient’s ZkEventThread has finally reached the state
change notification.

https://issues.apache.org/jira/browse/KAFKA-4453
https://github.com/apache/kafka/pull/2181

Before diving into what intervention should occur during a state change, the following is a quick
overview of relevant session states and state transitions.
valid states:

●​ NOT_CONNECTED - the initial state of the client
●​ CONNECTING - the client is establishing a connection to zookeeper
●​ CONNECTED - the client has established a connection and session to zookeeper
●​ CLOSED - the session has closed or expired

valid state transitions:
●​ NOT_CONNECTED -> CONNECTING
●​ CONNECTING -> CONNECTED
●​ CONNECTING -> CLOSED
●​ CONNECTED -> CONNECTING
●​ CONNECTED -> CLOSED

While a client can locally make the decisions that it has lost a connection to zookeeper as well
as locally decide that it wants to close its session, only the zookeeper ensemble can decide that
the client’s session has expired.

When a client receives a notification of connection loss (client is in the CONNECTING state), it
means the client cannot get any notifications from zookeeper. When disconnected, the controller
should simply pause whatever tasks it was working on since another broker could have taken
over as controller without its knowing. From the disconnected state, the client can either
re-establish a connection (state transition to CONNECTED) or have its session expire (state
transition to CLOSED). When transitioning to the CONNECTED state, the controller should
resume its tasks. However, when transitioning to the CLOSED state, the broker knows it is no
longer the controller and should discard any of its pending tasks.

Appendix A: Zookeeper Performance

Environment
The following experiments are run against a 5-machine zookeeper ensemble using a single
org.apache.zookeeper.ZooKeeper client run in the same datacenter as the zookeeper
ensemble. Each experiment is run 5 times.

Experiments
●​ set-data-sync: synchronously write the same random sequence of bytes to N znodes
●​ get-data-sync: synchronously read N znodes
●​ set-data-async: asynchronously write the same random sequence of bytes to N znodes
●​ get-data-async: asynchronously read N znodes

●​ multi-set-data-sync: write atomic batches (of size B) of N znodes synchronously
●​ multi-check-and-set-data-async: atomically check a znode and write a batch (of size B)

of N znodes asynchronously

Experiment results applied to 500,000 znodes

 Run 1 (ms) Run 2 (ms) Run 3 (ms) Run 4 (ms) Run 5 (ms) Avg (ms)

set-data-sy
nc

247435 251086 254658 258412 255292 253376.6

get-data-sy
nc

63938 64227 64654 61650 66290 64151.8

multi-set-d
ata-sync
(batch size
10)

34161 35084 27158 35015 35285 33340.6

multi-set-d
ata-sync
(batch size
50)

17210 17553 15481 17702 17686 17126.4

multi-set-d
ata-sync
(batch size
100)

12148 11565 11210 10197 11421 11308.2

multi-set-d
ata-sync
(batch size
500)

7541 7844 7551 7721 7165 7564.4

multi-set-d
ata-sync
(batch size
1000)

6971 6702 7049 7063 6758 6908.6

multi-set-d
ata-sync
(batch size
5000)

5576 5220 5538 5255 5571 5432.0

multi-set-d
ata-sync

4943 5268 5683 4882 5078 5170.8

(batch size
10000)

multi-set-d
ata-sync
(batch size
50000)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

n/a

set-data-as
ync

19698 16156 17196 20527 20226 18760.6

get-data-a
sync

8067 14025 7097 6734 15600 10304.6

multi-chec
k-and-set-
data-async
(batch size
1)

OOM OOM OOM OOM OOM n/a

multi-chec
k-and-set-
data-async
(batch size
10)

4438 4009 4384 4141 4382 4270.8

multi-chec
k-and-set-
data-async
(batch size
50)

3708 4252 4191 4136 4324 4122.2

multi-chec
k-and-set-
data-async
(batch size
100)

3969 3878 3727 3757 3790 3824.2

multi-chec
k-and-set-
data-async
(batch size
500)

3789 3834 3774 3800 3779 3795.2

multi-chec
k-and-set-
data-async
(batch size

3765 3801 3730 3757 3812 3773.0

1000)

multi-chec
k-and-set-
data-async
(batch size
5000)

3238 3125 3004 3283 3025 3135.0

multi-chec
k-and-set-
data-async
(batch size
10000)

3334 3788 3294 2907 3220 3308.6

multi-chec
k-and-set-
data-async
(batch size
50000)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

n/a

Experiment results applied to 1,000,000 znodes

 Run 1 (ms) Run 2 (ms) Run 3 (ms) Run 4 (ms) Run 5 (ms) Avg (ms)

set-data-sy
nc

514700 501081 513054 515765 528159 514551.8

get-data-sy
nc

127084 133080 134900 129372 124262 129739.6

multi-set-d
ata-sync
(batch size
10)

69061 68500 68382 57656 69768 66673.4

multi-set-d
ata-sync
(batch size
50)

34599 33808 34949 34264 35189 34561.8

multi-set-d
ata-sync
(batch size
100)

23029 20220 22429 21936 22876 22098.0

multi-set-d 16007 14660 15107 14464 14528 14953.2

ata-sync
(batch size
500)

multi-set-d
ata-sync
(batch size
1000)

14112 13168 14055 12970 12461 13353.2

multi-set-d
ata-sync
(batch size
5000)

10764 10455 10800 10487 10258 10552.8

multi-set-d
ata-sync
(batch size
10000)

10046 9800 9571 11504 9486 10081.4

multi-set-d
ata-sync
(batch size
50000)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

Connectio
nLoss(jute.
maxbuffer)

n/a

set-data-as
ync

OOM OOM OOM OOM OOM n/a

get-data-a
sync

OOM OOM OOM OOM OOM n/a

multi-chec
k-and-set-
data-async
(batch size
10)

OOM OOM OOM OOM OOM n/a

References
[1] https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internals
[2] https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Redesign
[3] https://github.com/apache/kafka/pull/1149
[4]
http://zookeeper-user.578899.n2.nabble.com/sync-vs-async-vs-multi-performances-td7284355.
html

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internals
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Redesign
https://github.com/apache/kafka/pull/1149
http://zookeeper-user.578899.n2.nabble.com/sync-vs-async-vs-multi-performances-td7284355.html
http://zookeeper-user.578899.n2.nabble.com/sync-vs-async-vs-multi-performances-td7284355.html

[5]
https://issues.apache.org/jira/browse/KAFKA-3038?focusedCommentId=15085300&page=com.
atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15085300

https://issues.apache.org/jira/browse/KAFKA-3038?focusedCommentId=15085300&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15085300
https://issues.apache.org/jira/browse/KAFKA-3038?focusedCommentId=15085300&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15085300

	Kafka Controller Redesign
	Purpose
	Protocols
	cluster metadata updates
	topic creation
	topic deletion
	partition reassignment
	preferred replica leader election
	topic partition expansion
	broker join
	broker failure
	controlled shutdown
	controller leader election

	Current Design
	Components
	ZkClient
	ControllerContext
	ControllerChannelManager
	ControllerBrokerRequestBatch
	RequestSendThread
	PartitionStateMachine
	ReplicaStateMachine
	ZookeeperLeaderElector
	TopicDeletionManager
	OfflinePartitionLeaderSelector
	ReassignedPartitionLeaderSelector
	PreferredReplicaPartitionLeaderSelector
	ControlledShutdownLeaderSelector
	PartitionsReassignedListener
	PreferredReplicaElectionListener
	IsrChangeNotificationListener

	Redesign Goal
	Problems with the Controller
	synchronous per-partition zookeeper writes
	sequential per-partition controller-to-broker requests
	complicated concurrency semantics
	poor controller code organization
	no separation of control plane from data plane
	controller-to-broker requests are not broker-generation-aware
	ZkClient obstructs client state management

	Proposed Controller Improvements
	use async zookeeper apis everywhere
	improve controller-to-broker request batching
	single-threaded event queue model
	refactor cluster state management
	prioritize controller requests
	make controller-to-brokers requests broker-generation-aware
	use vanilla ZooKeeper client for better client state management

	Appendix A: Zookeeper Performance
	Environment
	Experiments
	Experiment results applied to 500,000 znodes
	Experiment results applied to 1,000,000 znodes

	References

