
Milestone Report:

Concurrent Hash Table Lookup And Acceleration
Ying Jiang(yingj2), Yinyue Wu(yinyuew)

https://yinyuewu.github.io/pp_proj/

Adjusted Schedule

Time Plan

11/7 ~ 11/13 (Done) Research and Proposal

11/14 ~ 11/20 (Done) Implement versions of coarse-grained/fine-grained locking with
two storage alternatives and do validation

11/21 ~ 11/27 (Adjusted) Implement lock-free version with storage alternatives (not
feasible) and do validation
(Done) Build SIMD implementation for different alternatives

11/28 ~ 11/30 (Done) Preliminary comparison of SIMD implementations, storage
alternatives with basic CPU implementation
(Done) Milestone Report

11/30 ~ 12/2 All: Optimize current versions of code;

12/3 ~ 12/6 All: Add storage format support: storing pointers to original KV pairs for
tagged fine-grained locks and lock-free versions, w/ and w/o SIMD

12/7 ~ 12/11 All: GPU implementation

12/12 ~ 12/15 All: Finish profiling, scalability analysis, and different experiments.

12/15 ~ 12/18 All: 125% goals of exploring lock-free versions with hashtag + ptr stored
together, resizing / migration, etc.
Create poster

Finished Goals

We’ve finished implementing coarse-grained/fine-grained locking with two storage alternatives
(storing key-value (KV) pairs together / key tags together for fast lookup) and finished
correctness validation.

https://yinyuewu.github.io/pp_proj/

We also finished the lock-free version with no tomb reusing (the reason stated in the proposal:
conflicts when multiple threads operate on the same key) and finished correctness validation.
However, storage alternatives introduce inconsistency between key hash tags and KV pairs: it
requires multiple dependent CAS operations, which makes the algorithm blocking unless we
have double-CAS operations. So we plan to give up this experiment (illustrated below).

We’ve finished SIMD versions based on the fine-grained version’s two storage alternatives and
lock-free version and finished correctness validation.

We also produced preliminary outcomes as graphs below on GHC machines. They’re not very
promising in read-write settings, and we’ll continue to optimize them (illustrated below).

Unexpected Outcomes

1.​ It seems that we cannot maintain KV pairs and separate key hashes to be consistent in
the lock-free version unless we have double CAS. If we use two separate CAS, between
the two operations, the program would be blocked.

To make up for this, we’re planning to explore storing tags and pointers as pairs for each
KV pair for this lock-free case, not sure if this would work out.

For example, suppose both the insert and the delete operations are done in this
way: they first CAS on the KV pair, then on the hash tags. Suppose different
threads are operating on the same key X with an invalid tag, and invalid KV pair,
(i, i).

Thread A inserts kv, then he stalls. Thread B sees an invalid tag but a valid key
pair here. However, this should be the dedicated slot for X (according to the
no-tomb assumption in the proposal). Should B keep retrying? Then blocking
operation if thread A failed at this point, with no one making progress.

If B force updates this value to be consistent (v,v) or (i, i), then maybe after a long
period of time, the slot becomes (invalid tag, invalid KV) again. Then thread A
wakes up, and he continues and makes the tag valid. So the state ends up being
(valid tag, invalid data), similar to the ABA problem. A ended up returning
success to the user, and we’re in an inconsistent state again. How can we look A
up correctly in the future?

Even if we use counters here to solve ABA to eliminate inconsistencies, this is
equivalent to keep everyone retrying. The algorithm is still blocking because the
action is split into 2 steps, each being a CAS with the counter.

No matter what the order of operations is, we perform insert / delete to the hash
table, (first modify tag then KV pair / first KV pair then tag), we would run into an
inconsistent state when an operation is half-done, e.g., invalid tag + valid KV pair,

or the opposite. If we spin-loop with this state, then the algorithm is blocking. If
we force the updates to happen, then we lose correctness.

​

2.​ Our attempts at lock-free / SIMD / storage optimization optimizations have not
demonstrated a big advantage yet. More details are below in Preliminary Results. They
only work well on read-only cases. Although this might be due to the low thread count /
we have not further optimized the code yet.

Adjusted Goals

75% -- Finish exploring different locking mechanisms

For goal 2 of storage alternatives: Implement alternative techniques of storing k-v pairs
only / continuous key storage for fast lookups for both fine-grained and CAS versions only
the blocking versions.

a.​ Store keys only once. Just store keys and values pairs as entries
b.​ Continuous storage of key hashtags for fast lookup. Tradeoff between extra

space vs. fast key lookups by storing all keys/hashes consecutively for better
locality and SIMD efficiency.

100% -- Acceleration

Switch 125%’s GPU implementation here, replacing “implementing pointers as values
for storage”

Plans For Poster Session

At the poster session, we plan to show different graphs to illustrate the evaluation of all
implementations.

We will show the comparison of the scalability and performance of each implementation on
different workload benchmarks. We are also going to show the experiment outcomes about how
the performance varies with the changes in the number of threads, different thresholds, and
different sizes of allocated space/keys/hash tags. We’ll find out the best version to achieve
cache awareness.

Preliminary Results

Here’re some results on GHC machines with thread count up to 8. Our optimizations work well
on read-only cases (SIMD / storage optimization). A higher thread count would help, but the
benefit is very small.

Lock-free did not achieve the expected speedup, probably due to: 1. Not enough contention, but
more retries 2. Atomic operations are too expensive: aside from CAS, we’re also using
atomic.load() for all reads of KV pairs to eliminate torn reads: the KV pair being changed
between reading its key and its value. However, when there are only <=8 threads, blocking
versions still do better.

Coarse-Grained Lock Performance

Thread Read Only Write Only Read + Write

1 246 ms 267 ms 249 ms

2 376 ms 432 ms 404 ms

4 481 ms 553 ms 516 ms

8 462 ms 511 ms 491 ms

Fine-Grained Lock Performance

Thread Read Only Write Only Read + Write

1 277 ms 294 ms 281 ms

2 227 ms 303 ms 257 ms

4 220 ms 377 ms 303 ms

8 254 ms 442 ms 352 ms

Lock-Free Performance

Thread Read Only Write Only Read + Write

1 688 ms 688 ms 678 ms

2 389 ms 433 ms 409 ms

4 264 ms 383 ms 319 ms

8 255 ms ​​431 ms 345 ms

Fine-Grained Performance: Read Only Workload

Thread Basic Version With Tag With SIMD Tag + SIMD

1 277 ms 215 ms 270 ms 233 ms

2 227 ms 201 ms 227 ms 208 ms

4 220 ms 219 ms 219 ms 217 ms

8 254 ms 252 ms 251 ms 252 ms

Fine-Grained Performance: Write Only Workload

Thread Basic Version With Tag With SIMD Tag + SIMD

1 294 ms 372 ms 404 ms 386 ms

2 303 ms 327 ms 336 ms 330 ms

4 377 ms 383 ms 375 ms 380 ms

8 442 ms 439 ms 440 ms 440 ms

Fine-Grained Performance: Read + Write Workload

Thread Basic Version With Tag With SIMD Tag + SIMD

1 281 ms 291 ms 334 ms 307 ms

2 257 ms 260 ms 282 ms 270 ms

4 303 ms 298 ms 301 ms 296 ms

8 352 ms 350 ms 348 ms 349 ms

Remaining Unknowns & Concerns

1.​ Our SIMD / storage optimization optimizations only work well on read-only cases, not
sure whether further optimization would work out.

2.​ Lock-free tagged optimization requires Double-CAS. Is it unsolvable?
3.​ We’re planning to explore storing tags and pointers as pairs for each KV pair for this

lock-free case, not sure if this would help.

	Milestone Report:
	Concurrent Hash Table Lookup And Acceleration
	Adjusted Schedule

