Vietnam National University Ho Chi Minh City University of Science

Course Name: Principles and Applications of Accelerator Course Code/Class Code:	Exam Room:		
Student Name: Truong Thi Thao MyStudent ID: 21260069 Order Number (according to class list):			

Question 1: The fundamental differences between Cyclotron and Synchrotron

Cyclotron:

- Compact size, space-saving
- Uses a uniform magnetic field
- RF frequency (frf) is constant
- Limited by relativistic effects (cannot accelerate particles with velocities approaching the speed of light)
- The particle trajectory is a circular orbit
- Magnets are placed above and below the two electrodes

Synchrotron:

- Larger size, requires more space
- Magnetic field and RF source frequency are constantly adjusted
- Not limited by relativistic effects (variable frf allows acceleration of particles with high velocities and energies)
- Particles move on a fixed circular trajectory

Magnets are arranged along the circular circumference

Question 3:

n = 42 drift tubes

f = 100 MHz

w = 500 keV = 0.5 MeV

 $L_{42} = 32 \text{ cm} = 0.32 \text{ m}$

 $E_{0 \text{ (proton)}} = 938 \text{ MeV}$

We have:

$$L = \frac{1}{2}vt = \frac{1}{2}v\frac{1}{f}v = c\beta = c\sqrt{1 - \frac{1}{\gamma^{2}}}$$

$$\Rightarrow L = \frac{1}{2f}c\sqrt{1 - \frac{1}{\gamma^{2}}}$$
Where:
$$\gamma = \frac{E}{E_{0}}$$

$$\Rightarrow L_{n} = \frac{c}{2f}\sqrt{1 - \left(\frac{E_{0}}{E_{n}}\right)^{2}}$$

$$\Rightarrow L_{42} = \frac{c}{2f}\sqrt{1 - \left(\frac{E_{0}}{E_{42}}\right)^{2}}$$

$$\Rightarrow 0.32 = \frac{3x10^{8}}{2x100x10^{6}}\sqrt{1 - \left(\frac{938}{938 + K_{0} + (42 - 1)x0.5}\right)^{2}}$$

$$K_{0} \approx 1.6 \text{ MeV}$$

Thus, the initial energy of the proton injected into the accelerator is approximately 1.6 MeV.

a) We have:

$$K_{n} = 50 \, MeV = K_{0} + (n - 1)w$$

$$\Rightarrow n = \frac{K_{n} - K_{0}}{w} + 1 = \frac{50 - 1.6}{0.5} + 1 \approx 98 \, (drift \, tubes)$$

$$\Rightarrow \Delta n = 98 - 42 = 56 \, (drift \, tubes)$$

Thus, an additional 56 drift tubes are required to accelerate the proton to an energy of 50 MeV.

Question 4:

We have:

$$1T = 10^4 G = 10 kG$$

$$\frac{mv^2}{R} = qvB$$

$$mv = qRB$$

$$mv = \frac{1.6x10^{-19}}{1.6x10^{-10}}x0. \ 1cR(m)B(T)$$

$$\Rightarrow mv = 3x10^{-2}RB = 0.03RB \ (J)$$

Question 5:

Synchrotron: R = 10 m

Proton partical: B = 1.2 T

 $E_{0 \text{ (proton)}} = 938 \text{ MeV}$

a) The particle moves in a magnetic field along a circular trajectory. We have:

$$\frac{mv^{2}}{R} = qvB$$

$$mv = qRB$$

$$p = qRB$$

$$\Leftrightarrow pc = qRBc = 0.3RB \qquad (GeV) \quad (1)$$

Where:

$$E^{2} = (pc)^{2} + (m_{0}c^{2})^{2}$$

$$\Rightarrow pc = \sqrt{E^{2} - (m_{0}c^{2})^{2}}$$

$$pc = \sqrt{K(K + 2m_0 c^2)}$$
 (2)

From (1) and (2):

⇒0.
$$3RB = \sqrt{K(K + 2m_0c^2)}$$

0. $3x10x1. 2x10^3 = \sqrt{K(K + 2x938)}$
⇒ $k \approx 2782. 19 \ MeV \approx 2.78 \ GeV$

⇒The kinetic energy of the proton is approximately 2.78 *GeV*

b) We have:

$$\gamma = \frac{E}{E_0} = \frac{2.78 + 0.938}{0.938} \approx 3.96 > 1$$

 \Rightarrow The particle moves relativistically.

$$\Rightarrow f_{proton} = \frac{zeB}{2\pi\gamma m_0} = \frac{1x1.6x10^{-19}x1.2}{2\pi x3.96x1.67x10^{-27}}$$

$$f_{proton} \approx 4.62 MHz$$

Question 2:

From the de Broglie wavelength:

$$\lambda = \frac{h}{p}$$

Where p is the momentum of the particle.

We observe that: $\lambda \sim \frac{1}{p}$