
DNS

Our current architecture and how DNS lookups are handled while a split VPN tunnel is being

configured are demonstrated below. This design is currently only available through a beta

feature when experimentalHostResolver is set to enable. Currently, all DNS lookups inside the

WSL distro VM are done through a host-resolver peer process that listens on both TCP and

UDP port 53. The host-resolver peer process is an intermediary stub resolver for forwarding all

the requests to its upstream stub server host-resolver host process that runs on the host

machine.

The communication between these two processes takes place over a low-level transport shared

memory AF_VSOCK which is one of many variations of the virtual socket address family.

Containers and all other processes that require DNS lookup forward their DNS resource record

request to the peer process in the VM either via TCP or UDP.

Host-resolver peer process then forwards the payload over the AF_VSOCK to the host-resolver

host process and waits for the response from the host. Once the host-resolver host process

receives the DNS question, it will then use the win32 API to retrieve the response. At this point,

the request is handed over to the operating system’s glibc which in turn uses the standard calls

through getaddrinfo(windows) and gethostbyname(windows), etc to determine the resolutions

using appropriate interfaces. This is how the host-resolver host process can distinguish name

lookups that are destined for VPN vs the ones that are destined for regular internet.

The diagram below demonstrates our current architecture on the Windows platform.

https://man7.org/linux/man-pages/man7/vsock.7.html
https://man7.org/linux/man-pages/man3/getaddrinfo.3.html
https://docs.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-getaddrinfo
https://man7.org/linux/man-pages/man3/gethostbyname.3.html
https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-gethostbyname

Windows

Something that can be added to this architecture in the near future is to run an additional DNS

server in the WSL VM to handle container to container networking and name lookups. CoreDNS

is a CNCF project and can be leveraged as an efficient forwarder and immediate resolver within

the container namespace(s).

In the diagram below you can see that containers no longer talk to the host-resolver peer

process directly, but rather their immediate DNS lookup takes place at the coreDNS. This design

can be beneficial since it allows the containers to reference each other by using their name as

opposed to the IP address. This can be helpful when a container is restarted and changes its IP

address.

https://github.com/coredns/coredns

If a name lookup is destined for one of the neighboring containers, coreDNS will immediately

resolve the lookup without having to talk to its upstream host-resolver peer process. However, if

a lookup is destined for something beyond coreDNS’s knowledge then recursive DNS lookup

will take place with host-resolver peer being the first node and coreDNS will act as a forwarder

to forward the requests to its peer (host-resolver peer process).

You can see in the diagram below the architecture with coreDNS as an immediate forwarder.

Windows

Published Ports (Port Binding/Forwarding)

It can be useful to expose ports on the host for various reasons, such as applications wanting to

expose UI, accessing an app through a browser, or perhaps even debugging an application that

is running in the container.

Windows

The approach above can be taken to expose the backend container ports on the desired

interface if a run command with -p or –publish is issued.

Currently, the forwarding process (as shown in the diagram above) on Windows communicates

with dockerd via Windows named pipes over shared memory hypervisor socket address family

or more precisely (AF_VSOCK). When a docker API call is issued, the forwarding process

(currently wsl-helper) forwards the request to the dockerd. However, in the proposed design

above, an additional call will be made to the Supervisor process which is a privileged service.

When a Supervisor receives the port binding request from the forwarding process, it will then try

to publish the desired port on a given IP (if one is not provided, 0.0.0.0 or INADDR_ANY is

used). If this attempt fails (e.g. if the port is already occupied or if any other failures), a friendly

error is displayed to the user.

On Windows, the Supervisor process leverages a built-in utility (netsh interface portproxy) that

can be used to provide a port proxy across multiple networks. This API can be used to add or

delete the desired port mappings.

macOS

https://man7.org/linux/man-pages/man7/vsock.7.html
https://docs.microsoft.com/en-us/windows/wsl/networking#accessing-a-wsl-2-distribution-from-your-local-area-network-lan

On macOS a slightly different approach is taken. The PortProxy process, as shown in the

diagram above, is leveraged in the osx environment to act as a peer stack in the host that

represents the process in the lima VM. The PortProxy listens for requests from the Supervisor

process which is a privileged helper service that runs as a root from launchd.

Our current architecture and the way we talk to the dockerd on macOS is different from

Windows. As mentioned previously above, in Windows the forwarding process for docker API

sends the request over secure low-level transport such as shared memory, however, on macOS

this process is replaced with ssh tunnel using the bind-address argument(-L). The docker API

calls are simply forwarded to dockerd via ssh -L. In this proposal, the communication with

dockerd will be replaced by a shared memory over Virtual I/O device. All the docker API

requests are forwarded as UNIX domain socket connections over a low-level virtual socket

address family as demonstrated in the diagram above.

Although on modern macOS, binding to privileged ports on all IPs e.g. 0.0.0.0 or INADDR_ANY
are an unprivileged operation. However, there is still one case that requires root privilege, which

is when the user requests port binding for 127.0.0.1. E.g. docker run -p 127.0.0.1:80:80.

Once the PortProxy receives a port mapping request from the Supervisor process, it attempts to

map the desired port and IP (if one is provided). If the operation fails (e.g. port is already taken),

a friendly error message is displayed to the user. However, if the operation succeeds, the

PortProxy starts accepting requests on the specified port and it forwards the requests over a

vde_switch to the backend process via tap interfaces.

Proxy

As demonstrated in the diagram below, an instance of envoy proxy is provided in the user’s host

machine. The purpose of this instance is to prevent dockerd restarts and glitches during any

changes that occur to the proxy settings or the upstream proxy.

Envoy proxy is a CNCF project and extremely performant that can be configured through a

robust API without requiring a restart of the process. This is important as users may change

their proxy settings or perhaps eliminate their settings altogether.

https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://www.envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/latest/api-v3/api

The envoy instance can guarantee a complete uptime during these changes. This workflow

requires simply pointing the Dockerd to a static IP address on the host via standard proxy

environment variables. Any changes to the upstream proxy will then take place dynamically in

the envoy instance and the docker engine and containers will continue to operate without any

disruptions to the network and users.

It is important to note that the proxy settings which are provided by the user through Rancher

Desktop UI will only be consumed by the docker engine and not the containers themselves. This

behavior aligns with Docker Desktop. If a user wishes to provide the proxy settings to the

individual containers, they can simply provide the proxy settings using the –env argument e.g.

docker run \
 --env http_proxy="http://my.proxy.com:3128" \
 --env https_proxy="http://my.proxy.com:3128" \
 nginx sh -c "curl google.com"

Windows

On Windows, a user can simply provide the proxy settings using Rancher Desktop UI through

the following variables:

HTTP_PROXY - Server endpoint that provides plain http
HTTPS_PROXY - Server endpoint that provides https
FTP_PROXY - Server endpoint that handles ftp
NO_PROXY - List of hosts that can be reached without going through the proxy e.g. localhost,
127.0.0.1

Furthermore, if a user wishes to provide authentication for their proxy settings they can simply

use the following format, or perhaps we can incorporate a username and password field in the

UI.

http://<username>:<password>@my.proxy.com:3128/

In addition to the manual configuration that a user can provide through the UI, the Supervisor

process can also request autodiscovery proxy settings through WinINet and WinHTTP discovery

process using the win32 API. Using the auto-discovery API can provide a more robust workflow

for users and easier integration with their Windows corporate authenticated proxy settings.

However, this requires additional research and can be tackled as a lower priority item in the

roadmap.

https://docs.microsoft.com/en-us/windows/win32/winhttp/setting-wininet-proxy-configurations-in-winhttp

macOS

On macOS, the workflow through the Rancher Desktop will be similar to Windows. However, the

auto-discovery of the proxy settings is different. In the macOS, Supervisor process will be

watching the system preferences for any changes to the proxy settings associated with the

network interfaces. If a change is detected, the Supervisor process will then propagate those

changes dynamically in the envoy instance without any action from the user. Otherwise, every

other setting and workflow is similar to Windows.

	DNS
	
	
	
	
	
	
	
	
	
	
	
	
	Published Ports (Port Binding/Forwarding)
	Proxy

