
CS 186 - Fall 2024  
Exam Prep Section 2  

Disks and Files  

Question 1: Files, Pages, Records  

Consider the following relation:  

CREATE TABLE Cats (  
collar_id INTEGER PRIMARY KEY, -- cannot be NULL!  
age INTEGER NOT NULL,  
name VARCHAR(20) NOT NULL,  
color VARCHAR(10) NOT NULL  

);  

You may assume that:  

• INTEGERs are 4 bytes long;  

• VARCHAR(n) can be up to n bytes long.  

(a) As the records are variable length, we will need a record header in the record. How big is the record 
header? You may assume pointers are 4 bytes long, and that the record header only contains 
pointers. Answer: 8 bytes.  
In the record header, we need one pointer for each variable length value. In this schema, those are 
just the two VARCHARs, so we need 2 pointers, each 4 bytes.  

(b) Including the record header, what is the smallest possible record size (in bytes) in this schema? 
(Note: NULL is treated as a special value by SQL, and an empty string VARCHAR is different from 
NULL, just like how a 0 INTEGER value is also different from NULL. We will provide the necessary 
clarification should similar questions appear on an exam.)  
Answer: 16 bytes (= 8 + 4 + 4 + 0 + 0)  
8 for the record header, 4 for each of integers, and 0 for each of the VARCHARs.  

 
 
(c) Including the record header, what is the largest possible record size (in bytes) in this 

schema? Answer: 46 bytes (= 8 + 4 + 4 + 20 + 10)  



(d) Now let’s look at pages. Suppose we are storing these records using a slotted page layout with 
variable length records. The page footer contains an integer storing the record count and a pointer 
to free space, as well as a slot directory storing, for each record, a pointer and length. What is the 
maximum number of records that we can fit on a 8KB page? (Recall that one KB is 1024 bytes.)  
Answer: 341 records (= (8192 - 4 - 4) / (16 + 4 + 4))  
We start out with 8192 bytes of space on the page.  
We subtract 4 bytes that are used for the record count, and another 4 for the pointer to free space. 
This leaves us with 8192 - 4 - 4 bytes that we can use to store records and their slots. A record 
takes up 16 bytes of space at minimum (from the previous questions), and for each record we also 
need to store a slot with a pointer (4 bytes) and a length (4 bytes). Thus, we need 16 + 4 + 4 bytes 
of space for each record and its slot.  

(e) Suppose we stored the maximum number of records on a page, and then deleted one record. Now 
we want to insert another record. Are we guaranteed to be able to do this? Explain why or why not.  
Answer: No, we deleted 16 bytes but the record we want to insert may be up to 46 bytes.  

(f) Now suppose we deleted 3 records. Without reorganizing any of the records on the page, we would 
like to insert another record. Are we guaranteed to be able to do this? Explain why or why not.  

Answer: No; there are 48 free bytes but they may be fragmented - there might not be 46 contiguous 
bytes. 

 



Question 2: Files, Pages, Records  

Consider the following relation:  

CREATE TABLE Student (  
student_id INTEGER PRIMARY KEY,  
age INTEGER NOT NULL,  
units_passed INTEGER NOT NULL,  

);  

(a) Are Student records represented as fixed or variable length?  

(b) To store these records, we will use an unpacked representation with a page header. This page 
header will contain nothing but a bitmap, rounded up to the nearest byte. How many records can we 
fit on a 4KB page? (Recall that one KB is 1024 bytes.) 
Answer: 337 (= 4096 / (12 + 0.125))  
The page must be divided up by 12 bytes per record plus 1 bit (0.125 bytes) for that record’s bit in 
the bitmap.  

(c) Suppose there are 7 pages worth of records. We would like to execute  

SELECT * FROM Student WHERE student_id = 3034213355; -- just some number  

Suppose these pages are stored in a heap file implemented as a linked list. What is the minimum 
and maximum number of I/Os required to answer the query?  

Answer: Minimum: 2. Maximum: 8.  
First, 1 page read for the header.  
The record can be on any of the 7 data pages; if we’re lucky, we read 1 of them, and if we’re 
unlucky, we read all 7.  

(d) Now suppose these pages are stored in a sorted file, sorted on student id. What is the minimum and 
maximum number of I/Os required to answer the query? You can assume sorted files do not have 
header pages.  
Answer: Minimum: 1. Maximum: 3.  
As seen in Lecture 5, we do binary search to find records in a sorted file. 

 



Question 3: Files, Pages, Records  

Note for guerilla section attendees: These questions have been edited for clarity.  

(a) Suppose we are storing variable length records in a linked list heap file. In the ”pages with space” 
list, suppose there happens to be 5 pages. What is the maximum number of IOs required in order to 
insert a record?  
You may assume that at least one of these pages contains enough space, and additionally that it will 
not become full after insertion.  

(b) Continuing from part (a), suppose that the page does become full after insertion. Now, we need to 
move that page to the ”full pages” list.  
Assume we have already done all necessary page reads for part (a)’s worst case (and that those 
pages are still in memory), but have not yet done any page writes.  
How many additional I/Os do we need to move the page to the ”full pages” list?  

(c) Now suppose records are fixed length; what is the maximum number of I/Os to insert a record? 
Assume that the page we insert into does not fill up after the insertion.  
Answer: 3 I/Os.  
(1) Read page header.  
(1) Read a non-full page.  
(1) Write updated non-full page. (This insert is guaranteed because this question says the records 
are fixed length.)  

(d) Now suppose we are using a page directory, with one directory page. What is the maximum number 
of I/Os required to insert a record?  
Answer: 4 I/Os.  
(1) Read page header.  
(1) Read a non-full page.  
(1) Write updated non-full page.  
(1) Write updated page header (we need to update the amount of free space). 


