N5 Biology Problem Solving:

Averages:

- Add all the values (numbers) together and divide by how many you have added.
- Eg. 10 + 15 + 5
- Divide by 3 because 3 numbers were added. Answer = 10.

Ratios;

- You must divide all numbers by the same. Simplify it as much as possible but they must all be whole numbers i.e. no decimals.
- E.g. 35 : 21 : 14 all these numbers divide by 7 so the simple whole number ratio is 5 : 3 : 2

Percentages

- To calculate a number as a percentage, divide the number you are trying to find by the total and multiply by a hundred.
- Eg dividing your test score by the total.
- 22 out of 30 = 22 / 30 x 100 = 73%

Percentage change

- Difference divided by the original value multiplied by 100.
- E.g. 50 bacteria at the start, after 5 hours they had multiplied to 700, what is the percentage change in number?
- Difference = 700 50 = 650. Divided by the starting value = 50
- 650 / 50 x 100 = 1300

Graphs & charts

- Remember the SLURP rule. Copy labels directly from the table column headings.
- Do not miss out on anything including the units.
- You must put a starting value in the origin for each individual axis. This might be zero, but not always.
- Use a ruler to help you plot your points this will reduce the risk of you skipping boxes.
- Remember each box on a scale must be the same value. If you have 10 boxes between 0 and 1. You must have 10 boxes between 1 and 2, 2 and 3 and so on.

Relationships

- As one thing changes it affects another. You must mention both.
- Variables the only variable that can be changed is the one being investigated. Constant variables, you need to give an example not already mentioned in the question text or diagram.
- Do not use the word amount. You must say the
 - o volume of solution... or
 - o the pH of.... or
 - the concentration of... the
 - o the mass of... etc.

Control

• A control is set up to make a comparison. You must state that everything is set up exactly as in the experiment but without the variable being investigated.

Reliability

The results can be made more reliable by repeating the experiment in exactly the same way.

Validity

• Only one variable should be changed in an experiment to ensure it is a valid investigation.