
Puppet As a Library (PAL) - predocs
This document describes PAL ("Puppet As a Library"), and API designed to help when writing
ruby applications that makes use of Puppet. Earlier, a user wanting to use Puppet as a library
would have to assemble all the bits and pieces into a correct configuration and where "correct"
varies between versions of Puppet.

Pal only works with Ruby >= 2.0.0 as it is using Ruby "args by name" in the API methods.

This is pre-docs describing functionality being developed as this document is written!

Require 'puppet_pal', not 'puppet'
The first step is to require pal.

require 'puppet_pal'

This should be done instead of requiring 'puppet' since requiring 'puppet' is not API. While
'puppet_pal' currently requires 'puppet', the API may in the future require a subsection of puppet
(the part actually being used) in order to speed up loading.

Configure an Environment
Most operations in puppet require an environment - a definition of where to find puppet logic,
modules, hiera configuration and data, as well as certain settings. Setting up and creating one
without Pal is a bit of black art due to the flexibility provided in the underlying implementation.
Now, in Pal this is quite easy. There are two entry points - one that creates a temporary
environment out of what is given to the API, and one that is based on an existing puppet
environment (a file system directory).

In both cases, the logic you want to run with the environment in effect is given in a block that is
given an instance of Puppet::Pal as an argument (to make it easier to further access PAL).

In a Temporary Environment

In a temporary environment - minimum with modules

require 'puppet_pal'

result = Puppet::Pal.in_tmp_environment('pal_env', modulepath: ['/tmp/testmodules'])
do |pal|
 # do things with pal here
end

Arguments to in_tmp_environment

argument name default
value

named
param

description

env_name required no the name of the env must be given as such a
name is required in many puppet
operations/output

modulepath [] ✓ one or several directories where modules can be
found

settings_hash {} ✓ a hash of setting name to value mapping -
currently unused

facts nil ✓ a hash of fact name to value mapping to use in
the operation - when set to nil, the facts from
the localhost are used (and that is expensive to
execute).

variables {} ✓ a hash of variable name (without leading '$') to
value mapping - may set values in any name
scope - to be used with caution as variables are
immutable

&block required no the block with code to execute

In an Existing Environment

In an existing environment - minimum with env configured modulepath

require 'puppet_pal'

result = Puppet::Pal.in_environment('pal_env') do |pal|
 # do things with pal here
end

The "existing environment" is either a directory that has puppet environment compliant layout
that is referenced directly with a path to the directory, or it is a directory on the environment
path. The former (directly referencing a directory) avoids the potential problem of puppet trying
to find an environment in a directory that is not a compliant environment layout. It also enables
using a directory with a different name than the wanted env name. See parameters envpath
and env_dir for more details.

Arguments to in_environment

argument name default
value

named
param

description

env_name required no the name of an existing env must be given and
there must be such an environment on puppet's
environmentpath.

pre_modulepath [] ✓ one or several directories where modules can be
found and where the modules should be added
first in the resulting modulepath

modulepath nil ✓ one or several directories where modules can be
found - uses the env configured modulepath if
nil, otherwise overrides the env's modulepath.

post_modulepath [] ✓ like pre_modulepath but appends to the
effective modulepath.

settings_hash {} ✓ a hash of setting name to value mapping -
currently unused

env_dir nil ✓ a directory to use as the environment directory -
instead of finding an environment on the
envpath. Mutually exclusive with envpath. If

env_dir is specified, the directory may have a
name different from the given env_name.

envpath nil ✓ One or several directories where named
environments can be found. Mutually exclusive
with env_dir. Defaults to puppet's configured
environmentpath if not given and env_dir is
not given.

facts nil ✓ a hash of fact name to value mapping to use in
the operation - when set to nil, the facts from
the localhost are used (which is an expensive
operation).

variables {} ✓ a hash of variable name (without leading '$') to
value mapping - may set values in any name
scope - to be used with caution as variables are
immutable

&block required no the block with code to execute

NOTE: The PAL API is not recursive - you are not allowed to call in_tmp_environment, or
in_environment while in the context of the block given to those calls (applies recursively). There
is no detection if you do - just gremlins...

Making Puppet do stuff
In the block given to in_tmp_environment, or in_environment we want to perform
operations with puppet. At this point in the setup the environment has been configured for use,
but some slow operations are delayed until it is known what is going to be used. At present, all
operations require a "compiler" of some sort - and when it is created there is resolution of facts
for a node, scopes etc. are configured and global variables are set, loaders are configured, etc.

It is important to understand that setting up the environment and compiler is a quite costly
operation - while you could do that around each operation, it adds significant overhead and the
state of scopes etc. is then not preserved. You decide if you want to use the same env and its
configuration with multiple separate instances of a compiler, or if you want to use the same
compiler instance throughout. You can specify variables and facts at the env level (for those that
you want set by default in each compiler instance, and you can override the variables and facts
when creating the compiler.

Once there is an environment we can do things and this requires a "compiler" (of some sort). In
PAL this is abstracted in Puppet::Pal::Compiler, for which there is currently one subclass
Puppet::Pal::ScriptCompiler. The ScriptCompiler is configured to handle the

Puppet Language with task/plan support and restrictions on using catalog compilation
expressions and statements. At some point in the future it is expected that PAL will also support
catalog compilation.

The rationale for splitting up the PAL API in two (first environment, and then a compiler) is due
to the more static nature of the environment (the initial logic and modules typically does not
change), whereas you may want to have multiple independent runs (compilations) take place
with an environment in effect. This design also enables ScriptCompiler and a future
CatalogCompiler to have compiler specific API.

A script compiler is obtained like this:

Use with_script_compiler to get a ScriptCompiler

require 'puppet_pal'

result = Puppet::Pal.in_environment('pal_env') do | pal |
 pal.with_script_compiler do | compiler |
 # do things with compiler
 end
end

Arguments to with_script_compiler

argument name default
value

named
param

description

configured_by_env

false ✓ When false, manifest_file or
code_string (or neither) defines any
initialization logic to evaluate. When true, the
puppet settings for manifest and code are
used.

manifest_file nil ✓ A reference to a file with puppet language code
to parse and evaluate before any other
operations take place in the compiler. Mutually
exclusive with code_string. Can only be
used when configured_by_env is false.

code_string nil ✓ A string containing puppet language code to
parse and evaluate before any other
operations take place in the compiler. Mutually

exclusive with manifest_file. Can only be
used when configured_by_env is false.

facts nil ✓ a hash of fact name to value mapping to use in
the operation - when set to nil, the facts from
the localhost are used. If given, merges on top
of the facts set by in_tmp_environment or
in_environment.

variables {} ✓ a hash of variable name (without leading '$') to
value mapping - may set values in any name
scope - to be used with caution as variables
are immutable. If given, merges on top of the
variables set by in_tmp_environment or
in_environment.

Note: that the script compiler will use the default settings for Puppet for things like manifest,
and this setting is by default the environment's manifests directory. It is however illegal to
use a directory as the manifest when using the script compiler.

Operations on ScriptCompiler

call_function(function_name, *args, &block)

evaluate_file(file)

evaluate_string(source_string, source_file=nil)

evaluate(ast)

evaluate_literal(ast)

type(type_string)

create(data_type, *args)

plan_signature(plan_name)

task_signature(task_name)

function_signature(function_name)

list_plans(filter_regexp=nil)

list_tasks(filter_regexp=nil)

list_functions(filter_regexp=nil)

lex_string(code_string, source_file=nil)

lex_file(file)

Details per method

call_function(function_name, *args, &block)

 Calls a function given by name with arguments specified in an `Array`, and optionally
accepts a code block.

parameters

 String function_name the name of the function to call

 Any *args the arguments to the function

 Callable block an optional block if the given function accepts one - this
can be a regular Ruby block as they are compatible
with the Puppet Language lambdas

returns what the called function returns

evaluate_file(file)

 Loads an existing file with puppet language source, parses, validates, evaluates and
returns the result of the file's last expression.

parameters

 String file the path to the .pp file

returns what the evaluated result of the last expression in the
file is

evaluate_string(source_string, source_file=nil)

 Accepts a string with puppet language source, parses, validates, evaluates and returns
the result of the string's last expression

parameters

 String source_string a puppet language string

 String source_file a reference to the source location/origin of the
source_string. Does not have to be an existing path
- by convention use < > around a symbolic name; for
example <commandline>. Defaults to <unknown> if

not given. If the string was read from a file, do use the
actual filename.

returns what the evaluated result of the last expression in the
source_string is

evaluate(ast)

 Evaluates the validated AST obtained from parse_string, or parse_file and returns the
result of that evaluation.

parameters

 Puppet::Pops::Model::P
rogram ast

the parsed "program"

returns what the evaluated result of the last expression in the
file is

evaluate_literal(ast)

 Evaluates the validated AST representing a literal value obtained from parse_string, or
parse_file and returns the result of that evaluation. An error is raised if the ast does not
represent a literal value.

parameters

 Puppet::Pops::Model::P
rogram ast

the parsed "program"

returns the literal value the ast represents

plan_signature(plan_name)

 Returns a Puppet::Pal::PlanSignature object describing the signature of a plan
(its parameters and return type).

Example: checking if plan can be called with given arguments hash:

signature = compiler.plan_signature('mymodule::myplan')
raise "Plan not found" if signature.nil?
signature.callable_with?(args_hash) # true if acceptable

parameters

 String plan_name the name of a plan to get a Callable for

returns a Puppet::Pal::PlanSignature if the plan exists,
or nil otherwise.

function_signature(function_name)

 Returns a Puppet::Pal::FunctionSignature object describing the signature of a
function (all its overloaded implementations each with parameters and return type).

Example: checking if function can be called with given set of arguments:

signature = compiler.function_signature('mymodule::myfunc')
raise "Function not found" if signature.empty?
signature.callable_with?(args_array)
or if function accepts/requires a lambda/proc
signature.callable_with?(args_array, a_proc)

Example: getting all overloaded implementations as Array[Callable]

The FunctionSignature can return details per overloaded
implementation. The callables() method returns an array
of one or more Puppet::Pops::Types::PCallableType,
one per overloaded implementation.

signature.callables

parameters

 String function_name the name of a function to get a Callable types for -
one per possible dispatch

returns a Puppet::Pal::FunctionSignature if the
function exists, or nil otherwise.

task_signature(task_name)

 Returns a Puppet::Pal::TaskSignature object describing the signature of a task
(its parameters and return type).

For example:
signature = compiler.task_signature('mymodule::mytask')
raise "Task not found" if signature.nil?
signature.runnable_with?(args_hash) # true if acceptable

parameters

 String task_name the name of a task to get a signature for

returns a Puppet::Pal::TaskSignature if the function
exists, or nil otherwise.

parse_file(file)

 The same as parse_string, but parsing an entire file.
For example:
program = compiler.parse_file(/somehwere/test.pp)

parameters

 String file the puppet language file to parse

returns The AST element
Puppet::Pops::Model::Program if the input is a
valid puppet language "program"

list_plans(filter_regexp=nil)

 Returns an array with all plans with a name that matches the optional regular expression
filter. Returns a Puppet::Pops::Loader::TypedName with information.

The TypedName has several attributes - one being name, the fully qualified name of the
plan.

Example: output the name of every plan:
compiler.list_plans().each { |tn| puts tn.name }

Example: output the name of all plans in mymodule:
compiler.list_plans(/^mymodule::/).each { |tn| puts tn.name }

parameters

 filer_regexp an optional regular expression that all listed elements
must match - by default, all available are returned.

returns Array of Puppet::Pops::Loader::TypedName or
an empty array if non matched.

list_tasks(filter_regexp=nil)

 Returns an array with all tasks with a name that matches the optional regular expression
filter. Returns a Puppet::Pops::Loader::TypedName with information.

The TypedName has several attributes - one being name, the fully qualified name of the
task.

Example: output the name of every task:
compiler.list_tasks().each { |tn| puts tn.name }

Example: output the name of all tasks in mymodule:
compiler.list_tasks(/^mymodule::/).each { |tn| puts tn.name }

parameters

 filer_regexp an optional regular expression that all listed elements
must match - by default, all available are returned.

returns Array of Puppet::Pops::Loader::TypedName or
an empty array if non matched.

list_functions(filter_regexp=nil)

 Returns an array with all functionsks with a name that matches the optional regular
expression filter. Returns a Puppet::Pops::Loader::TypedName with information.

The TypedName has several attributes - one being name, the fully qualified name of the
function.

Example: output the name of every function:
compiler.list_functions().each { |tn| puts tn.name }

Example: output the name of all tasks in mymodule:
compiler.list_functions(/^mymodule::/).each { |tn| puts tn.name }

parameters

 filer_regexp an optional regular expression that all listed elements
must match - by default, all available are returned.

returns Array of Puppet::Pops::Loader::TypedName or
an empty array if non matched.

Examples
Examples: TBD

●​ type checking arguments to a Task - shown above in task_signature method
●​ type checking arguments to a Plan - shown above in plan_signature method
●​ type checking arguments to a Function - shown above in function_signature method
●​ general type checking using the type system
●​ reporting a type mismatch error
●​ examples of evaluation

○​ in same compiler - variable values still there

Type checking with PlanSignature, TaskSignature and
FunctionSignature
The three kinds of signatures returned from plan_signature(name),
task_signature(name), and function_signature(name) work the same way - there is
one method to check if a given set of arguments are acceptable or not. The method is named
"callable_with?" for plan and function, and runnable_with? for tasks.

The argument checking methods behave in a similar way; they differ in that a
FunctionSignature's callable_with? takes its arguments in an array, and accepts an
optional Proc/lambda. What they have in common is that they return true if arguments are
acceptable, and false otherwise. They also accept a block that is yielded to with a
type-mismatch error string if arguments were not acceptable. This error message is formatted
and may extend over multiple lines (typically if this is a function with overloaded
implementations). The error message string may have leading space per line as indentation as
that may be required to enable a human to read the output correctly.

Example:

signature = compiler.find_function('lookup')
args = [42]
signature.callable_with?(args) do |msg|
 raise ArgumentError.new("Given arguments to 'lookup' does not match
- expected one of: #{msg}")
end

Produces this very detailed output:

Given arguments to 'lookup' does not match, expected one of:
 (NameType = Variant[String, Array[String]] name, ValueType = Type value_type?, MergeType =
Variant[String[1, default], Hash[String, Scalar]] merge?)
 rejected: parameter 'name' expects a NameType = Variant[String, Array[String]] value, got
Integer
 (NameType = Variant[String, Array[String]] name, Optional[ValueType] value_type,
Optional[MergeType] merge, DefaultValueType = Any default_value)
 rejected: expects 4 arguments, got 1
 (NameType = Variant[String, Array[String]] name, ValueType = Type value_type?, MergeType =
Variant[String[1, default], Hash[String, Scalar]] merge?)
 rejected: parameter 'name' expects a NameType = Variant[String, Array[String]] value, got
Integer
 (OptionsWithName = Struct[{'name' => NameType = Variant[String, Array[String]], 'value_type' =>
Optional[ValueType = Type], 'default_value' => DefaultValueType = Any, 'override' =>
Optional[Hash[String, Any]], 'default_values_hash' => Optional[Hash[String, Any]], 'merge' =>
Optional[MergeType = Variant[String[1, default], Hash[String, Scalar]]]}] options_hash, BlockType
= Callable[NameType = Variant[String, Array[String]]] block?)

 rejected: parameter 'options_hash' expects an OptionsWithName = Struct[{'name' => NameType =
Variant[String, Array[String]], 'value_type' => Optional[ValueType = Type], 'default_value' =>
DefaultValueType = Any, 'override' => Optional[Hash[String, Any]], 'default_values_hash' =>
Optional[Hash[String, Any]], 'merge' => Optional[MergeType = Variant[String[1, default],
Hash[String, Scalar]]]}] value, got Integer
 (Variant[String, Array[String]] name, OptionsWithoutName = Struct[{'value_type' =>
Optional[ValueType = Type], 'default_value' => DefaultValueType = Any, 'override' =>
Optional[Hash[String, Any]], 'default_values_hash' => Optional[Hash[String, Any]], 'merge' =>
Optional[MergeType = Variant[String[1, default], Hash[String, Scalar]]]}] options_hash, BlockType
= Callable[NameType = Variant[String, Array[String]]] block?)
 rejected: expects 2 arguments, got 1

For constructs that do not have overloading ('lookup' is one of the most overloaded) there is
naturally just one mismatch entry and one 'rejected'. The more complex 'lookup' is shown as it
also shows why you may want to use a simpler "Arguments are not acceptable to the function -
see the documentation how it can be called", and then perhaps log the complete error message,
or only show it in debug mode or similar.

Checking a Value Against a Data Type
To check a value against a data type, first obtain the data type using the type() method, and
then use the methods on that data type.

is a value in an integer range?
val = 42
compiler.type('Integer[0,100]').instance?

Using hiera and lookup
This is as simple as calling the lookup function. Here is an example, where an existing
environment is used (and where it is expected that puppet is configured with/without a global
hiera.yaml, and that there may be an environment hiera.yaml as well as hiera.yaml files in
modules in the module path.

Perform lookup in hiera

require 'puppet_pal'

result = Puppet::Pal.in_environment('pal_env') do | pal |
 pal.with_script_compiler do | c |
 array_t = compiler.type('Array[Integer]')
 c.call_function('lookup', 'mymodule::myarray', array_t, 'unique') {|key| [] }
 end
end

This example:

●​ Uses an existing environment on disk named 'pal_env' found on the configured
environmentpath

●​ Creates a script compiler without any initialization puppet logic
●​ Gets a data type to use as validation of the return value from the lookup (an array of

integer values is expected), the data type is assigned to the array_t variable.
●​ Looks up the key 'mymodule::myarray' with 'unique' merge by calling the

compiler's 'call_function method.
●​ A Ruby block/lambda is given to call_function and it is passed on the call to

'lookup()'
●​ If the key 'mymodule::myarray' was not found the given code block is called and it

then returns an empty array.

PAL and Catalog Compilation
Use with_catalog_compiler instead of with_script_compiler.
To render the catalog call with_json_encoding on the compiler given to
with_catalog_compiler and call its encode method. By default that produces pretty printed
JSON in rich-data encoding.

result = Puppet::Pal.in_tmp_environment('pal_env', modulepath: modulepath, facts: node_facts) do |pal|
 pal.with_catalog_compiler {|c|
 c.evaluate_string("notify {'test': message => /a regexp/}")
 c.with_json_encoding() {|encoder| encoder.encode }
 }
end

There is obviously more to say - see https://github.com/puppetlabs/puppet/pull/6949
meanwhile...

https://github.com/puppetlabs/puppet/pull/6949

	Puppet As a Library (PAL) - predocs
	Require 'puppet_pal', not 'puppet'
	Configure an Environment
	
	
	In a Temporary Environment
	
	
	In an Existing Environment

	Making Puppet do stuff

	Examples
	Type checking with PlanSignature, TaskSignature and FunctionSignature
	Checking a Value Against a Data Type
	Using hiera and lookup

	PAL and Catalog Compilation

